
ANDROID (4)

2D Graphics and Animation,

Handling Screen Rotation

Marek Piasecki

Outline

• 2D graphics drawing
– Color / Paint / Canvas

– XML drawable (from resources)

– direct to a Canvas / View.onDraw()

• 2D animation
– frame by frame

– XML / View animation

• Handling screen rotation
– blocking rotation

– automatic handling (separate vertical/landscape layouts)

– preserving temporary data

android.graphics.Color (1)

• colors are represented with four numbers (ARGB):

– alpha,

– red,

– green,

– blue

• Each component can have 256 possible values, or 8 bits,

typically packed into a 32-bit integer (for efficiency)

• Alpha is a measure of transparency:

– value "0" -> color is completely transparent

– value "255" -> color is completely opaque

– in the middle -> semitransparent colors

• color definition:

– use one of the static constants on the Color class

int color = Color.BLUE; // solid blue

android.graphics.Color (2)

• static factory methods of the Color

int color1 = Color.argb(127, 255, 0, 255); // Translucent purple

int color2 = Color.rgb(255, 0, 0); //opaque (alpha=255) red

• better off defining all your colors in an XML resource

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="mycolor">#7fff00ff</color>

</resources>

• then can reference colors

by defined name in other XML files

• or in Java code

int color = getResources().getColor(R.color.mycolor);

android.graphics.Paint / Canvas

• Paint class:

– holds the style and color

– to draw a solid color:

paint.setColor(Color.LTGRAY);

• Canvas class

– represents a surface on which you draw

– Initially clear, like blank transparencies for an overhead projector

– Canvas methods let draw lines, rectangles, circles, or other arbitrary graphics

In Android:

Display screen → Activity → View → View.onDraw(Canvas) → Canvas

XML Drawables (1)

Draw into a View object from your layout:
– drawing is handled by the system

(normal View hierarchy drawing process)

– simply define the graphics in XML

XML Drawables (View’s Layout definition) (2)

XML Drawables (3)

DEMO

from „Android in Action”

example source

chapter 9 / XMLDraw

Direct drawing on Canvas (1)

android.graphics.Canvas (3)

Canvas methods drawing geometric primitives:

public void drawColor (int color)

public void drawPaint (Paint paint)

public void drawArc (RectF oval, float startAngle, float sweepAngle, boolean useCenter, Paint paint)

public void drawCircle (float cx, float cy, float radius, Paint paint)

public void drawLine (float startX, float startY, float stopX, float stopY, Paint paint)

public void drawRect (Rect r, Paint paint)

public void drawText (String text, float x, float y, Paint paint)

Canvas drawing example (1)

Canvas drawing example (2)

Frame by frame animation (1)

• simple animations by showing a set of images

one after another

• define a set of resources in a XML file

and call AnimationDrawable start().

• create a new directory called /anim

under the /res resources directory.

Place all the images for this example in the

/drawable directory.

• DEMO: [XMLAnimate] (chapter 9)

Frame by frame animation (2)

• create a new directory called /anim
under the /res resources directory.

Place all the images for this example in the /drawable directory.

• create an XML file Simple_animation.xml

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"

id="selected" android:oneshot="false">

<item android:drawable="@drawable/ball1" android:duration="50" />

<item android:drawable="@drawable/ball2" android:duration="50" />

<item android:drawable="@drawable/ball3" android:duration="50" />

<item android:drawable="@drawable/ball4" android:duration="50" />

<item android:drawable="@drawable/ball5" android:duration="50" />

<item android:drawable="@drawable/ball6" android:duration="50" />

</animation-list>

• two attributes:

– drawable, which describes the path to the image,

– duration - the length of time to show the image, in miliseconds

Frame by frame animation (3)

• we can’t control the animation from within the OnCreate method !

Frame by frame animation (4)

DEMO

from „Android in Action”

example source

chapter 9 / XMLAnimate

XML View animation (1)

• define animations that can rotate, fade, move, or stretch graphics or text

• Animation XML files are placed in the res/anim source directory.

• Android supports four types of animations:

– <alpha>—Defines fading, from 0.0 to 1.0 (0.0 being transparent)

– <scale>—Defines sizing, x and y (1.0 being no change)

– <translate>—Defines motion, x and y (percentage or absolute)

– <rotate>—Defines rotation, pivot from x and y (degrees)

• attributes that can be used with any animation type:

– duration — Duration, in milliseconds

– startOffset — Offset start time, in milliseconds

– interpolator — Used to define a velocity curve for speed of animation

XML View animation (2)

• example parameters for "scale" (scaler.xml resource)

android:fromXScale = "0.5"

android:toXScale = "2.0"

android:fromYScale = "0.5"

android:toYScale = "2.0"

android:pivotX = "50%"

android:pivotY = "50%"

android:startOffset = "700"

android:duration = "400"

android:fillBefore = "false"

• can use this animation with any View object:

view.startAnimation(AnimationUtils.loadAnimation(this, R.anim.scaler));

Getting screen sizes

A common mistake

→ to use the width and height of a view inside its constructor!

• When a view’s constructor is called, Android doesn’t know yet how big the

view will be, so the sizes are set to zero.

• The real sizes are calculated during the layout stage

(which occurs after construction but before anything is drawn)

• Use the onSizeChanged()method to be notified

of the values when they are known

• Use the getWidth() and getHeight()methods in the onDraw() method

@Override

protected void onSizeChanged(int w, int h, int oldw, int oldh) {

width = w / 9f;

height = h / 9f;

getRect(selX, selY, selRect);

Log.d(TAG, "onSizeChanged: width " + width + ", height " + height);

super.onSizeChanged(w, h, oldw, oldh);

}

Handling screen rotation (1)

• To block Android from rotating your activity, add

android:screenOrientation = "portrait" (or "landscape")

to AndroidManifest.xml file:

<activity android:name=".RotationDemo"

android:screenOrientation="portrait"
android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

• add android:screenOrientation = "sensor"

to rotate screen based on the position of the phone from accelerometer

(this setting disables having the keyboard trigger a rotation event)

Handling screen rotation (2)

Customize/provide different layouts for various display orientations

by creating specific folders for each configuration:

• res/layout - default layout folder,

• res/layout-port - support the portrait orientation,

• res/layout-land - for landscape orientation,

• res/layoutsquare - for square displays

Example layout definition downloaded for horizontal orientation

res/layout-land/main.xml

Handling screen rotation (3)

• can set the orientation of the device in code:
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

• To handle rotations on your own:

– put an android:configChanges entry in your AndroidManifest.xml

listing the configuration changes you want to handle yourself

android:configChanges="orientation|keyboardHidden„

– implement onConfigurationChanged()

which will be called when configuration changes you listed in occurs:

Handling screen rotation (4)

Preserving temporary data durring configuration changes:

(by default Android destroys and re-creates your activity from scratch)

1. blocking configuration changes (android:screenOrientation=…)

2. handle rotations on your own (android:configChanges= …)

by implementing onConfigurationChanged(Configuration);

3. preserve/store the data in the Bundle by implementing

onSaveInstanceState(Bundle);

onCreate(Bundle); or onRestoreInstanceState(Bundle);

data have to be serialisable!

4. preserve/store data in any Object by implementing

void onRetainNonConfigurationInstance(Object)

Object getLastNonConfigurationInstance();

data could be any Java object.

