
44 CHAPTER 2 Android’s development environment

Figure 2.10 demonstrates the creation of a new project named Chapter2 using the

wizard.

TIP You’ll want the package name of your applications to be unique from

one application to the next.

Click Finish to create your sample application. At this point, the application compiles

and is capable of running on the emulator—no further development steps are

required. Of course, what fun would an empty project be? Let’s flesh out this sample

application and create an Android tip calculator.

2.3.2 Android sample application code

The Android Application Wizard takes care of a number of important elements in the

Android application structure, including the Java source files, the default resource

files, and the AndroidManifest.xml file. Looking at the Package Explorer view in

Eclipse, you can see all the elements of this application. Here’s a quick description of

the elements included in the sample application:

The src folder contains two Java source files automatically created by the wizard.

ChapterTwo.java contains the main Activity for the application. You’ll modify

this file to add the sample application’s tip calculator functionality.

R.java contains identifiers for each of the UI resource elements in the applica-

tion. Never modify this file directly. It automatically regenerates every time a

resource is modified; any manual changes you make will be lost the next time

the application is built.

Figure 2.10 Using the Android

Project Wizard, it’s easy to create an

empty Android application, ready for

customization.

45Building an Android application in Eclipse

Android.jar contains the Android runtime Java classes. This reference to the

android.jar file found in the Android SDK ensures that the Android runtime

classes are accessible to your application.

The res folder contains all the Android resource folders, including:

– Drawables contains image files such as bitmaps and icons. The wizard pro-

vides a default Android icon named icon.png.

– Layout contains an XML file called main.xml. This file contains the UI ele-

ments for the primary view of your Activity. In this example, you’ll modify

this file but you won’t make any significant or special changes—just enough to

accomplish the meager UI goals for your tip calculator. We cover UI elements,

including Views, in detail in chapter 3. It’s not uncommon for an Android

application to have multiple XML files in the Layout section of the resources.

– Values contains the strings.xml file. This file is used for localizing string val-

ues, such as the application name and other strings used by your application.

AndroidManifest.xml contains the deployment information for this project.

Although AndroidManifest.xml files can become somewhat complex, this chapter’s

manifest file can run without modification because no special permissions are

required. We’ll visit AndroidManifest.xml a number of times throughout the book as

we discuss new features.

 Now that you know what’s in the project, let’s review how you’re going to modify

the application. Your goal with the Android tip calculator is to permit your user to

enter the price of a meal, then tap a button to calculate the total cost of the meal, tip

included. To accomplish this, you need to modify two files: ChapterTwo.java and the

UI layout file, main.xml. Let’s start with the UI changes by adding a few new elements

to the primary View, as shown in the next listing.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Chapter 2 Android Tip Calculator"

 />

<EditText

 android:id="@+id/mealprice"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:autoText="true"

/>

<Button

android:id="@+id/calculate"

Listing 2.1 main.xml contains UI elements

46 CHAPTER 2 Android’s development environment

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Calculate Tip"

 />

<TextView

 android:id="@+id/answer"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text=""

 />

</LinearLayout>

The layout for this application is straightforward. The overall layout is a vertical, linear

layout with only four elements; all the UI controls, or widgets, are going to be in a verti-

cal arrangement. A number of layouts are available for Android UI design, which we’ll

discuss in greater detail in chapter 3.

 A static TextView displays the title of the application. An EditText collects the

price of the meal for this tip calculator application. The EditText element has an

attribute of type android:id, with a value of mealprice. When a UI element contains

the android:id attribute, it permits you to manipulate this element from your code.

When the project is built, each element defined in the layout file containing the

android:id attribute receives a corresponding identifier in the automatically gener-

ated R.java class file. This identifying value is used in the findViewById method,

shown in listing 2.2. If a UI element is static, such as the TextView, and doesn’t need to

be set or read from our application code, the android:id attribute isn’t required.

 A button named calculate is added to the view. Note that this element also has

an android:id attribute because we need to capture click events from this UI element.

A TextView named answer is provided for displaying the total cost, including tip.

Again, this element has an id because you’ll need to update it during runtime.

 When you save the file main.xml, it’s processed by the ADT plug-in, compiling the

resources and generating an updated R.java file. Try it for yourself. Modify one of the

id values in the main.xml file, save the file, and open R.java to have a look at the con-

stants generated there. Remember not to modify the R.java file directly, because if you

do, all your changes will be lost! If you conduct this experiment, be sure to change the

values back as they’re shown in listing 2.1 to make sure the rest of the project will com-

pile as it should. Provided you haven’t introduced any syntactical errors into your

main.xml file, your UI file is complete.

NOTE This example is simple, so we jumped right into the XML file to define

the UI elements. The ADT also contains an increasingly sophisticated GUI lay-

out tool. With each release of the ADT, these tools have become more and

more usable; early versions were, well, early.

Double-click the main.xml file to launch the layout in a graphical form. At the bottom

of the file you can switch between the Layout view and the XML view. Figure 2.11

shows the Layout tool.

47Building an Android application in Eclipse

It’s time to turn our attention to the file ChapterTwo.java to implement the tip calcu-

lator functionality. ChapterTwo.java is shown in the following listing. We’ve omitted

some imports for brevity. You can download the complete source code from the Man-

ning website at http://manning.com/ableson2.

package com.manning.unlockingandroid;

import com.manning.unlockingandroid.R;

import android.app.Activity;

import java.text.NumberFormat;

import android.util.Log;

// some imports omitted

public class ChapterTwo extends Activity {

 public static final String tag = "Chapter2";

 @Override

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 setContentView(R.layout.main);

 final EditText mealpricefield =

 (EditText) findViewById(R.id.mealprice);

 final TextView answerfield =

 (TextView) findViewById(R.id.answer);

 final Button button = (Button) findViewById(R.id.calculate);

 button.setOnClickListener(new Button.OnClickListener() {

 public void onClick(View v) {

 try {

 Log.i(tag,"onClick invoked.");

 // grab the meal price from the UI

 String mealprice =

 mealpricefield.getText().toString();

 Log.i(tag,"mealprice is [" + mealprice + "]");

 String answer = "";

 // check to see if the meal price includes a "$"

Listing 2.2 ChapterTwo.java implements the tip calculator logic

Figure 2.11 Using the GUI Layout tool provided in the ADT to define the user interface

elements of your application

Reference
EditText for
mealprice

B

Log entryC

Get meal priceD

 Log.i(tag,"onClick invoked.");

 Log.i(tag,"mealprice is [" + mealprice + "]");

import java.text.NumberFormat;

48 CHAPTER 2 Android’s development environment

 if (mealprice.indexOf("$") == -1) {

 mealprice = "$" + mealprice;

 }

 float fmp = 0.0F;

 // get currency formatter

 NumberFormat nf =

 java.text.NumberFormat.getCurrencyInstance();

 // grab the input meal price

 fmp = nf.parse(mealprice).floatValue();

 // let's give a nice tip -> 20%

 fmp *= 1.2;

 Log.i(tag,"Total Meal Price (unformatted) is ["

+ fmp + "]");

 // format our result

 answer = "Full Price, Including 20% Tip: "

+ nf.format(fmp);

 answerfield.setText(answer);

 Log.i(tag,"onClick complete.");

 } catch (java.text.ParseException pe) {

 Log.i(tag,"Parse exception caught");

 answerfield.setText("Failed to parse amount?");

 } catch (Exception e) {

 Log.e(tag,"Failed to Calculate Tip:" + e.getMessage());

 e.printStackTrace();

 answerfield.setText(e.getMessage());

 }

 }

 });

 }

}

Let’s examine this sample application. Like all but the most trivial Java applications,

this class contains a statement identifying which package it belongs to: com.manning.

unlockingandroid. This line containing the package name was generated by the

Application Wizard.

 We import the com.manning.unlockingandroid.R class to gain access to the defi-

nitions used by the UI. This step isn’t required, because the R class is part of the same

application package, but it’s helpful to include this import because it makes our code

easier to follow. Newcomers to Android always ask how the identifiers in the R class are

generated. The short answer is that they’re generated automatically by the ADT! Also

note that you’ll learn about some built-in UI elements in the R class later in the book

as part of sample applications.

 Though a number of imports are necessary to resolve class names in use, most of

the import statements have been omitted from listing 2.2 for the sake of brevity. One

import that’s shown contains the definition for the java.text.NumberFormat class,

which is used to format and parse currency values.

 Another import shown is for the android.util.Log class, which is employed to

make entries to the log. Calling static methods of the Log class adds entries to the log.

You can view entries in the log via the LogCat view of the DDMS perspective. When

making entries to the log, it’s helpful to put a consistent identifier on a group of

Display full price,
including tip

E

Catch
parse
errorF

 NumberFormat nf =

 java.text.NumberFormat.getCurrencyInstance();

 fmp = nf.parse(mealprice).floatValue(); fmp = nf.parse(mealprice).floatValue();

this class contains a statement identifying which package it belongs to: this class contains a statement identifying which package it belongs to:

 We import the com.manning.unlockingandroid.R class to gain access to the defi

easier to follow. Newcomers to Android always ask how the identifiers in the R class are

generated. The short answer is that they’re generated automatically by the

java.text.NumberFormat class,

which is used to format and parse currency values.

make entries to the log. Calling static methods of the Log class adds entries to the log.

You can view entries in the log via the LogCat view of the

49Building an Android application in Eclipse

related entries using a common string, commonly referred to as the tag. You can filter

on this string value so you don’t have to sift through a mountain of LogCat entries to

find your few debugging or informational messages.

 Now let’s go through the code in listing 2.2. We connect the UI element containing

mealprice to a class-level variable of type EditText B by calling the findViewById

method and passing in the identifier for the mealprice, as defined by the automati-

cally generated R class, found in R.java. With this reference, we can access the user’s

input and manipulate the meal price data as entered by the user. Similarly, we connect

the UI element for displaying the calculated answer back to the user, again by calling

the findViewById method.

 To know when to calculate the tip amount, we need to obtain a reference to the

Button so we can add an event listener. We want to know when the button has been

clicked. We accomplish this by adding a new OnClickListener method named

onClick.

 When the onClick method is invoked, we add the first of a few log entries using

the static i() method of the Log class C. This method adds an entry to the log with an

Information classification. The Log class contains methods for adding entries to the

log for different levels, including Verbose, Debug, Information, Warning, and Error.

You can also filter the LogCat based on these levels, in addition to filtering on the pro-

cess ID and tag value.

 Now that we have a reference to the mealprice UI element, we can obtain the text

entered by our user with the getText() method of the EditText class D. In prepara-

tion for formatting the full meal price, we obtain a reference to the static currency

formatter.

 Let’s be somewhat generous and offer a 20 percent tip. Then, using the formatter,

let’s format the full meal cost, including tip. Next, using the setText() method of the

TextView UI element named answerfield, we update the UI to tell the user the total

meal cost E.

 Because this code might have a problem with improperly formatted data, it’s a

good practice to put code logic into try/catch blocks so that our application behaves

when the unexpected occurs f.

 Additional boilerplate files are in this sample project, but in this chapter we’re

concerned only with modifying the application enough to get basic, custom function-

ality working. You’ll notice that as soon as you save your source files, the Eclipse IDE

compiles the project in the background. If there are any errors, they’re listed in the

Problems view of the Java perspective; they’re also marked in the left margin with a

small red x to draw your attention to them.

TIP Using the command-line tools found in the Android SDK, you can cre-

ate batch builds of your applications without using the IDE. This approach is

useful for software shops with a specific configuration-management function

and a desire to conduct automated builds. In addition to the Android-

specific build tools found under the tools subdirectory of your Android SDK

related entries using a common string, commonly referred to as the tag. You can filter tagtag

 Now let’s go through the code in listing 2.2. We connect the UI element containing

 to a class-level variable of type

Button so we can add an event listener. We want to know when the button has been so we can add an event listener. We want to know when the button has been

OnClickListener method named

onClick.

i() method of the Log class

 Because this code might have a problem with improperly formatted data, it’s a

try/catch blocks so that our application behaves

