
187

Telephony

People use Android devices to surf the web, download and store data, access net-

works, find location information, and use many types of applications. Android can

even make phone calls.

 Android phones support dialing numbers, receiving calls, sending and receiv-

ing text and multimedia messages, and other related telephony services. In contrast

to other smartphone platforms, all these items are accessible to developers through

simple-to-use APIs and built-in applications. You can easily leverage Android’s tele-

phony support into your own applications.

 In this chapter, we’ll discuss telephony in general and cover terms related to

mobile devices. We’ll move on to basic Android telephony packages, which handle

calls using built-in Intent actions, and more advanced operations via the

TelephonyManager and PhoneStateListener classes. The Intent actions can initi-

ate basic phone calls in your applications. TelephonyManager doesn’t make phone

calls directly but is used to retrieve all kinds of telephony-related data, such as the

This chapter covers

Making and receiving phone calls

Capturing call-related events

Obtaining phone and service information

Using SMS

 Android phones support dialing numbers, receiving calls, sending and receiv Android phones support dialing numbers, receiving calls, sending and receiv

ing text and multimedia messages, and other related telephony services. In contrast ing text and multimedia messages, and other related telephony services. In contrast ing text and multimedia messages, and other related telephony services. In contrast

s and built-in applications. You can easily leverage Android’s tele-

calls using built-in Intent actions, and more advanced operations via the

TelephonyManager and and PhoneStateListener classes. The

188 CHAPTER 7 Telephony

state of the voice network, the device’s own phone number, and other details. Tele-

phonyManager supports adding a PhoneStateListener, which can alert you when call

or phone network states change.

 After covering basic telephony APIs, we’ll move on to sending and receiving SMS

messages. Android provides APIs that allow you to send SMS messages and be notified

when SMS messages are received. We’ll also touch on emulator features that allow you

to test your app by simulating incoming phone calls or messages.

 Once again, a sample application will carry us through the concepts related to the

material in this chapter. You’ll build a sample TelephonyExplorer application to dem-

onstrate dialing the phone, obtaining phone and service state information, adding lis-

teners to the phone state, and working with SMS. Your TelephonyExplorer application

will have several basic screens, as shown in figure 7.1.

 TelephonyExplorer exercises the telephony-related APIs while remaining simple

and uncluttered. Before we start to build TelephonyExplorer, let's first define tele-

phony itself.

7.1 Exploring telephony background and terms

Whether you’re a new or an experienced mobile developer, it’s important to clarify

terms and set out some background for discussing telephony.

 First, telephony is a general term that refers to electrical voice communications over

telephone networks. Our scope is, of course, the mobile telephone networks that

Android devices1 participate in, specifically the Global System for Mobile Communica-

tions (GSM) and Code Division Multiple Access (CDMA) networks.

1 For a breakdown of all Android devices released in 2008-2010, go here: http://www.androphones.com/
all-android-phones.php.

Figure 7.1 TelephonyExplorer main screen, along with the related activities the sample

application performs

state of the voice network, the device’s own phone number, and other details. state of the voice network, the device’s own phone number, and other details.

, which can alert you when call

or phone network states change.

s that allow you to send SMS messages and be notified messages and be notified

when SMS messages are received. We’ll also touch on emulator features that allow you messages are received. We’ll also touch on emulator features that allow you

to test your app by simulating incoming phone calls or messages.

rial in this chapter. You’ll build a sample TelephonyExplorer application to dem

 is a general term that refers to electrical voice communications over

tions (GSM) and Code Division Multiple Access () and Code Division Multiple Access (CDMA) networks.

 participate in, specifically the Global System for Mobile Communica- participate in, specifically the Global System for Mobile Communica participate in, specifically the Global System for Mobile Communica

tions () and Code Division Multiple Access (

telephony is a general term that refers to electrical voice communications over telephony

189Exploring telephony background and terms

GSM and CDMA are cellular telephone networks. Devices communicate over radio

waves and specified frequencies using cell towers. The standards must define a few

important things, such as identities for devices and cells, along with all the rules for

making communications possible.

7.1.1 Understanding GSM

We won’t delve into the underlying details of the networks, but it’s important to know

some key facts. GSM is based on Time Division Multiple Access (TDMA), a technology

that slices time into smaller chunks to allow multiple callers to share the same fre-

quency range. GSM was the first network that the Android stack supported for voice

calls; it’s ubiquitous in Europe and very common in North America. GSM devices use

Subscriber Identity Module (SIM) cards to store important network and user settings.

 A SIM card is a small, removable, secure smart card. Every device that operates on a

GSM network has specific unique identifiers, which are stored on the SIM card or on

the device itself:

Integrated Circuit Card Identifier (ICCID)—Identifies a SIM card; also known as a

SIM Serial Number, or SSN.

International Mobile Equipment Identity (IMEI)—Identifies a physical device. The

IMEI number is usually printed underneath the battery.

International Mobile Subscriber Identity (IMSI)—Identifies a subscriber (and the

network that subscriber is on).

Location Area Identity (LAI)—Identifies the region within a provider network

that’s occupied by the device.

Authentication key (Ki)—A 128-bit key used to authenticate a SIM card on a pro-

vider network.

GSM uses these identification numbers and keys to validate and authenticate a SIM

card, the device holding it, and the subscriber on the network and across networks.

 Along with storing unique identifiers and authentication keys, SIM cards often store

user contacts and SMS messages. Users can easily move their SIM card to a new device

and carry along contact and message data. Currently, the Android platform handles

the SIM interaction, and developers can get read-only access via the telephony APIs.

7.1.2 Understanding CDMA

The primary rival to GSM technology is CDMA, which uses a different underlying

technology that’s based on using different encodings to allow multiple callers to share

the same frequency range. CDMA is widespread in the Unites States and common in

some Asian countries.

 Unlike GSM phones, CDMA devices don’t have a SIM card or other removable mod-

ule. Instead, certain identifiers are burned into the device, and the carrier must main-

tain the link between each device and its subscriber. CDMA devices have a separate set

of unique identifiers:

 are cellular telephone networks. Devices communicate over radio

waves and specified frequencies using cell towers. The standards must define a few waves and specified frequencies using cell towers. The standards must define a few

some key facts. GSM is based on Time Division Multiple Access (is based on Time Division Multiple Access (TDMA), a technology is based on Time Division Multiple Access (

that slices time into smaller chunks to allow multiple callers to share the same frethat slices time into smaller chunks to allow multiple callers to share the same fre-

quency range.

calls; it’s ubiquitous in Europe and very common in North America. GSM devices use

Subscriber Identity Module () cards to store important network and user settings.Subscriber Identity Module (SIM) cards to store important network and user settings.) cards to store important network and user settings.

 network has specific unique identifiers, which are stored on the

 card is a small, removable, secure smart card. Every device that operates on a

SIM Serial Number, or

 (ICCID)

 (IMEI)

 (IMSI)—

Identifies a physical device. The

Identifies a subscriber (and the

 (LAI) Identifies the region within a provider network

A 128-bit key used to authenticate a SIM card on a pro(Ki)Authentication key

Location Area Identity (Location Area Identity

International Mobile Subscriber Identity (International Mobile Subscriber Identity (

International Mobile Equipment Identity (International Mobile Equipment Identity

Integrated Circuit Card Identifier (Integrated Circuit Card Identifier

 uses these identification numbers and keys to validate and authenticate a

 cards often store Along with storing unique identifiers and authentication keys, SIM cards often store

user contacts and user contacts and SMS messages. Users can easily move their

 interaction, and developers can get read-only access via the telephony interaction, and developers can get read-only access via the telephony

The primary rival to GSM technology is CDMA, which uses a different underlying

technology that’s based on using different encodings to allow multiple callers to share

the same frequency range. CDMA is widespread in the Unites States and common in the same frequency range. CDMA is widespread in the Unites States and common in

 devices don’t have a SIM card or other removable mod

ule. Instead, certain identifiers are burned into the device, and the carrier must main-ule. Instead, certain identifiers are burned into the device, and the carrier must main-

190 CHAPTER 7 Telephony

Mobile Equipment Identifier (MEID)—Identifies a physical device. This number is

usually printed under the battery and is available from within device menus. It

corresponds to GSM’s IMEI.

Electronic Serial Number (ESN)—The predecessor to the MEID, this number is

shorter and identifies a physical device.

Pseudo Electronic Serial Number (pESN)—A hardware identifier, derived from the

MEID, that’s compatible with the older ESN standard. The ESN supply was

exhausted several years ago, so pESNs provide a bridge for legacy applications

built around ESN. A pESN always starts with 0x80 in hex format or 128 in deci-

mal format.

Unlike GSM phones, which allow users to switch devices by swapping out SIM cards,

CDMA phones require you to contact your carrier if you want to transfer an account to

a new device. This process is often called an ESN swap or ESN change. Some carriers

make this easy, and others make it difficult. If you’ll be working on CDMA devices,

learning how to do this with your carrier can save you thousands of dollars in sub-

scriber fees.

NOTE A few devices, sometimes called world phones, support both CDMA

and GSM. These devices often have two separate radios and an optional
SIM card. Currently, such devices operate only on one network or the
other at any given time. Additionally, these devices are often restricted to
using only particular carriers or technologies in particular countries. You
generally don’t need to do anything special to support these devices, but
be aware that certain phones might appear to change their network tech-
nology from time to time.

Fortunately, few applications need to deal with the arcana of GSM and CDMA technol-

ogy. In most cases, you only need to know that your program is running on a device

that in turn is running on a mobile network. You can leverage that network to make

calls and inspect the device to find unique identifiers. You can locate this sort of infor-

mation by using the TelephonyManager class.

7.2 Accessing telephony information

Android provides an informative manager class that supplies information about many

telephony-related details on the device. Using TelephonyManager, you can access

phone properties and obtain phone network state information.

NOTE Starting with version 2.1 of the Android OS, devices no longer
need to support telephony features. Expect more and more non-phone
devices to reach the market, such as set-top boxes and auto devices. If you
want to reach the largest possible market with your app, you should lever-
age telephony features but fail gracefully if they’re not available. If your
application makes sense only when running on a phone, go ahead and
use any phone features you require.

Mobile Equipment Identifier (MEIDMobile Equipment Identifier (Mobile Equipment Identifier ()—Identifies a physical device. This number is))—Identifies a physical device. This number is

corresponds to GSM’s IMEI.

Electronic Serial Number (ESNElectronic Serial Number (Electronic Serial Number ()ESN

Pseudo Electronic Serial Number (pESNPseudo Electronic Serial Number (pPseudo Electronic Serial Number (p)ESN

MEID, that’s compatible with the older ESN standard. The

CDMA phones require you to contact your carrier if you want to transfer an account to A phones require you to contact your carrier if you want to transfer an account to phones require you to contact your carrier if you want to transfer an account to

ESN swapESN or swap change. Some carriers

A few devices, sometimes called world phones, support both

Android provides an informative manager class that supplies information about many

TelephonyManager, you can access

Starting with version 2.1 of the Android Starting with version 2.1 of the Android , devices no longer
need to support telephony features. Expect more and more non-phone

191Accessing telephony information

You can attach a PhoneStateListener event listener to the phone by using the man-

ager. Attaching a PhoneStateListener makes your applications aware of when the

phone gains and loses service, and when calls start, continue, or end.

 Next, we’ll examine several parts of the Telepho-

nyExplorer example application to look at both

these classes. We’ll start by obtaining a Telephony-

Manager instance and using it to query useful tele-

phony information.

7.2.1 Retrieving telephony properties

The android.telephony package contains the

TelephonyManager class, which provides details

about the phone status. Let’s retrieve and display a

small subset of that information to demonstrate the

approach. First, you’ll build an Activity that dis-

plays a simple screen showing some of the informa-

tion you can obtain via TelephonyManager, as shown

in figure 7.2.

 The TelephonyManager class is the information

hub for telephony-related data in Android. The fol-

lowing listing demonstrates how you obtain a refer-

ence to this class and use it to retrieve data.

// . . . start of class omitted for brevity

 final TelephonyManager telMgr =

 (TelephonyManager) this.getSystemService(

 Context.TELEPHONY_SERVICE);

// . . . onCreate method and others omitted for brevity

 public String getTelephonyOverview(

 TelephonyManager telMgr) {

 String callStateString = "NA";

 int callState = telMgr.getCallState();

 switch (callState) {

 case TelephonyManager.CALL_STATE_IDLE:

 callStateString = "IDLE";

 break;

 case TelephonyManager.CALL_STATE_OFFHOOK:

 callStateString = "OFFHOOK";

 break;

 case TelephonyManager.CALL_STATE_RINGING:

 callStateString = "RINGING";

 break;

 }

 GsmCellLocation cellLocation =

 (GsmCellLocation) telMgr.getCellLocation();

 String cellLocationString =

Listing 7.1 Obtaining a TelephonyManager reference and using it to retrieve data

Get TelephonyManager
from Context

B

Implement information
helper method

C

Obtain call state
informationD

Figure 7.2 Displaying device and

phone network meta-information

obtained from TelephonyManager

You can attach a PhoneStateListener

 makes your applications aware of when the

phone gains and loses service, and when calls start, continue, or end.phone gains and loses service, and when calls start, continue, or end.phone gains and loses service, and when calls start, continue, or end.phone gains and loses service, and when calls start, continue, or end.phone gains and loses service, and when calls start, continue, or end.

android.telephony package contains the

TelephonyManager class, which provides details

 final TelephonyManager telMgr =

 (TelephonyManager) this.getSystemService(

 Context.TELEPHONY_SERVICE);

 int callState = telMgr.getCallState();

 (GsmCellLocation) telMgr.getCellLocation();

 case TelephonyManager.CALL_STATE_IDLE:

 case TelephonyManager.CALL_STATE_OFFHOOK:

 case TelephonyManager.CALL_STATE_RINGING:

 GsmCellLocation cellLocation =

192 CHAPTER 7 Telephony

 cellLocation.getLac() + " " + cellLocation.getCid();

 String deviceId = telMgr.getDeviceId();

 String deviceSoftwareVersion =

 telMgr.getDeviceSoftwareVersion();

 String line1Number = telMgr.getLine1Number();

 String networkCountryIso = telMgr.getNetworkCountryIso();

 String networkOperator = telMgr.getNetworkOperator();

 String networkOperatorName = telMgr.getNetworkOperatorName();

 String phoneTypeString = "NA";

 int phoneType = telMgr.getPhoneType();

 switch (phoneType) {

 case TelephonyManager.PHONE_TYPE_GSM:

 phoneTypeString = "GSM";

 break;

 case TelephonyManager.PHONE_TYPE_CDMA:

 phoneTypeString = "CDMA";

 break;

 case TelephonyManager.PHONE_TYPE_NONE:

 phoneTypeString = "NONE";

 break;

 }

 String simCountryIso = telMgr.getSimCountryIso();

 String simOperator = telMgr.getSimOperator();

 String simOperatorName = telMgr.getSimOperatorName();

 String simSerialNumber = telMgr.getSimSerialNumber();

 String simSubscriberId = telMgr.getSubscriberId();

 String simStateString = "NA";

 int simState = telMgr.getSimState();

 switch (simState) {

 case TelephonyManager.SIM_STATE_ABSENT:

 simStateString = "ABSENT";

 break;

 case TelephonyManager.SIM_STATE_NETWORK_LOCKED:

 simStateString = "NETWORK_LOCKED";

 break;

 // . . . other SIM states omitted for brevity

 }

 StringBuilder sb = new StringBuilder();

 sb.append("telMgr - ");

 sb.append(" \ncallState = " + callStateString);

 // . . . remainder of appends omitted for brevity

 return sb.toString();

 }

We use the current Context, through the getSystemService method with a constant,

to obtain an instance of the TelephonyManager class B. After you have the manager,

you can use it as needed. In this case, we create a helper method to get data from the

manager and return it as a String that we later display on the screen C.

 The manager allows you to access phone state data, such as whether a call is in

progress D, the device ID and software version E, the phone number registered to

the current user/SIM, and other SIM details, such as the subscriber ID (IMSI) and the

Get device
informationE

 cellLocation.getLac() + " " + cellLocation.getCid(); cellLocation.getLac() + " " + cellLocation.getCid();

 String deviceId = telMgr.getDeviceId();

 telMgr.getDeviceSoftwareVersion();

 String line1Number = telMgr.getLine1Number();

 String networkCountryIso = telMgr.getNetworkCountryIso();

 String networkOperator = telMgr.getNetworkOperator();

 String networkOperatorName = telMgr.getNetworkOperatorName();

 int phoneType = telMgr.getPhoneType();

 case TelephonyManager.PHONE_TYPE_GSM:

 case TelephonyManager.PHONE_TYPE_CDMA:

 case TelephonyManager.PHONE_TYPE_NONE:

 String simCountryIso = telMgr.getSimCountryIso();

 String simOperator = telMgr.getSimOperator();

 String simOperatorName = telMgr.getSimOperatorName();

 String simSerialNumber = telMgr.getSimSerialNumber();

 String simSubscriberId = telMgr.getSubscriberId();

 int simState = telMgr.getSimState();

 case TelephonyManager.SIM_STATE_ABSENT:

 case TelephonyManager.SIM_STATE_NETWORK_LOCKED:

We use the current We use the current Context, through the getSystemService method with a constant,

193Accessing telephony information

current SIM state. TelephonyManager offers even more properties; see the Javadocs for

complete details.

NOTE Methods generally return null if they don’t apply to a particular
device; for example, getSimOperatorName returns null for CDMA

phones. If you want to know in advance what type of device you’re work-
ing with, try using the method getPhoneType.

For this class to work, you must set the READ_PHONE_STATE permission in the manifest.

Without it, security exceptions will be thrown when you try to read data from the man-

ager. Phone-related permissions are consolidated in table 7.1.

 In addition to providing telephony-related information, including metadata about

the device, network, and subscriber, TelephonyManager allows you to attach a Phon-

eStateListener, which we’ll describe in the next section.

7.2.2 Obtaining phone state information

A phone can be in any one of several conditions. The primary phone states include

idle (waiting), in a call, or initiating a call. When you’re building applications on a

mobile device, sometimes you not only need to know the current phone state, but you

also want to know when the state changes.

 In these cases, you can attach a listener to the phone and subscribe to receive noti-

fications of published changes. With Android, you use a PhoneStateListener, which

attaches to the phone through TelephonyManager. The following listing demonstrates

a sample usage of both these classes.

 @Override

 public void onStart() {

 super.onStart();

 final TelephonyManager telMgr =

 (TelephonyManager) this.getSystemService(

 Context.TELEPHONY_SERVICE);

 PhoneStateListener phoneStateListener =

 new PhoneStateListener() {

 public void onCallStateChanged(

 int state, String incomingNumber) {

 telMgrOutput.setText(getTelephonyOverview(telMgr));

 }

 };

 telMgr.listen(phoneStateListener,

 PhoneStateListener.LISTEN_CALL_STATE);

 String telephonyOverview = this.getTelephonyOverview(telMgr);

 this.telMgrOutput.setText(telephonyOverview);

 }

To start working with a PhoneStateListener, you need to acquire an instance of

TelephonyManager. PhoneStateListener itself is an interface, so you need to create

Listing 7.2 Attaching a PhoneStateListener via the TelephonyManager

Methods generally return null if they don’t apply to a particular if they don’t apply to a particular
device; for example,

For this class to work, you must set the READ_PHONE_STATE permission in the manifest.

ager. Phone-related permissions are consolidated in table 7.1.ager. Phone-related permissions are consolidated in table 7.1.ager. Phone-related permissions are consolidated in table 7.1.

idle (waiting), in a call, or initiating a call. When you’re building applications on a (waiting), in a call, or initiating a call. When you’re building applications on a

A phone can be in any one of several conditions. The primary phone states include

also want to know when the state changes.also want to know when the state changes.

 In these cases, you can attach a listener to the phone and subscribe to receive noti

PhoneStateListener, which

 final TelephonyManager telMgr =

 (TelephonyManager) this.getSystemService(

 Context.TELEPHONY_SERVICE);

 PhoneStateListener phoneStateListener =

 public void onCallStateChanged(

 telMgr.listen(phoneStateListener,

 PhoneStateListener.LISTEN_CALL_STATE);

 itself is an interface, so you need to createPhoneStateListener itself is an interface, so you need to create

194 CHAPTER 7 Telephony

an implementation, including the required onCallStateChanged method. When you

have a valid PhoneStateListener instance, you attach it by assigning it to the manager

with the listen method.

 Listing 7.2 shows how to listen for any PhoneStateListener.LISTEN_CALL_STATE

change in the phone state. This constant value comes from a list of available states that

are in PhoneStateListener class. You can use a single value when assigning a listener

with the listen method, as demonstrated in listing 7.2, or you can combine multiple

values to listen for multiple states.

 If a call state change does occur, it triggers the action defined in the onCallState-

Changed method of your PhoneStateListener. In this example, we reset the details

on the screen using the getTelephonyOverview method from listing 7.1. You can filter

this method further, based on the passed-in int state.

 To see the values in this example change while you’re working with the emulator,

you can use the SDK tools to send incoming calls or text messages and change the

state of the voice connection. You can access these options from the DDMS perspective

in Eclipse. Additionally, the emulator includes a mock GSM modem that you can

manipulate using the gsm command from the console. Figure 7.3 shows an example

session from the console that demonstrates using the gsm command. For complete

details, see the emulator telephony documentation at http://code.google.com/

android/reference/emulator.html#telephony.

 Now that we’ve covered the major elements of telephony, let’s start exploring basic

uses of the telephony APIs and other related facilities. We’ll intercept calls, leverage

telephony utility classes, and make calls from within applications.

Figure 7.3 An Android console session demonstrating the gsm command and

available subcommands

onCallStateChanged method. When you

with the listen method.

PhoneStateListener.LISTEN_CALL_STATE

change in the phone state. This constant value comes from a list of available states that

 class. You can use a single value when assigning a listener

 method, as demonstrated in listing 7.2, or you can combine multiple

 method from listing 7.1. You can filter

this method further, based on the passed-in int state.

state of the voice connection. You can access these options from the DDMS perspective

in Eclipse. Additionally, the emulator includes a mock GSM modem that you can

manipulate using the gsm command from the console. Figure 7.3 shows an example gsm command from the console. Figure 7.3 shows an example

195Interacting with the phone

7.3 Interacting with the phone

In regular development, you’ll often want to use your Android device as a phone. You

might dial outbound calls through simple built-in intents, or intercept calls to modify

them in some way. In this section, we’ll cover these basic tasks and examine some of

the phone-number utilities Android provides for you.

 One of the more common things you’ll do with Android telephony support

doesn’t even require using the telephony APIs directly: making calls using built-in

intents.

7.3.1 Using intents to make calls

As we demonstrated in chapter 4, to invoke the built-in dialer and make a call all you

need to use is the Intent.ACTION_CALL action and the tel: Uri. This approach

invokes the dialer application, populates the dialer with the provided telephone num-

ber (taken from the Uri), and initiates the call.

 Alternatively, you can invoke the dialer application with the Intent.ACTION_DIAL

action, which also populates the dialer with the supplied phone number but stops

short of initiating the call. The following listing demonstrates both techniques using

their respective actions.

 dialintent = (Button) findViewById(R.id.dialintent_button);

 dialintent.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 Intent intent =

 new Intent(Intent.DIAL_ACTION,

 Uri.parse("tel:" + NUMBER));

 startActivity(intent);

 }

 });

 callintent = (Button) findViewById(R.id.callintent_button);

 callintent.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 Intent intent =

 new Intent(Intent.CALL_ACTION,

 Uri.parse("tel:" + NUMBER));

 startActivity(intent);

 }

 });

By now you should feel quite comfortable using intents in the Android platform. In

this listing, we again take advantage of Android’s loose coupling, in this case to make

outgoing calls to specified numbers. First, you set the action you want to take place,

either populating the dialer with ACTION_DIAL or populating the dialer and initiating

a call with ACTION_CALL. In either case, you also need to specify the telephone number

you want to use with the Intent Uri.

 Dialing calls also requires the proper permissions, which your application manifest

includes in order to access and modify the phone state, dial the phone, or intercept

Listing 7.3 Using Intent actions to dial and call using the built-in dialer application

might dial outbound calls through simple built-in intents, or intercept calls to modify

As we demonstrated in chapter 4, to invoke the built-in dialer and make a call all you

Intent.ACTION_CALL action and the tel: Uri. This approach

), and initiates the call.

action, which also populates the dialer with the supplied phone number but stops

short of initiating the call. The following listing demonstrates both techniques using

 new Intent(Intent.DIAL_ACTION,

 Uri.parse("tel:" + NUMBER));

 new Intent(Intent.DIAL_ACTION,

 startActivity(intent);

 new Intent(Intent.CALL_ACTION,

 startActivity(intent);

 Uri.parse("tel:" + NUMBER));

 new Intent(Intent.CALL_ACTION,

 Dialing calls also requires the proper permissions, which your application manifest Dialing calls also requires the proper permissions, which your application manifest

196 CHAPTER 7 Telephony

phone calls (shown in section 7.3.3). Table 7.1 lists the relevant phone-related permis-

sions and their purposes. For more detailed information, see the security section of the

Android documentation at http://code.google.com/android/devel/security.html.

 Android makes dialing simple with built-in handling via intents and the dialer

application. The PhoneNumberUtils class, which you can use to parse and validate

phone number strings, helps simplify dialing even more, while keeping numbers

human-readable.

7.3.2 Using phone number-related utilities

Applications running on mobile devices that support telephony deal with a lot of

String formatting for phone numbers. Fortunately, the Android SDK provides a

handy utility class that helps to mitigate the risks associated with this task and stan-

dardize the numbers you use—PhoneNumberUtils.

 The PhoneNumberUtils class parses String data into phone numbers, transforms

alphabetical keypad digits into numbers, and determines other properties of phone

numbers. The following listing shows an example of using this class.

// Imports omitted for brevity

 private TextView pnOutput;

 private EditText pnInput;

 private EditText pnInPlaceInput;

 private Button pnFormat;

// Other instance variables and methods omitted for brevity

 this.pnFormat.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 String phoneNumber = PhoneNumberUtils.formatNumber(

 pnInput.getText().toString());

 phoneNumber = PhoneNumberUtils.convertKeypadLettersToDigits(

 pnInput.getText().toString());

Table 7.1 Phone-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.CALL_PHONE Initiate a phone call without user confirma-

tion in dialer

android.permission.CALL_PRIVILEGED Call any number, including emergency, with-

out confirmation in dialer

android.permission.MODIFY_PHONE_STATE Allow the application to modify the phone

state; for example, to turn the radio on or

off

android.permission.PROCESS_OUTGOING_CALLS Allow application to receive broadcast for

outgoing calls and modify

android.permission.READ_PHONE_STATE Allow application to read the phone state

Listing 7.4 Working with the PhoneNumberUtils class

Format as
phone
number

B

Convert alpha
characters to digitsC

Table 7.1 Phone-related manifest permissions and their purpose

android.permission.CALL_PHONE

android.permission.CALL_PRIVILEGED

android.permission.MODIFY_PHONE_STATE

Call any number, including emergency, with-

Initiate a phone call without user confirma

Call any number, including emergency, with-

out confirmation in dialer

state; for example, to turn the radio on or

off

android.permission.PROCESS_OUTGOING_CALLS Allow application to receive broadcast for

android.permission.READ_PHONE_STATE

 Android makes dialing simple with built-in handling via intents and the dialer Android makes dialing simple with built-in handling via intents and the dialer

class, which you can use to parse and validate class, which you can use to parse and validate PhoneNumberUtils

String formatting for phone numbers. Fortunately, the Android formatting for phone numbers. Fortunately, the Android

PhoneNumberUtils class parses

 String phoneNumber = PhoneNumberUtils.formatNumber(

 phoneNumber = PhoneNumberUtils.convertKeypadLettersToDigits(

197Interacting with the phone

 StringBuilder result = new StringBuilder();

 result.append(phoneNumber);

 result.append("\nisGlobal - "

 + PhoneNumberUtils.isGlobalPhoneNumber(phoneNumber));

 result.append("\nisEmergency - "

 + PhoneNumberUtils.isEmergencyNumber(phoneNumber));

 result.append("\ncompare to 415-555-1234 - " +

 PhoneNumberUtils.compare(phoneNumber, "415-555-1234"));

 pnOutput.setText(result.toString());

 pnInput.setText("");

 }

});

The PhoneNumberUtils class offers several static helper methods for parsing phone

numbers, including the useful formatNumber. This method takes a single String as

input and uses the default locale settings to return a formatted phone number B.

Additional methods format a number using a locale you specify, parse different seg-

ments of a number, and so on. Parsing a number can be combined with another help-

ful method, convertKeypadLettersToDigits, to convert any alphabetic keypad letter

characters into digits c. The conversion method won’t work unless it already recog-

nizes the format of a phone number, so you should run the format method first.

 Along with these basic methods, you can also check properties of a number string,

such as whether the number is global and whether it represents an emergency call.

The compare method lets you see whether a given number matches another number

D, which is useful for user-entered numbers that might include dashes or dots.

NOTE Android defines a global number as any string that contains one or
more digits; it can optionally be prefixed with a + symbol, and can option-
ally contain dots or dashes. Even strings like 3 and +4-2 are considered
global numbers. Android makes no guarantee that a phone can even dial
such a number; this utility simply provides a basic check for whether
something looks like it could be a phone number in some country.

You can also format a phone number with the overloaded formatNumber method. This

method is useful for any Editable, such as the common EditText (or TextView). This

method updates the provided Editable in-place, as shown in the following listing.

this.pnInPlaceInput.setOnFocusChangeListener(

 new OnFocusChangeListener() {

 public void onFocusChange(View v, boolean hasFocus) {

 if (v.equals(pnInPlaceInput) && (!hasFocus)) {

 PhoneNumberUtils.formatNumber(

 pnInPlaceInput.getText(),

 PhoneNumberUtils.FORMAT_NANP);

 }

 }

 });

Listing 7.5 Using in-place Editable View formatting via PhoneNumberUtils

Compare
to another
number

D

 PhoneNumberUtils.compare(phoneNumber, "415-555-1234"));

 + PhoneNumberUtils.isEmergencyNumber(phoneNumber));

 + PhoneNumberUtils.isGlobalPhoneNumber(phoneNumber));

input and uses the default locale settings to return a formatted phone number B

 Along with these basic methods, you can also check properties of a number string,

such as whether the number is global and whether it represents an emergency call.

such a number; this utility simply provides a basic check for whether
something looks like it could be a phone number in some country.

 public void onFocusChange(View v, boolean hasFocus) {

 PhoneNumberUtils.formatNumber(

 PhoneNumberUtils.FORMAT_NANP);

198 CHAPTER 7 Telephony

The in-place editor can be combined with a dynamic update using various techniques.

You can make the update happen automatically when the focus changes from a

phone-number field. The in-place edit does not provide the keypad alphabetic charac-

ter-to-number conversion automatically. To ensure that the conversion occurs, we’ve

implemented an OnFocusChangeListener. Inside the onFocusChange method, which

filters for the correct View item, we call the formatNumber overload, passing in the

respective Editable and the formatting style we want to use. NANP stands for North

American Numbering Plan, which includes an optional country and area code and a

7-digit local phone number.

NOTE PhoneNumberUtils also defines a Japanese formatting plan, and
might add others in the future.

Now that you can use the phone number utilities and make calls, we can move on to

the more challenging and interesting task of call interception.

7.3.3 Intercepting outbound calls

Imagine writing an application that catches outgoing calls and decorates or aborts

them, based on certain criteria. The following listing shows how to perform this type

of interception.

public class OutgoingCallReceiver extends BroadcastReceiver {

 public static final String ABORT_PHONE_NUMBER = "1231231234";

 @Override

 public void onReceive(Context context, Intent intent) {

 if (intent.getAction().equals(

 Intent.ACTION_NEW_OUTGOING_CALL)) {

 String phoneNumber =

 intent.getExtras().getString(Intent.EXTRA_PHONE_NUMBER);

 if ((phoneNumber != null)

 && phoneNumber.equals(

 OutgoingCallReceiver.ABORT_PHONE_NUMBER)) {

 Toast.makeText(context,

 "NEW_OUTGOING_CALL intercepted to number "

 + "123-123-1234 - aborting call",

 Toast.LENGTH_LONG).show();

 this.abortBroadcast();

 }

 }

 }

}

Our interception class starts by extending BroadcastReceiver. The new subclass

implements the onReceive method B. Within this method, we filter on the Intent

action we want C, then we get the Intent data using the phone number key. If the

phone number matches, we send a Toast alert to the UI and abort the outgoing call

by calling the abortBroadcast method.

Listing 7.6 Catching and aborting an outgoing call

Override
onReceiveB

Filter Intent for actionC

NANP stands for North

American Numbering Plan, which includes an optional country and area code and a

Imagine writing an application that catches outgoing calls and decorates or aborts

public class OutgoingCallReceiver extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {

 if (intent.getAction().equals(

 Intent.ACTION_NEW_OUTGOING_CALL)) {

 intent.getExtras().getString(Intent.EXTRA_PHONE_NUMBER); intent.getExtras().getString(Intent.EXTRA_PHONE_NUMBER);

 this.abortBroadcast();

 public static final String ABORT_PHONE_NUMBER = "1231231234";

 && phoneNumber.equals(

 OutgoingCallReceiver.ABORT_PHONE_NUMBER)) {

199Working with messaging: SMS

 Beyond dialing out, formatting numbers, and intercepting calls, Android also pro-

vides support for sending and receiving SMS. Managing SMS can seem daunting, but

provides significant rewards, so we’re going to focus on it for the rest of the chapter.

7.4 Working with messaging: SMS

Mobile devices use the Short Message Service (SMS), a hugely popular and important

means of communication, to send simple text messages with small amounts of data.

Android includes a built-in SMS application that allows users to send, view, and reply

to SMS messages. Along with the built-in user-facing apps and the related ContentPro-

vider for interacting with the default text-messaging app, the SDK provides APIs for

developers to send and receive messages programmatically.

 Because Android now supplies an excellent built-in SMS message application, you

might wonder why anyone would bother building another one. The Android market

sells several superior third-party SMS messaging applications, but SMS can do a lot

more than text your contacts. For example, you

could build an application that, upon receiving a

special SMS, sends back another SMS containing its

location information. Due to the nature of SMS,

this strategy might succeed, while another

approach like trying to get the phone to transmit

its location in real time would fail. Alternately, add-

ing SMS as another communications channel can

enhance other applications. Best of all, Android

makes working with SMS relatively simple and

straightforward.

 To explore Android’s SMS support, you’ll cre-

ate an app that sends and receives SMS messages.

The screen in figure 7.4 shows the SMS-related

Activity you’ll build in the TelephonyExplorer

application.

 To get started working with SMS, you’ll first

build a class that programmatically sends SMS mes-

sages, using the SmsManager.

7.4.1 Sending SMS messages

The android.telephony package contains the SmsManager and SmsMessage classes.

The SmsManager defines many important SMS-related constants, and also provides the

sendDataMessage, sendMultipartTextMessage, and sendTextMessage methods.

NOTE Early versions of Android provided access to SMS only through the
android.telephony.gsm subpackage. Google has deprecated this usage,
but if you must target older versions of the OS, look there for SMS-related
functions. Of course, such classes work only on GSM-compatible devices.

Figure 7.4 An Activity that sends

SMS messages

Mobile devices use the Short Message Service (SMS), a hugely popular and important

 application that allows users to send, view, and reply application that allows users to send, view, and reply application that allows users to send, view, and reply

developers to send and receive messages programmatically.developers to send and receive messages programmatically.developers to send and receive messages programmatically.

could build an application that, upon receiving a

special SMS, sends back another , sends back another

SmsManager and SmsMessage classes.

sendDataMessage, sendMultipartTextMessage, and , and sendTextMessage methods.

200 CHAPTER 7 Telephony

The following listing shows an example from our TelephonyExplorer application that

uses the SMS manager to send a simple text message.

// . . . start of class omitted for brevity

 private Button smsSend;

 private SmsManager smsManager;

 @Override

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 this.setContentView(R.layout.smsexample);

 // . . . other onCreate view item inflation omitted for brevity

 this.smsSend = (Button) findViewById(R.id.smssend_button);

 this.smsManager = SmsManager.getDefault();

 final PendingIntent sentIntent =

 PendingIntent.getActivity(

 this, 0, new Intent(this,

 SmsSendCheck.class), 0);

 this.smsSend.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 String dest = smsInputDest.getText().toString();

 if (PhoneNumberUtils.

 isWellFormedSmsAddress(dest)) {

 smsManager.sendTextMessage(

 smsInputDest.getText().toString, null,

 smsInputText.getText().toString(),

 sentIntent, null);

 Toast.makeText(SmsExample.this,

 "SMS message sent",

 Toast.LENGTH_LONG).show();

 } else {

 Toast.makeText(SmsExample.this,

 "SMS destination invalid - try again",

 Toast.LENGTH_LONG).show();

 }

 }

 });

 }

Before doing anything with SMS messages, we must obtain an instance of the SmsMan-

ager with the static getDefault method B. The manager will also send the message

later. Before we can send the message, we need to create a PendingIntent to provide

to the send method.

 A PendingIntent can specify an Activity, Broadcast, or Service that it requires.

In our case, we use the getActivity method, which requests an Activity, and then

we specify the context, request code (not used for this case), the Intent to execute,

and additional flags C. The flags indicate whether the system should create a new

instance of the referenced Activity (or Broadcast or Service), if one doesn’t

already exist.

Listing 7.7 Using SmsManager to send SMS messages

Get
SmsManager
handleB

Create
PendingIntent
for post action

C

Check that
destination
is validD

 this.smsManager = SmsManager.getDefault(); this.smsManager = SmsManager.getDefault();

 PendingIntent.getActivity(

 SmsSendCheck.class), 0);

 isWellFormedSmsAddress(dest)) {

 smsManager.sendTextMessage(

 sentIntent, null);

 smsManager.sendTextMessage(smsManager.sendTextMessage(

 if (PhoneNumberUtils.

PendingIntent can specify an

201Working with messaging: SMS

Next, we check that the destination address is valid for SMS D, and we send the mes-

sage using the manager’s sendTextMessage method.

 This send method takes several parameters. The following snippet shows the signa-

ture of this method:

sendDataMessage(String destinationAddress, String scAddress,

 short destinationPort, byte[] data, PendingIntent sentIntent,

 PendingIntent deliveryIntent)

The method requires the following parameters:

destinationAddress—The phone number to receive the message.

scAddress—The messaging center address on the network; you should almost

always leave this as null, which uses the default.

destinationPort—The port number for the recipient handset.

data—The payload of the message.

sentIntent—The PendingIntent instance that’s fired when the message is suc-

cessfully sent.

deliveryIntent—The PendingIntent instance that’s fired when the message is

successfully received.

NOTE GSM phones generally support receiving SMS messages to a partic-
ular port, but CDMA phones generally don’t. Historically, port-directed
SMS messages have allowed text messages to be delivered to a particular
application. Modern phones support better solutions; in particular, if you
can use a server for your application, consider using Android Cloud to
Device Messaging (C2DM)2 for Android phones with software version 2.2
or later.

Much like the phone permissions listed in table 7.1, SMS-related tasks also require

manifest permissions. SMS permissions are shown in table 7.2.

 The AndroidManifest.xml file for the TelephonyExplorer application contains

these permissions.

2 Read Tim Bray’s detailed article for more about C2DM: http://android-developers.blogspot.com/2010/05/
android-cloud-to-device-messaging.html.

What is a PendingIntent?

A PendingIntent specifies an action to take in the future. It lets you pass a future

Intent to another application and allow that application to execute that Intent as

if it had the same permissions as your application, whether or not your application is

still around when the Intent is eventually invoked. A PendingIntent provides a

means for applications to work, even after their process exits. It’s important to note

that even after the application that created the PendingIntent has been killed, that

Intent can still run.

A PendingIntent specifies an action to take in the future. It lets you pass a future

means for applications to work, even after their process exits. It’s important to note means for applications to work, even after their process exits. It’s important to note means for applications to work, even after their process exits. It’s important to note

 has been killed, that

 can still run.

 This send method takes several parameters. The following snippet shows the signa

sendDataMessage(String destinationAddress, String scAddress, sendDataMessage(String destinationAddress, String scAddress, sendDataMessage(String destinationAddress, String scAddress,

 short destinationPort, byte[] data, PendingIntent sentIntent, short destinationPort, byte[] data, PendingIntent sentIntent, short destinationPort, byte[] data, PendingIntent sentIntent,

 PendingIntent deliveryIntent)

—The phone number to receive the message.

—The messaging center address on the network; you should almost

—The payload of the message.

cessfully sent.

 instance that’s fired when the message is suc

 instance that’s fired when the message is

successfully received.

GSM phones generally support receiving
ular port, but CDMA phones generally don’t. Historically, port-directed CDMA phones generally don’t. Historically, port-directed

 messages have allowed text messages to be delivered to a particular

Device Messaging (C2DM)
can use a server for your application, consider using Android Cloud to
Device Messaging (

SMS-related tasks also require -related tasks also require

manifest permissions.

202 CHAPTER 7 Telephony

<uses-permission android:name="android.permission.RECEIVE_SMS" />

<uses-permission android:name="android.permission.READ_SMS" />

<uses-permission android:name="android.permission.WRITE_SMS" />

<uses-permission android:name="android.permission.SEND_SMS" />

Along with sending text and data messages via SmsManager, you can create an SMS

BroadcastReceiver to receive incoming SMS messages.

7.4.2 Receiving SMS messages

You can receive an SMS message programmatically by registering for the appropriate

broadcast. To demonstrate how to receive SMS messages in this way with our Telepho-

nyExplorer application, we’ll implement a receiver, as shown in the following listing.

public class SmsReceiver extends BroadcastReceiver {

 private static final String SMS_REC_ACTION =

 "android.provider.Telephony.SMS_RECEIVED";

 @Override

 public void onReceive(Context context, Intent intent) {

 if (intent.getAction().

 equals(SmsReceiver.SMS_REC_ACTION)) {

 StringBuilder sb = new StringBuilder();

 Bundle bundle = intent.getExtras();

 if (bundle != null) {

 Object[] pdus = (Object[])

 bundle.get("pdus");

 for (Object pdu : pdus) {

 SmsMessage smsMessage =

 SmsMessage.createFromPdu

 ((byte[]) pdu);

 sb.append("body - " + smsMessage.

 getDisplayMessageBody());

 }

 }

 Toast.makeText(context, "SMS RECEIVED - "

 + sb.toString(), Toast.LENGTH_LONG).show();

 }

 }

}

Table 7.2 SMS-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.READ_SMS Allow application to read SMS messages

android.permission.RECEIVE_SMS Allow application to monitor incoming SMS messages

android.permission.SEND_SMS Allow application to send SMS messages

android.permission.WRITE_SMS Write SMS messages to the built-in SMS provider (not

related to sending messages directly)

Listing 7.8 Creating an SMS-related BroadcastReceiver

Filter for action
in receiverB

Get pdus from
Intent Bundle

C

Create SmsMessage
from pdus

D

Allow application to monitor incoming SMS messages

Allow application to send SMS messages

Allow application to read SMS messages

Write SMS messages to the built-in SMS provider (not Write SMS messages to the built-in SMS provider (not Write SMS messages to the built-in SMS provider (not

android.permission.READ_SMS

android.permission.RECEIVE_SMS

android.permission.SEND_SMS

android.permission.WRITE_SMS

You can receive an SMS message programmatically by registering for the appropriate message programmatically by registering for the appropriate

broadcast. To demonstrate how to receive

public class SmsReceiver extends BroadcastReceiver {

 "android.provider.Telephony.SMS_RECEIVED"; "android.provider.Telephony.SMS_RECEIVED"; "android.provider.Telephony.SMS_RECEIVED";

 Bundle bundle = intent.getExtras();

 bundle.get("pdus"); bundle.get("pdus");

 SmsMessage.createFromPdu

 SmsMessage smsMessage =

 ((byte[]) pdu);

 getDisplayMessageBody());

203Summary

To react to an incoming SMS message, we again create a custom BroadcastReceiver

by extending that class. Our receiver defines a local constant for the Intent action it

wants to catch, in this case, android.provider.Telephony.SMS_RECEIVED.

 Next, we filter for the action we want on the onReceive method B, and we get the

SMS data from the Intent extras Bundle using the key pdus C. The Bundle is a hash

that contains Android data types.

For every pdu Object that we receive, we need to construct an SmsMessage by casting

the data to a byte array D. After this conversion, we can use the methods in that class,

such as getDisplayMessageBody.

NOTE If you run the example shown in listing 7.8, you’ll see that even
though the receiver does properly report the message, the message still
arrives in the user’s inbox. Some applications might process specific mes-
sages themselves and prevent the user from ever seeing them; for exam-
ple, you might implement a play-by-SMS chess program that uses text
messages to report the other players’ moves. To consume the incoming
SMS message, call abortBroadcast from within your onReceive method.
Note that your receiver must have a priority level higher than that of the
inbox. Also, certain versions of the Android OS don’t honor this request,
so test on your target devices if this behavior is important to your app.

Congratulations! Now that you’ve learned how to send SMS messages programmati-

cally, set permissions appropriately, and you can receive and work with incoming SMS

messages, you can incorporate useful SMS features into your application.

7.5 Summary

Our trip through the Android telephony-related APIs covered several important topics.

After a brief overview of some telephony terms, we examined Android-specific APIs.

What’s a PDU?

PDU, or protocol data unit, refers to one method of sending information along cellular

networks. SMS messaging, as described in the 3rd Generation Partnership Project

(3GPP) Specification, supports two different ways of sending and receiving mes-

sages. The first is text mode, which some phones don’t support. Text mode encodes

message content as a simple bit stream. The other is PDU mode, which not only con-

tains the SMS message, but also metadata about the SMS message, such as text

encoding, the sender, SMS service center address, and much more. To access this

metadata, mobile SMS applications almost always use PDUs to encode the contents

of a SMS message. For more information about PDUs and the metadata they provide,

refer to the specification titled “Technical Realization of the Short Message Service

(SMS)” which you can find at http://www.3gpp.org/ftp/Specs/html-info/23040.htm.

This document, part of the 3GPP TS 23.040 Specification, is extremely technical but

will help you with developing more sophisticated SMS applications.

by extending that class. Our receiver defines a local constant for the Intent action it

wants to catch, in this case,

 message, we again create a custom BroadcastReceiver

 data from the Intent extras Bundle using the key using the key pdus

PDU, or protocol data unit, refers to one method of sending information along cellular PDU, or protocol data unit, refers to one method of sending information along cellular

(3GPP) Specification, supports two different ways of sending and receiving mes-

networks. SMS messaging, as described in the 3rd Generation Partnership Project

(3GPP) Specification, supports two different ways of sending and receiving mes-(3GPP) Specification, supports two different ways of sending and receiving mes-

sages. The first is text mode, which some phones don’t support. Text mode encodes

message content as a simple bit stream. The other is PDU mode, which not only con-

tains the SMS message, but also metadata about the SMS message, such as text

encoding, the sender, SMS service center address, and much more. To access this encoding, the sender, SMS service center address, and much more. To access this encoding, the sender, SMS service center address, and much more. To access this

metadata, mobile SMS applications almost always use PDUs to encode the contents

For every pdu SmsMessage by casting

the data to a byte array

getDisplayMessageBody.

though the receiver does properly report the message, the message still
arrives in the user’s inbox. Some applications might process specific mes-arrives in the user’s inbox. Some applications might process specific mes-
sages themselves and prevent the user from ever seeing them; for exam-sages themselves and prevent the user from ever seeing them; for exam-

 you might implement a play-by-SMS chess program that uses text
messages to report the other players’ moves. To consume the incoming

 message, call abortBroadcast from within your
Note that your receiver must have a priority level higher than that of the

204 CHAPTER 7 Telephony

 You accessed telephony information with the TelephonyManager, including device

and SIM card data and phone state. From there, we addressed hooking in a Phone-

StateListener to react to phone state changes.

 Besides retrieving data, you also learned how to dial the phone using built-in

intents and actions, intercept outgoing phone calls, and format numbers with the

PhoneNumberUtils class. After we covered standard voice usages, we looked at how to

send and receive SMS messages using the SmsManager and SmsMessage classes.

 In the next chapter, we’ll turn to the specifics of interacting with notifications and

alerts on the Android platform. We’ll also revisit SMS and you’ll learn how to notify

users of events, such as an incoming SMS, by putting messages in the status bar, flash-

ing a light, or even by making the phone vibrate.

, by putting messages in the status bar, flash-

ing a light, or even by making the phone vibrate.ing a light, or even by making the phone vibrate.

, by putting messages in the status bar, flash-

