
Stanford CS193p
Fall 2013

Creating Objects
Most of the time, we create objects with alloc and init...
NSMutableArray *cards = [[NSMutableArray alloc] init];
CardMatchingGame *game = [[CardMatchingGame alloc] initWithCardCount:12 usingDeck:d];

Or with class methods
NSString’s + (id)stringWithFormat:(NSString *)format, ...
NSString *moltuae = [NSString stringWithFormat:@“%d”, 42];
UIButton’s + (id)buttonWithType:(UIButtonType)buttonType;
NSMutableArray’s + (id)arrayWithCapacity:(int)count;
NSArray’s + (id)arrayWithObject:(id)anObject;

Sometimes both a class creator method and init method exist
[NSString stringWithFormat:...] same as [[NSString alloc] initWithFormat:...]
Don’t be disturbed by this. Using either version is fine.
iOS seems to be moving more toward the alloc/init versions with new API, but is mostly neutral.

Stanford CS193p
Fall 2013

Creating Objects
You can also ask other objects to create new objects for you
NSString’s - (NSString *)stringByAppendingString:(NSString *)otherString;
NSArray’s - (NSString *)componentsJoinedByString:(NSString *)separator;
NSString’s & NSArray’s - (id)mutableCopy;

But not all objects given out by other objects are newly created
NSArray’s - (id)lastObject;
NSArray’s - (id)objectAtIndex:(int)index;
Unless the method has the word “copy” in it, if the object already exists, you get a pointer to it.
If the object does not already exist (like the first 2 examples at the top), then you’re creating.

Stanford CS193p
Fall 2013

nil
Sending messages to nil is (mostly) okay. No code executed.
If the method returns a value, it will return zero.
int i = [obj methodWhichReturnsAnInt]; // i will be zero if obj is nil
It is absolutely fine to depend on this and write code that uses this (don’t get too cute, though).

But be careful if the method returns a C struct. Return value is undefined.
CGPoint p = [obj getLocation]; // p will have an undefined value if obj is nil

Stanford CS193p
Fall 2013

Dynamic Binding
Objective-C has an important type called id

Is it safe?

It means “pointer to an object of unknown/unspecified” type.
id myObject;
Really all object pointers (e.g. NSString *) are treated like id at runtime.
But at compile time, if you type something NSString * instead of id, the compiler can help you.
It can find bugs and suggest what methods would be appropriate to send to it, etc.
If you type something using id, the compiler can’t help very much because it doesn’t know much.
Figuring out the code to execute when a message is sent at runtime is called “dynamic binding.”

Treating all object pointers as “pointer to unknown type” at runtime seems dangerous, right?
What stops you from sending a message to an object that it doesn’t understand?
Nothing. And your program crashes if you do so. Oh my, Objective-C programs must crash a lot!
Not really.
Because we mostly use static typing (e.g. NSString *) and the compiler is really smart.

Stanford CS193p
Fall 2013

Dynamic Binding
Static typing

NSString *s = @“x”; // “statically” typed (compiler will warn if s is sent non-NSString messges).
id obj = s; // not statically typed, but perfectly legal; compiler can’t catch [obj rank]
NSArray *a = obj; // also legal, but obviously could lead to some big trouble!
Compiler will not complain about assignments between an id and a statically typed variable.

Sometimes you are silently doing this. You have already done so!
- (int)match:(NSArray *)otherCards
{
 ...
 PlayingCard *otherCard = [otherCards firstObject]; // firstObject returns id!
 ...
}

Never use “id *” by the way (that would mean “a pointer to a pointer to an object”).

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Object Typing

No compiler warning.
Perfectly legal since s “isa” Vehicle.

Normal object-oriented stuff here.

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;

Object Typing

No compiler warning.
Perfectly legal since s “isa” Vehicle.

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

Object Typing

Compiler warning!
Would not crash at runtime though.

But only because we know v is a Ship.
Compiler only knows v is a Vehicle.

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];

No compiler warning.
The compiler knows that the method shoot exists,
so it’s not impossible that obj might respond to it.

But we have not typed obj enough for the compiler to be sure it’s wrong.
So no warning.

Might crash at runtime if obj is not a Ship
(or an object of some other class that implements a shoot method).

Object Typing

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

Object Typing

Compiler warning!
Compiler has never heard of this method.

Therefore it’s pretty sure obj will not respond to it.

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];

Object Typing

Compiler warning.
The compiler knows that NSString objects

do not respond to shoot.
Guaranteed crash at runtime.

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];
Ship *helloShip = (Ship *)hello;

Object Typing

No compiler warning.
We are “casting” here.

The compiler thinks we know what we’re doing.

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];
Ship *helloShip = (Ship *)hello;
[helloShip shoot];

Object Typing

No compiler warning!
We’ve forced the compiler to

think that the NSString is a Ship.
“All’s well,” the compiler thinks.
Guaranteed crash at runtime.

Stanford CS193p
Fall 2013

@interface Vehicle
- (void)move;
@end
@interface Ship : Vehicle
- (void)shoot;
@end

Ship *s = [[Ship alloc] init];
[s shoot];
[s move];

Vehicle *v = s;
[v shoot];

id obj = ...;
[obj shoot];
[obj someMethodNameThatNoObjectAnywhereRespondsTo];

NSString *hello = @”hello”;
[hello shoot];
Ship *helloShip = (Ship *)hello;
[helloShip shoot];
[(id)hello shoot];

Object Typing

No compiler warning!
We’ve forced the compiler to ignore
the object type by “casting” in line.

“All’s well,” the compiler thinks.
Guaranteed crash at runtime.

Stanford CS193p
Fall 2013

Dynamic Binding
So when would we ever intentionally use this dangerous thing!
When we want to mix objects of different classes in a collection (e.g. in an NSArray).
When we want to support the “blind, structured” communication in MVC (i.e. delegation).
And there are other generic or blind communication needs.
But to make these things safer, we’re going to use two things: Introspection and Protocols.

Introspection
Asking at runtime what class an object is or what messages can be sent to it.

Protocols
A syntax that is “in between” id and static typing.
Does not specify the class of an object pointed to, but does specify what methods it implements.
Example ...
id <UIScrollViewDelegate> scrollViewDelegate;
We’ll cover how to declare and use protocols next week.

Stanford CS193p
Fall 2013

Introspection
All objects that inherit from NSObject know these methods ...
isKindOfClass: returns whether an object is that kind of class (inheritance included)
isMemberOfClass: returns whether an object is that kind of class (no inheritance)
respondsToSelector: returns whether an object responds to a given method
It calculates the answer to these questions at runtime (i.e. at the instant you send them).

Arguments to these methods are a little tricky
Class testing methods take a Class
You get a Class by sending the class method class to a class (not the instance method class).
if ([obj isKindOfClass:[NSString class]]) {
 NSString *s = [(NSString *)obj stringByAppendingString:@”xyzzy”];
}

Stanford CS193p
Fall 2013

Introspection
Method testing methods take a selector (SEL)
Special @selector() directive turns the name of a method into a selector
if ([obj respondsToSelector:@selector(shoot)]) {
 [obj shoot];
} else if ([obj respondsToSelector:@selector(shootAt:)]) {
 [obj shootAt:target];
}

SEL is the Objective-C “type” for a selector
SEL shootSelector = @selector(shoot);
SEL shootAtSelector = @selector(shootAt:);
SEL moveToSelector = @selector(moveTo:withPenColor:);

Stanford CS193p
Fall 2013

Introspection
If you have a SEL, you can also ask an object to perform it ...

Using the performSelector: or performSelector:withObject: methods in NSObject
[obj performSelector:shootSelector];
[obj performSelector:shootAtSelector withObject:coordinate];

Using makeObjectsPerformSelector: methods in NSArray
[array makeObjectsPerformSelector:shootSelector]; // cool, huh?
[array makeObjectsPerformSelector:shootAtSelector withObject:target]; // target is an id

In UIButton, - (void)addTarget:(id)anObject action:(SEL)action ...;
[button addTarget:self action:@selector(digitPressed:) ...];

Stanford CS193p
Fall 2013

Demo
How match: might be improved with introspection

Stanford CS193p
Fall 2013

Foundation Framework
 NSObject

Base class for pretty much every object in the iOS SDK

Implements introspection methods discussed earlier.

- (NSString *)description is a useful method to override (it’s %@ in NSLog()).
Example ... NSLog(@“array contents are %@”, myArray);
The %@ is replaced with the results of invoking [myArray description].

Copying objects. This is an important concept to understand (why mutable vs. immutable?).
- (id)copy; // not all objects implement mechanism (raises exception if not)
- (id)mutableCopy; // not all objects implement mechanism (raises exception if not)
It’s not uncommon to have an array or dictionary and make a mutableCopy and modify that.
Or to have a mutable array or dictionary and copy it to “freeze it” and make it immutable.
Making copies of collection classes is very efficient, so don’t sweat doing so.

Stanford CS193p
Fall 2013

Foundation Framework
 NSArray
Ordered collection of objects.
Immutable. That’s right, once you create the array, you cannot add or remove objects.
All objects in the array are held onto strongly.
Usually created by manipulating other arrays or with @[].

You already know these key methods ...
- (NSUInteger)count;
- (id)objectAtIndex:(NSUInteger)index; // crashes if index is out of bounds; returns id!
- (id)lastObject; // returns nil (doesn’t crash) if there are no objects in the array
- (id)firstObject; // returns nil (doesn’t crash) if there are no objects in the array

But there are a lot of very interesting methods in this class. Examples ...
- (NSArray *)sortedArrayUsingSelector:(SEL)aSelector;
- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)selectorArgument;
- (NSString *)componentsJoinedByString:(NSString *)separator;

Stanford CS193p
Fall 2013

Foundation Framework
 NSMutableArray
Mutable version of NSArray.

Create with alloc/init or ...
+ (id)arrayWithCapacity:(NSUInteger)numItems; // numItems is a performance hint only
+ (id)array; // [NSMutableArray array] is just like [[NSMutableArray alloc] init]

NSMutableArray inherits all of NSArray’s methods.
Not just count, objectAtIndex:, etc., but also the more interesting ones mentioned last slide.

And you know that it implements these key methods as well ...
- (void)addObject:(id)object; // to the end of the array (note id is the type!)
- (void)insertObject:(id)object atIndex:(NSUInteger)index;
- (void)removeObjectAtIndex:(NSUInteger)index;

Stanford CS193p
Fall 2013

Enumeration
Looping through members of an array in an efficient manner
Language support using for-in.
Example: NSArray of NSString objects

NSArray *myArray = ...;
for (NSString *string in myArray) { // no way for compiler to know what myArray contains
 double value = [string doubleValue]; // crash here if string is not an NSString
}

Example: NSArray of id
NSArray *myArray = ...;
for (id obj in myArray) {
 // do something with obj, but make sure you don’t send it a message it does not respond to
 if ([obj isKindOfClass:[NSString class]]) {
 // send NSString messages to obj with no worries
 }
}

Stanford CS193p
Fall 2013

Foundation Framework
 NSNumber

 NSValue
Generic object wrapper for some non-object, non-primitive data types (i.e. C structs).
e.g. NSValue *edgeInsetsObject = [NSValue valueWithUIEdgeInsets:UIEdgeInsetsMake(1,1,1,1)]
Probably don’t need this in this course (maybe when we start using points, sizes and rects).

Object wrapper around primitive types like int, float, double, BOOL, enums, etc.
NSNumber *n = [NSNumber numberWithInt:36];
float f = [n floatValue]; // would return 36.0 as a float (i.e. will convert types)
Useful when you want to put these primitive types in a collection (e.g. NSArray or NSDictionary).

New syntax for creating an NSNumber in iOS 6: @()
NSNumber *three = @3;
NSNumber *underline = @(NSUnderlineStyleSingle); // enum
NSNumber *match = @([card match:@[otherCard]]); // expression that returns a primitive type

Stanford CS193p
Fall 2013

Foundation Framework
 NSData
“Bag of bits.” Used to save/restore/transmit raw data throughout the iOS SDK.

 NSDate
Used to find out the time right now or to store past or future times/dates.
See also NSCalendar, NSDateFormatter, NSDateComponents.
If you are going to display a date in your UI, make sure you study this in detail (localization).

NSSet / NSMutableSet
Like an array, but no ordering (no objectAtIndex: method).
member: is an important method (returns an object if there is one in the set isEqual: to it).
Can union and intersect other sets.

 NSOrderedSet / NSMutableOrderedSet
Sort of a cross between NSArray and NSSet.
Objects in an ordered set are distinct. You can’t put the same object in multiple times like array.

Stanford CS193p
Fall 2013

Foundation Framework
 NSDictionary
Immutable collection of objects looked up by a key (simple hash table).
All keys and values are held onto strongly by an NSDictionary.

Can create with this syntax: @{ key1 : value1, key2 : value2, key3 : value3 }
NSDictionary *colors = @{ @“green” : [UIColor greenColor],
 @“blue” : [UIColor blueColor],
 @“red” : [UIColor redColor] };
Lookup using “array like” notation ...
NSString *colorString = ...;
UIColor *colorObject = colors[colorString]; // works the same as objectForKey: below

- (NSUInteger)count;
- (id)objectForKey:(id)key; // key must be copyable and implement isEqual: properly
NSStrings make good keys because of this.
See NSCopying protocol for more about what it takes to be a key.

Stanford CS193p
Fall 2013

Foundation Framework
 NSMutableDictionary
Mutable version of NSDictionary.

Create using alloc/init or one of the + (id)dictionary... class methods.

In addition to all the methods inherited from NSDictionary, here are some important methods ...
- (void)setObject:(id)anObject forKey:(id)key;
- (void)removeObjectForKey:(id)key;
- (void)removeAllObjects;
- (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary;

Stanford CS193p
Fall 2013

Enumeration
Looping through the keys or values of a dictionary
Example:

NSDictionary *myDictionary = ...;
for (id key in myDictionary) {
 // do something with key here

 id value = [myDictionary objectForKey:key];
 // do something with value here

}

