
Stanford CS193p
Fall 2013

Objective-C
New language to learn!
Strict superset of C
Adds syntax for classes, methods, etc.
A few things to “think differently” about (e.g. properties, dynamic binding)

Most important concept to understand today: Properties
Usually we do not access instance variables directly in Objective-C.
Instead, we use “properties.”
A “property” is just the combination of a getter method and a setter method in a class.
The getter (usually) has the name of the property (e.g. “myValue”)
The setter’s name is “set” plus capitalized property name (e.g. “setMyValue:”)
(To make this look nice, we always use a lowercase letter as the first letter of a property name.)
We just call the setter to store the value we want and the getter to get it. Simple.

This is just your first glimpse of this language!
We’ll go much more into the details next week.
Don’t get too freaked out by the syntax at this point.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

Public Declarations Private Implementation

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

The name
of this class.

Don’t forget this!

NSObject is the root class from which pretty
much all iOS classes inherit

(including the classes you author yourself).

Its superclass.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

Note, superclass is not specified here.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/NSObject.h>

Superclass’s header file.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/Foundation.h>

If the superclass is in iOS itself, we import the entire
“framework” that includes the superclass.

In this case, Foundation, which contains basic non-UI objects like NSObject.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

@import Foundation;

In fact, in iOS 7 (only), there is special syntax for
importing an entire framework called @import.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/Foundation.h>

However, the old framework importing
syntax is backwards-compatible in iOS 7.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/Foundation.h> #import "Card.h"

Our own header file must be imported
into our implementation file.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

@interface Card()

@end

#import <Foundation/Foundation.h> #import "Card.h"

Private declarations can go here.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;

@interface Card()

@end

#import <Foundation/Foundation.h>

In iOS, we don’t access instance variables directly.
Instead, we use an @property which declares two methods: a “setter” and a “getter”.

It is with those two methods that the @property’s instance variable is accessed
(both publicly and privately).

This particular @property is a pointer.
Specifically, a pointer to an object whose class is (or inherits from) NSString.

ALL objects live in the heap (i.e. are pointed to) in Objective-C!
Thus you would never have a property of type “NSString” (rather, “NSString *”).

Because this @property is in this class’s header file, it is public.
Its setter and getter can be called from outside this class’s @implementation block.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;

@interface Card()

@end

#import <Foundation/Foundation.h>

weak would mean:
“if no one else has a strong pointer to this object,

then you can throw it out of memory
and set this property to nil

(this can happen at any time)”

strong means:
“keep the object that this property points to

in memory until I set this property to nil (zero)
(and it will stay in memory until everyone who has a strong

pointer to it sets their property to nil too)”

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;, nonatomic

@interface Card()

@end

#import <Foundation/Foundation.h>

nonatomic means:
“access to this property is not thread-safe”.

We will always specify this for object pointers in this course.
If you do not, then the compiler will generate locking code that

will complicate your code elsewhere.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;, nonatomic @synthesize contents = _contents;

- (NSString *)contents
{
 return _contents;
}

- (void)setContents:(NSString *)contents
{
 _contents = contents;
}

@interface Card()

@end

#import <Foundation/Foundation.h>

This is the @property implementation that the
compiler generates automatically for you

(behind the scenes).
You are welcome to write the setter or getter

yourself, but this would only be necessary if you
needed to do something in addition to simply
setting or getting the value of the property.

This @synthesize is the line of code that actually creates the
backing instance variable that is set and gotten.

Notice that by default the backing variable’s name is the same as
the property’s name but with an underbar in front.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;, nonatomic

@interface Card()

@end

#import <Foundation/Foundation.h>

Because the compiler takes care of
everything you need to implement a

property, it’s usually only one line of code
(the @property declaration)

to add one to your class.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
@property (nonatomic

@interface Card()

@end

) BOOL chosen;
) BOOL matched;

Let’s look at some more properties.
These are not pointers.
They are simple BOOLs.

Properties can be
any C type.

That includes int,
float, etc., even C

structs.

C does not define a “boolean” type.
This BOOL is an Objective-C typedef.

It’s values are YES or NO.

Notice no strong or weak here.
Primitive types are not stored in the heap, so there’s no need to

specify how the storage for them in the heap is treated.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
@property (nonatomic

@synthesize chosen = _chosen;
@synthesize matched = _matched;

- (BOOL)
{
 return _chosen;
}
- (void)setChosen:(BOOL)chosen
{
 _chosen = chosen;
}

- (BOOL)
{
 return _matched;
}
- (void)setMatched:(BOOL)matched
{
 _matched = matched;
}

matched

@interface Card()

@end

chosen
) BOOL chosen;
) BOOL matched;

Here’s what the compiler is
doing behind the scenes for

these two properties.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
, getter=isMatched@property (nonatomic

@synthesize chosen = _chosen;
@synthesize matched = _matched;

- (BOOL)
{
 return _chosen;
}
- (void)setChosen:(BOOL)chosen
{
 _chosen = chosen;
}

- (BOOL)
{
 return _matched;
}
- (void)setMatched:(BOOL)matched
{
 _matched = matched;
}

isMatched

@interface Card()

@end

isChosen
, getter=isChosen) BOOL chosen;

) BOOL matched;

It is actually possible to change the name of the getter that is
generated. The only time you’ll ever see that done in this class

(or anywhere probably) is boolean getters.

Note change in getter method.

Note change in getter method.

This is done simply to make
the code “read” a little bit nicer.

You’ll see this in action later.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
, getter=isMatched@property (nonatomic

@interface Card()

@end

, getter=isChosen) BOOL chosen;
) BOOL matched;

Remember, unless you need to do something besides setting or
getting when a property is being set or gotten,

the implementation side of this will all happen automatically for you.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card;

@interface Card()

@end

Enough properties for now.
Let’s take a look at defining methods.

Here’s the declaration of a public
method called match: which takes one

argument (a pointer to a Card) and
returns an integer.

What makes this method public?
Because we’ve declared it in the header file.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

@interface Card()

@end

Here’s the declaration of a public
method called match: which takes one

argument (a pointer to a Card) and
returns an integer.

match: is going to return a “score” which says how good a match
the passed card is to the Card that is receiving this message.
0 means “no match”, higher numbers mean a better match.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end

There’s a lot going on here!
For the first time, we are seeing the

“calling” side of properties (and methods).

For this example, we’ll return 1 if the passed card has
the same contents as we do or 0 otherwise
(you could imagine more complex scoring).

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end
Notice that we are calling the “getter” for

the contents @property
(both on our self and on the passed card).
This calling syntax is called “dot notation.”

It’s only for setters and getters.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end

isEqualToString: is an NSString method
which takes another NSString as an argument and
returns a BOOL (YES if the 2 strings are the same).

Recall that the contents
property is an NSString.

Also, we see the “square bracket” notation we use to
send a message to an object.

In this case, the message isEqualToString: is being sent
to the NSString returned by the contents getter.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(NSArray *)otherCards; - (int)match:(
{
 int score = 0;

 return score;
}

NSArray *)otherCards

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end

We could make match: even more powerful by
allowing it to match against multiple cards by passing an
array of cards using the NSArray class in Foundation.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(NSArray *)otherCards; - (int)match:(
{
 int score = 0;

 return score;
}

NSArray *)otherCards

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

for (Card *card in otherCards) {

}

@interface Card()

@end

We’ll implement a very simple match scoring system here which is
to score 1 point if ANY of the passed otherCards’ contents

match the receiving Card’s contents.
(You could imagine giving more points if multiple cards match.)

Note the for-in looping syntax here.
This is called “fast enumeration.”

It works on arrays, dictionaries, etc.

