
P a g e 76 | 397

UWP-017 - XAML Layout with RelativePanel

We're not done with Layout quite yet. Next we will talk about new Layout controls that were

introduced with the Universal Windows Platform API.

You might wonder why are there new Layout controls? What has changed from previous APIs that we

used to build apps for the Windows 8.1 store and the Windows Phone 8.1 store. There are two reasons

why we need new Layout controls.

First of all, to help us build apps that look like they belong in Windows 10. I’ll talk about that more in

just a moment.

Secondly, to help us build applications that adapt to different device family and screen sizes and talk

about that in an upcoming lesson.

If you’re not familiar with the new Windows 10 aesthetic see the screenshot of the Money app, one of

the stock applications that come preinstalled with Windows 10.

If you were to open the other stock apps, namely News, Weather, Sports, and a few others, you would

see that they all share some common characteristics in their aesthetic and functionality that really

identify themselves as Windows 10 applications. I want to take note of those features then, over the

P a g e 77 | 397

course of the next few lessons, show how we can duplicate this ourselves with the built-in controls

available in the Universal Windows Platform.

The aesthetic includes both the chrome and the “cards” in the main area. By “chrome”, I'm referring to

the top and left-most area that provides navigation and other services to your application. The style of

navigation which includes the icon with three horizontal lines is known as "hamburger navigation".

When you click that button in the upper left-hand corner it will show a SplitView control that will display

navigation to the various areas or functionality of your application.

In expanded mode both an icon and a title for the given area of the application is displayed at the top.

We can navigate around using the expanded view or the compacted view. When we're in compacted

mode, you can only see the icons on the left. The selected item is highlighted in one of the primary

accent colors for the application.

Next, if you look at the very top of the application you'll see a bar containing a search box. Each app

every app like a search bar in the upper right hand corner. In this case, we're searching for the current

stock price for a given company. Also then to the left of that, docked over to the left-hand side is the

title of the area that we're currently in and then to the left of that a navigation button that allows us to

go back through the navigation history to get back to the homepage.

There are some other features of these applications like the card-based layout, where you have all of

these little panels of cards that will dynamically resize themselves and then depending on the view port

(the size of the window) that has been resized by the user, they will either shift down, wrap down to the

next line or they will expand and contract.

In this lesson I’ll introduce the RelativePanel which is a Layout container that allows you to create user

interfaces that don't have a clear linear pattern. When I say “linear pattern” what I mean is that it's for

layouts that are not fundamentally stacked or wrapped like that card layout or even tabular like in a

grid. So these are layouts that you may not find as easy to reproduce using a StackPanel or a Grid.

Now certainly, what we saw in the Windows 10 application we probably could achieve that using a

StackPanel and Grid combination, however, I think you're going to find that these two new controls will

help you achieve this a little bit more elegantly.

The RelativePanel defines an area where you position and align child objects, so you position other

controls either in relation to each other or in relation to the parent panel itself. And there are three

basic categories of attached properties that allow you to position the controls inside of the panel.

- There are panel alignment relationships. These have attached properties like align the top of my

control with the panel. So AlignTopWithPanel, AlignLeftWithPanel, and so on.

- Then there are sibling alignment relationships. So AlignTopWith = (and then you give the name

of the control that you want to be aligned top with).

- And then there are sibling positional relationships, so I want to be above my sibling, I want to be

below my sibling, I want to be to the right and the left of my sibling.

I’ve created a project named RelativePanelExample which I’ll expand the example to learn about

RelativePanel.

So first I’ll add some RowDefinitions and add a RelativePanel in the second RowGrid.Row="1".

P a g e 78 | 397

I also set a minimum height, so no matter what I never want the height of this RelativePanel to be less

than 300 pixels.

Next I’ll add a series of rectangles.

The first rectangle will have a fill set to Red. Notice I've set the RelativePanel.AlignedRightWithPanel

=”True”. This aligns the right side of the Rectangle with the panel.

Next I’ll add another Rectangle that will be positioned in relation to that sibling Rectangle.

When running the application, even as we resize the application, the blue rectangle will always be to the

left of the red rectangle. And the red rectangle will always be aligned to the right-hand side.

P a g e 79 | 397

Next I’ll demonstrate that you can also set multiple attached properties an XAML control.

On the green rectangle I've set the AlignVerticalCenterWith="RedRectangle". So now the center of the

red rectangle and the center of the green rectangle will be the same. Furthermore, I set the

AlignHorizontalCenterWithPanel=”True”. So show me where the center is of the horizontal size of the

app and I want to be right there in the middle.

P a g e 80 | 397

If you were to run the project, you could resize the height and width of the app and see how it responds

to different screen sizes; the green rectangle with its center aligned vertically to the red rectangle and its

horizontal alignment centered to the center of the application.

Next, I add a yellow Rectangle:

You can see that I set the minimum width to 50 and the minimum height to 50. And why this is

important is because align the bottom of our rectangle with the bottom of the panel and align the top

with the purple rectangle.

And so I’ll define the purple rectangle above it:

I want the purple rectangle to be positioned below the red rectangle. I also want its right aligned with

the right of the red rectangle, and I want the left aligned with the green rectangle.

When I run the project we can observe the results:

P a g e 81 | 397

As I re-position the actual size of the Purple and Yellow rectangles will change. In both cases you'll see

that by resizing, we will get a larger width or height, a larger rectangle.

This is why you can perform interesting positional logic with the RelativePanel because you can set sides

relative to other controls or relative to the panel itself and things can automatically resize themselves.

Why is this important? Hopefully this will be evident in another project I created named

RelativePanelSearchBar.

This project contains the beginnings of a Windows 10 application with a search bar on the right-hand

side. It doesn't look finished yet, but you can see how no matter what, over on the left-hand side, or on

the right-hand side rather, we have it always docked to the right and we have the title to the left.

P a g e 82 | 397

Furthermore, I wanted to show that we can create a little status bar that's always docked to the bottom.

Depending on the information, it's either aligned to the left, aligned to the right, or aligned center. So

let's see how we achieve this effect in our XAML.

First, the Grid’s RowDefinitions:

The top and the bottom rows are Auto so just take up enough room, just what you need, and then the

middle area will be star sizing and so we didn't do anything in there.

Next, I added a RelativePanel to sit in the top row. Inside of the RelativePanel a SearchButton whose

right side is aligned with the panel, a TextBox that is to the left of the SearchButton, and so on.

P a g e 83 | 397

Next in the third row a status bar creating using control called a Border and a Border. The Border just

creates a little layout control that provides us the ability to style the background color and the stroke

around the background color.

So we're just putting our RelativePanel inside of the Border and then we will do our work inside of the

RelativePanel itself.

P a g e 84 | 397

There are three sections to the RelativePanel. The first TextBlock on the left-hand side will just contain

the text “Items:”. In this example, “items” could represent items that need to be addressed. It uses

AlignLeftWithPanel. The next TextBlock aligns itself to the right of that first TextBlock and would contain

a numeric value.

The right-hand side works the same way except with the text “Version”.

And then the third case – the middle --I actually create a StackPanel because if you were to set one of

the TextBoxes using the RelativePanel.AlignedHorizontalCenterWithPanel, then it will be in the absolute

center and anything else that you need to the left of it or to the right of it would then be off center.

Since we need both TextBlocks to be centered I put them in a StackPanel which ensures the TextBlocks

are centered no matter the width of either one.

One note of caution regarding the RelativePanel; you could potentially get yourself into a circular

reference. Example: I want object number one to the left of object number two, object number three to

the left of object number two, object number four to the left of object number three, object number

one to the left of number four.

Furthermore, you can set multiple relationships that target the same edge of the element and when you

do that, you might have conflicting relationships in your layout as a result.

So whenever this happens, there are actually an order of events just like whenever you are working in a

math problem or even in code that parentheses can dictate the order of operation. There is an order of

operation with how these relationships are deciphered in this order.

- So first priority will be panel alignment, so align me to the left or the right of the panel.

- Then the second one will be Sibling Alignment relationship, so align me with the top of this

control, align me with the left of that control,

- Then the third and the lowest priority would be Sibling Positional relationships. Set me above

this control, below this control, to the left of this control, okay.

