UWP-037 - Utilizing the VisualStateManager to Create Adaptive Triggers

Starting in this lesson we’ll focus on the techniques and strategies for creating responsive apps that
adapt based on the given device.

In the resources that accompany this lesson, please open and start debugging
SimpleVisualStateTriggerExample. Once running, resize the app’s window as large and as small as
possible. As you can see, a certain screen sizes the color of the background and the size of the font
changes.

This is made possible by a class called the VisualStateManager and it does exactly what it sounds like; it
manages the visual state of your application, including the position, sizes, colors, fonts, etc. -- virtually
any properties on any objects you want to manipulate based on the current size of the window.

To use the VisualStateManager, you define a series of VisualStates with StateTriggers (what should
prompt a change) and Setters (the values of target object properties that should change).

Think about how that applies to the Universal Windows Platform. One of the selling points is that you're
able to write one code base and then use it across all these different form factors. This allows you to
accommodate different screen resolutions for different form factors with the same code base. The
VisualStateManager will be leverages to change the entire layout of your application based on the
screen size.

Here's one of the three VisualStates defined for the project.

=

10 [= <Grid Name="ColorGrid" Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
11 [<VisualStateManager.VisualStateGroups>

12 = <VisualStateGroup x:Name="VisualStateGroup">

13 [<VisualsState x:Name="VisualStatePhone">

14 = <VisualState.StateTriggers>

15 <AdaptiveTrigger MinWindowwidth="@"/>

16 </VisualState.StateTriggers>

17 B <VisualState.Setters>

18 <Setter Target="ColorGrid.Background" Value="Red" />

19 <Setter Target="MessageTextBlock.FontSize" Value="18" />
20 </Visualstate.Setterss>

21 </VisualState>

First you define one or more VisualStateGroups. Each VisualStateGroup is comprised of a series of
VisualStates. This VisualState is called “VisualStatePhone” inferring that this “state” is valid for the
smallest Windows 10 form factor. Each VisualState is comprised of one or more StateTriggers and one
or more Setters. The StateTrigger is set by using the AdaptiveTrigger element along with a
MinWindowWidth or MinWindowHeight. In this case, since the MinWindowWidth="0" the Setters will
apply to any screen size. In this case, there are two Setters: the first changes the ColorGrid’s
Background to red, and the MessageTextBlock’s FontSize to 18.

There are two other VisualStates defined below it.

189 | 397

22 } <VisualState x:Name="VisualStateTablet">

23 <VisualState.StateTriggers>

24 <AdaptiveTrigger MinWindowWidth="eee" />

25 </Visualstate.StateTriggers>

26 E <VisualsState.Setters>

27 <Setter Target="ColorGrid.Background" Value="Yellow" />
28 <Setter Target="MessageTextBlock.FontSize" Value="36" />
29 </VisualState.Setters>

30 | </Visualstate>

31 <VisualState x:Name="VisualStateDesktop">

32 [<VisualState.StateTriggers>

33 <AdaptiveTrigger MinWindowwidth="8ee" />

34 </VisualState.StateTriggers>

35 E <VisualState.Setters>

36 <Setter Target="ColorGrid.Background" Value="Blue" />

37 <Setter Target="MessageTextBlock.FontSize" Value="54" />
38 </VisualState.Setters>

39 </Visualstate>

40 | </VisualstateGroup>

41 | </VisualStateManager.VisualStateGroups>

The VisualStateTablet will modify those same object properties when the window’s width is 600 or
greater. The VisualStateDesktop will modify those same object properties when the window’s width is
800 or greater.

Conceptually it's very easy to understand. This ability to define visual states allows you to get creative
with how you want to make changes to your application to conform to a given screen size. We define
the Trigger and then once that Trigger is fired off, we apply the Setters.

While conceptually it is easy to understand, it may be difficult at first to remember exactly what objects
and their relationship to each other is necessary to get this to work. Microsoft Blend will help you build
VisualStates if you prefer to use a visual editor.

I've created a new project called UsingBlendForVisualStates, and | have the same color Grid and
TextBlock, but | haven't added anything else to it just yet.

-

10 [= <Grid Name="ColorGrid">

115 <TextBlock Name="MessageTextBlock"

32 | Text="Hello VisualStateManager" />
13 </Grid>

14 j<!Page>

Here in the Solution Explorer right-click on the project and select Design in Blend.

Page 190 | 397

e
Solution Explorer v

@R o-5¢C TP o p =

Search Solution Explorer (Ctrl+;)

%] Solution 'UsingBlendForVisualStates’ (1 project)

4 UsingBlendForVisualStates (Universal Windows)
Properties

"B References

1 Assets

) App.xaml

v v Vv v v

¢ Applicationlnsights.config

o Open With...
Design in Blend...

<> \iawr Cada 7

And so Blend is a tool that is usually installed along with Visual Studio (unless you chose custom install
and de-selected it for installation). Blend was intended developers who focus on aesthetic design work.
It has many of the same features of VisualStudio. By default, on the right-hand side is the Properties
window. A Solution Explorer docked by default on the left. While things are in slightly different
positions the overall look and feel should be familiar.

There are two things that Blend does for you that you can't easily do in Visual Studio. First, is it gives
you tools to creating VisualStates in a visual manner. Second, there are tools that allow you to working
with animation, which we're not going to talk about in this series.

With the MainPage.xaml open in the main area, I'll switch to design view by clicking the tab at the very
bottom.

100% -~

XAML Design

The Objects and Timeline window is typically docked on the left-hand side. | can drill down and see the
ColorGrid and whatever is contained inside the ColorGrid, in this case, the MessageTextBlock.

Page 191 | 397

Objects and Timeline

[Page]

4 ' [Page]

= TopAppBar
= BottomAppBar
ColorGrid

[T MessageTextBlock

Next, I'll go to the States tab that's usually docked up on the upper left-hand corner. | can add a new
“state” by adding a state group, so I'll click the small button in the upper right-hand corner (see red
arrow, below). This creates a VisualStateGroup.

Base
4 \fisualStateGroup

Default transition

In the default VisualStateGroup, I'll click the small button to its right (see red arrow, below) to create a
VisualState. | will call this state “Phone”. I'll add another state called “Tablet”. And add another state
that | call “Desktop”.

States
&1 | &
Base

4 VisualStateGroup

Default transition

Phone

Page 192 | 397

And notice that whenever | select any of these, that a little red light is selected on the left-hand side,
and there are a red border all around the designer area. You might also see that Phone state recording
is on.

States MainPage xaml*

1) &l I [; 13.3" Desktop (1280 x Desktop state recording is on.

[Page] ~

Phone
Tablet
Desktop

When select the Tablet VisualState, any changes | make in the Design and Properties window will create
VisualState Setters. To create the Triggers click the lightning bolt icon to the right:

States bR EE s = (X MainPage.xaml®
&1 &

Base
4 VisualStateGroup

Default transition

Phone

Tablet

Desktop

l]

This will open a dialog that allows you to first add an AdaptiveTrigger (bottom, left), then set its
MinWindowHeight and / or MinWindowWidth.

193 | 397

StateTriggerBase Collection Editor: StateTriggers X

ltems Properties

4 Miscellaneous
MinWindowH... 0

MinWindowW... 0

Since we’re working with the Tablet state, I'll set the MinWindowWidth to 600, then click OK.
Note: The sizes I’'m choosing are arbitrary numbers. You would want to test this for your own app.

I'll repeat the steps to create an AdaptiveTrigger for the Desktop VisualState setting the
MinWindowWidth to 800.

When in Desktop mode | want the MessageTextBlock’s FontSize to be 54. | select the MessageTextBox
in the Objects and Timeline window, then in the Properties window | locate the Text section and change
the font’s size to 54.

194 | 397

I'll repeat this process for the Tablet VisualState changing the MessageTextBlock’s FontSize to 36.

Finally, I'll repeat this process for the Phone VisualState changing the MessageTextBlock’s FontSize to
16.

Running the application, you should see the TextBlock’s FontSize change as you resize the window.

If you peek at the XAML designer you can see all the XAML that was generated for you by Blend.

<Grid Name="ColorG
VisualStateManager.VisualStateGroups
VisualStateGroup x:Name=
<VisualState x:Name
<VisualState.Setters
Setter Target
VisualState.Setters
</VisualState
VisualState x:Name="
VisualState.Setters
Setter Target-

</VisualState.Setters

Or—~-——-{-[-[M-[-1

<VisualState.StateTriggers
AdaptiveTrigger MinWindowlWidth
:/VisualState.StateTriggers
VisualState
VisualState x:Name="
<VisualState.Setters>
Setter Target="
¢/VisualState.Setters
<VisualState.StateTriggers
AdaptiveTrigger MinWindowWidth-
/VisualState.StateTriggers

| prefer to just type it in myself. While Blend does create nice clean XAML, but there are some cases like
working with colors, and brushes where the generated XAML was overly verbose.

When you close down Blend, you'll return to Visual Studio and you may see that a message asking
whether you want to re-load the file because it has changed.

| want to emphasize that this lesson is a foundational concept for building real Universal Windows
Platform applications. In the next lesson we’ll use the VisualStateManager to create a more realistic app
that changes its layout based on the available screen resolution.

195 | 397

UWP-038 - Working with Adaptive Layout

In this lesson we will cover a bit on adaptive layout. This takes what was covered in the previous lesson,
talked about the nuts and bolts of actually using the Visual State Manager and AdapativeTriggers to
change attributes of objects in XAML based on screen size, to a higher level.

Adaptive layout is critical to understanding the Universal Windows Platform story, where we build one
code base and we can use it across multiple form factors. Here is a creative example that illustrates this,
found on “Wintellect's Blog” by Jeff Prosise, who wrote how 'To Build Adaptive Uls in Windows 10'.

http://bit.do/adaptive-ui

This lesson is based on Jeff’s “Contoso Cookbook” example.

French Macaroons

And here's how it

looks on my Windows phone:

French Macaroons

Here is an example for how you could construct an adaptive layout in your MainPage.xaml

Page 196 | 397

<Page
®:Class="adaptivelayoutExample.MainPage”
xmlns="htip://schemas.microsofi.com/winfx/ 2886,/ xaml/presentation”
¥mlns:x="http://schemas.microsoft.com/winfx/ 2866/ xaml"”
*mlns:local="using:AdaptivelayoutExamplie”
xmlns:d="http://schemas.microsoft.com/expression/blend/2868"
*mlns:mc="http://schemas.openxml formats.org/markup-compatibility/2086"
mc:Ignorable="d">

¢1__ Huge props to Jeff Prosise at Wintellect for this technigue
httn:ijww.wintellect.cugﬂ

-3

<Grid Mame="LayocutRoot" Background="{ThemeResource ApplicationPageBackgroundThemeBrush}™»
<WisualStateManager.visualstatearoups>
<WisualsStategroup x:Name="VisualStatecroup”>
<VisualsState x:Name="Wide":

<VisualState.StateTriggers>
<AdaptiveTrigger MinWindowwidth="g8a" /»

</visualstate.stateTriggers>

<Wisualstate.setters> ‘
«Setter Target="First.(Grid.Row}™ value="@" />
<setter Target="First.(Grid.Column}” Value="8" />
«setter Target="Second.{Grid.Row)" Valus="8" />
<Setter Target="sSecond.{Grid.Column}” value="1" f»
<setter Target="Third.(Grid.Row}™ value="@" />
<setter Target="Third.(Grid.Column}" value="2" />

<setter Target="First.{Grid.Coclumnspan}” Value="1" /»
<Setter Target="Second.{Grid.Columnspan}™ value="1" />
<setter Target="Third.(arid.Coclumnspan}” Value="1" />

<fvisualstate.Setters>

<fVisualState>
[<Visualstate w:Name="Harrow > |

<V¥isuglstate.StateTriggers:
<adaptiveTrigger MinWindowWwidth="8" />

</Visualstate.stateTriggers>»

<Visualstate.setters> ‘
csetter Target="First.{Grid.Row)" value="a" />
<Setter Target="First.{Grid.cColumn}™ VYalue="8" />
<Setter Target="sSecond.{Grid.Row)" Value="1" />
<Setter Target="Second.{Grid.Column)” value="8" [f»
<setter Target="Third.{Grid.Row)" value="2" [>
<Setter Target="Third.(&Grid.Column}"™ Value="8" />

<Setter Target="First.(Grid.ColumnSpan)” Value="3" />
<Setter Target="Seccnd.{Grid.ColumnSpan}™ value="3" />
«Setter Target="Third. (Grid.ColumnSpan}™ Value="3" />
<fVisualstate.Setters:
<MNisualState>
</VisualstateGroup>
</visualstateManager.VisualstateGroups>

Notice the different VisualState settings for either a Wide or a Narrow layout. And below all of that is a
series of StackPanels

Page 197 | 397

<Grid.RowDefinitions>
<RowDefinition Heipht="aAuto™/>
<RowDefinition Height="*"/>
</arid.Rowdefinitions>
<Scrollviewer Grid.Row="1"3
<Grid>
<arid.RowDetinitions»
<RowDefinition />
<Rowlefinition />
<RowDefinition /»
</farid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"/>
<ColumnDefinition Width="+*"/>
<ColumnDefinition Width="*"/>

<ferid.columnbefinitions:

<stackPanel Mame="First™ Margin="28,28,8,8">

<fStackPanel»

<TextBlock TextwWrapping="Wrap">
Lorem ipsum dolor...
<f/TextBlock>
</StackPanel>

<TextBlock TextwWrapping="Wrap":>
Nam sollicitudin justo ..
</TextBlock:>
</StackPanel>

<Image Source="Assets/Tibbles.jpe” Horizomtalalignment="Left" /3
<TextBlock>Information on my cat, Mr. Tibbles</TextBlock:

<StackPanel Name="Second” Grid.Row="1" Margin="26,28,8,8">

<StackPanel MName="Third™ Grid.Row="2" Margin="28,20,8,8"

</arid>
</scrollviewer:
<jarid>
< /Page>

You can see how the image and text is organized within the StackPanels, forming 3 distinct sections
(labeled accordingly), and when you run it in a wide viewport it would appear something like this

AdaptvelayoutExample

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Cras id orci
iaculis, aliquet nibh at, dictum lorem.
Vivamus tempus tnstique sollicitudin.
Etiam interdum et lectus semper
molestie. Phasellus lobortis felis quis
risus posuere, id molestie mi sagittis.
Cras odio leo, dictum vitae euismod et,
lacinia non lectus. Integer quis massa

f

This is some information about Mr, Tibb

= | X

Nam sollicitudin justo quis consequat
molestie. Etiam dictum sodales tellus,
ut consectetur magna sodales in.
Phasellus viverra volutpat porttitor.
Pellentesque sed condimentum neque
In ultrices ex ac lacus tincidunt, eget
euismod uma cursus, Donec tempor
mauris leo, ac cursus nisl tempus a.
Aliquam dignissim eleifend lorem a

Page 198 | 397

However, when the viewport dramatically narrows (such as on a Phone) it stacks the columns on top of
each other, rendering a result that looks something like this

This is some information about Mr Tibbles:

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Cras id orci iaculis, aliquet
nibh at, dictum lorem. Vivamus tempus
tristique sollicitudin. Etiam interdum et lect
semper molestie. Phasellus lobortis felis qu

Now, this switching between visual states is done up near the top of the code, within the
VisualStateManager

<VisualStateGroup x:Name="VisualStateGroup">
<VisualState x:Name="Wide">

<VisualState.StateTriggers>
<AdaptiveTrigger MinWindowwidth="8@0" />

</VisualState.StateTriggers>

<VisualState.Setters>
<Setter Target="First.(Grid.Row)" Value="0" />
<Setter Target-"Firii.(Grid.Column)" Value="@" />
<Setter Target="Second.(Grid.Row)" Value="@" />
<Setter Target="Second.(Grid.Column)" Value="1" />
<Setter Target="Third.(Grid.Row)" Value="@" />
<Setter Target="Third.(Grid.Column)" Value="2" />

So, in the wide states, it takes constructs the StackPanel (here labeled, “First,” “Second,” “Third”) with
the row/column arrangement you would expect to find in a wide viewport. And, the column span is also
set accordingly below that

<Setter Target="First.(Grid.ColumnSpan)" valus="1" />
<Setter Target="Second.(6rid.CclumnSpan)” value="1" />
<Setter Target="Third.(Grid.ColumnSpan)" value="1" />

And, of course you can understand the narrow state using much the same kind of reasoning

So, essentially the different visual states activate depending on if the width of the device (or the size of
the window on the device) is either less than 800 pixels (the narrow state), or greater than 800 pixels
(the wide state)

Page 199 | 397

<Visualstate x:rta.mva:“Nar'r*ovd"} ‘

<VisualState.StateTriggers>
cAdaptiveTrigger MinWindowkidth="@" /»

eVisualState x:Namen"pWide" >
¢Wisualstate.StateTriggerss

chdaptiveTrigger MinWindowwidth="gea" (>

So, what this demonstrates it that you have the tools to make your application change layout based on
the break points you set, and you get to decide how those layout changes need to happen. It's all up to
you. So, you will want to choose carefully, and test, thinking each step of the way what would make
sense on the phone versus sitting on the couch, scrolling through and working with a larger application.
Consider how the layout changes, as well as how the user expects to interact with the Ul depending on
these different contexts.

Page 200 | 397

UWP-039 - Adaptive Layout with Device Specific Views

Having now looked at how to use AdaptiveTriggers, and the VisualStateManager, to change the layout of
your application based on the current window size, let’s now take a look at a second technique that
allows you to create a dedicated view for a given device family that your application could potentially
run on.

This would work by identifying the device that your app is running on, and then triggering a dedicated
view, or what’s called the "DeviceSpecificView.” It's a very simple technique that Microsoft has made
extremely easy to use, however there are a few advanced techniques which you will see in a great
article that will be presented to you later. But, first, here is a demo of this technique in action.

Below is an example app running as an ordinary Windows app

DeviceSpeaficViewsExample

And, then running on Windows Phone (via the Visual Studio emulator)

On the phone you can see a dramatically different background and font shows up. Also, notice that the
wording is changed to reflect the platform the app is running on.

Let’s go through the steps detailing how you could get this kind of result (bear in mind, this is the
simplest possible way of doing this in order to just show the technique used. You can take this as far as
you want)

Within your project you would create 2 separate folders for the Desktop/Mobile settings, respectively.
Notice how each folder has its own MainPage.xaml

Page 201|397

R Sokstion ‘DeviceSpedificViewsExample' {1 project)

4 [DeviceSpecificViewsExample (Universal Windows)
b M Properties
b =8 References
b Assets

-

- DaviceFamily-Desktop
b D) MainPagexaml

4 DeviceFamiy-Maobie
b) MainPagexaml

And in each folder’s MainPage.xaml are the specific settings for each intended device

[=<Page

x:Class="DeviceSpecificViewsExample.DeviceFamily Desktop.MainPage"
xmlns="http://schemas.microsoft.com/winfx/20@6/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:DeviceSpecificViewsExample.DeviceFamily_Desktop"
xmlns:d="http://schemas.microsoft.com/expression/blend/26e8"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

= <Grid Background="Blue">

<TextBlock Text="Hello Desktop DeviceSpecificview" FontSize="36" />
</Gr~id) ke ______________________________]

| </Page>

[=<Page

x:Class="DeviceSpecificViewsExample.DeviceFamily Mobile.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:DeviceSpecificViewsExample.DeviceFamily_ Mobile"
xmlns:d="http://schemas.microsoft.com/expression/blend/2668"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/26e6"
mc:Ignorable="d">

= <Grid Background="Red">

<TextBlock Text="Hello Mobile DeviceSpecificview" FontSize="18" />
(/Gl‘id) o R R ———————=_ =]

| </Page>

It may immediately strike you that this is a much cleaner, simpler solution to adaptive layout than using
the VisualStateManager in the previous lesson. That is definitely one of the benefits of using this
approach. However, you may still want to use a VisualStateManager or AdaptiveTriggers for your
application because there are different screen resolutions, even within the context of these different
device families.

For more information on these techniques, including advanced uses, refer to this helpful resource

http://bit.do/device-specific-views

Page 202 | 397

