APPLICATION PROGRAMMING: MOBILE COMPUTING [INEA00112W]

Marek Piasecki PhD

Wireless Telecommunication (W6/2013)

Choose yourself and new technologies

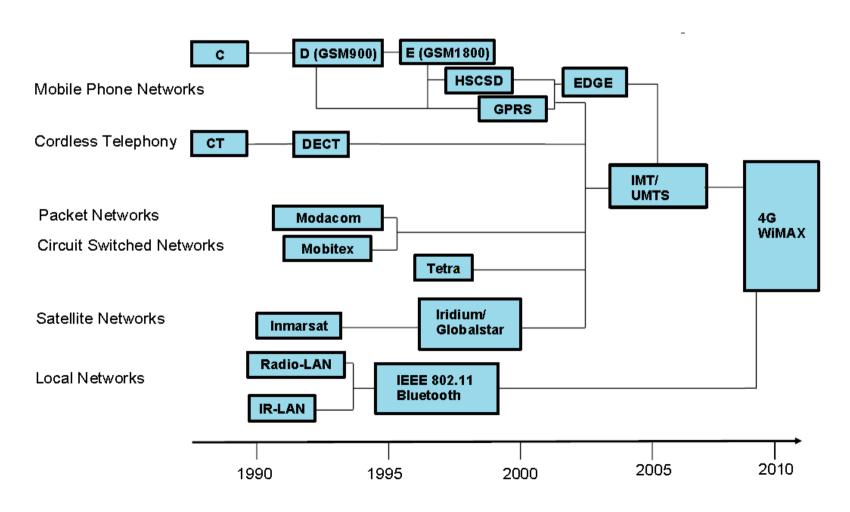
What is Wireless Communication?

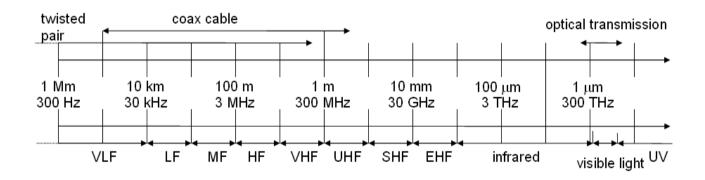
Transmitting/receiving voice and data using electromagnetic waves in open space

Types of Wireless Communication:

- ightharpoonup Mobile ightarrow e.g. mobile phone
- \triangleright Portable \rightarrow e.g. wireless interaction between laptop and printer
- ightharpoonup Fixed ightharpoonup e.g. Metropolitan Area Network

Milestones – a little of history

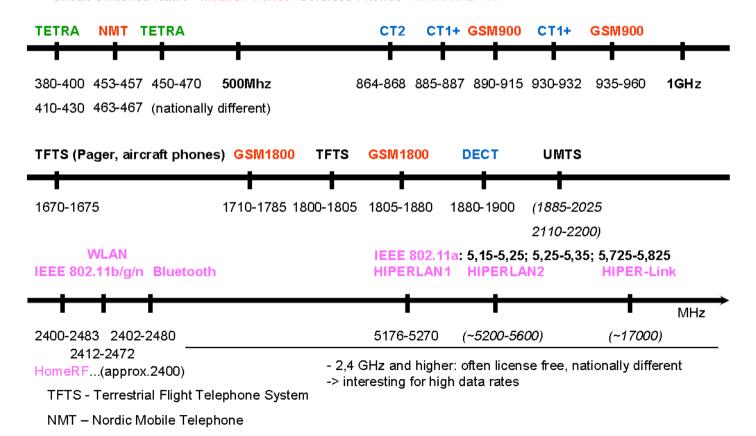

- 1895 → Guglielmo Marconi first demonstration of wireless telegraphy (digital!)
- 1928 \rightarrow TV broadcast trials
- 1973 → Martin Cooper, Motorola, develops first handheld cellular phone
- 1984 → CT-1 standard (Europe) for cordless telephones
- 1991 → Specification of DECT (Digital European Cordless Telephone) 1880-1900MHz
- 1992 → GSM, 900MHz, cellular roaming in Europe, data 9.6kbit/s, FAX, voice,
- 1997 → Wireless LAN IEEE802.11
- 2000 \rightarrow GPRS, WAP, MMS (2.5G)
- 2001 \rightarrow UMTS/CDMA2000 (3G)
- 2006 \rightarrow WiMAX (~4G)
- 2009 \rightarrow LTE (4G)
- $\dots \rightarrow \dots$?

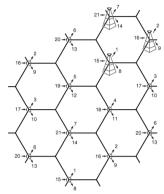


Wireless Evolution Tree

Frequencies for Communication

- > VHF/UHF (Very High Frequency/Ultra High Frequency)
 - \rightarrow ranges for mobile radio
- SHF (SHF = Super High Frequency) and higher
 → for directed radio links, satellite communication
- Wireless LANs use frequencies in UHF to SHF spectrum




Master programmes in English at Wrocław University of Technology

Radio Frequency Assignment

Circuit Switched Radio Mobile Phones Cordless Phones Wireless LANs

Cellular Networks

- Well known from mobile networks (GSM, UMTS)
- ➢ Base station (BS) covers at least one cell, a combination of multiple cells is also called a cellular structure
- Provides different kinds of handovers between cells
- > Higher capacity and better coverage than non-cellular networks
- Medium Access
 - controls user access to medium
 - implemented by combining and exploiting multiplex methods

Media Access Methods

(SDMA/FDMA/TDMA)

- > SDMA (Space Division Multiple Access)
 - divide segment space into sectors, use directed antennas,
 - cell structure.
- **FDMA** (Frequency Division Multiple Access)
 - Assign a certain frequency to a transmission channel between a sender and a receiver
 - permanent (e.g., radio broadcast), slow hopping (e.g., GSM), fast hopping (FHSS, Frequency Hopping Spread Spectrum)
- > TDMA (Time Division Multiple Access)
 - assign the fixed sending frequency to a transmission channel between a sender and a receiver for a certain amount of time
- Combination: FDMA and TDMA, for instance in GSM
 - GSM uses combination of FDMA and TDMA for better use of narrow resources

Media Access Methods (2) (CDMA/MACA)

CDMA (Code Division Multiple Access):

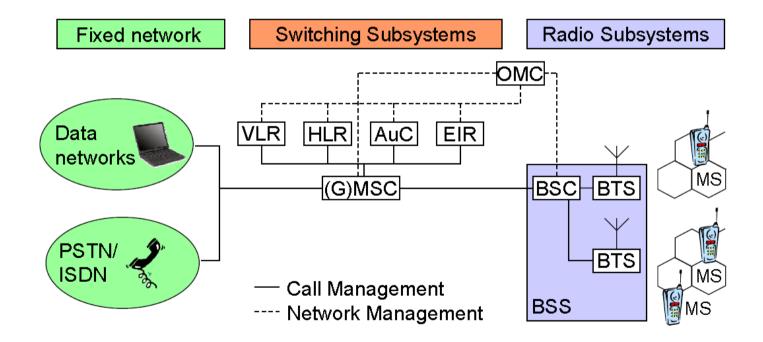
- definite Codes are assigned to transmission channels (these can be on the same Frequency for the same Time)
- uses cost-efficient VLSI components
- high security level using spread spectrum techniques
- exact synchronization is required, code of transmitting station must be known to receiving station, noise should not be very high

MACA (Multiple Access with Collision Avoidance):

- uses short signaling packets for collision avoidance
- > RTS (request to send): a sender requests the right to send from a receiver with a short RTS packet before it sends a data packet
- > CTS (clear to send): the receiver grants the right to send as soon as it is ready to receive
- Signaling packets contain
 - sender address
 - receiver address
 - packet size

GSM

(Global System for Mobile Communications)


- Formerly: Groupe Speciale Mobile (founded 1982)
- Now: Global System for Mobile Communication
- Mobile wireless communication, support for voice and data services (SMS, dial-up Internet)
- Pan-European standard (ETSI, European Telecommunications Standardisation Institute)
- > Introduction of services in three phases (1991, 1994, 1996)
- International access, chip-card enables use of access points of different providers
- Security access control authentication via chip-card and PIN

GSM structure

GSM Data Transmission

- Each GSM-channel configurable as data channel like ISDN
- > Data transmission standardized with only 9.6 kbit/s
 - advanced coding allows 14,4 kbit/s
 - not enough for Internet and multimedia applications
- > Speech channels have higher priority than data channels
- SMS (Short-Message-Service) connectionless transmission (160 Byte) on signaling channel
- CB (Cell Broadcast) connectionless transmission (up to 80 Byte) on signaling channel to all participants in one cell

Short Messaging Service

- ➤ Short Messaging Service (SMS) provides a mechanism in GSM for transmitting short messages to and from mobile devices.
- ➤ SMS uses a Short Messaging Service Center (SMSC) to store and forward short messages.
- Some of the benefits of SMS:
 - Asynchronous connectionless message transmission
 - Alert / Notification
 - Support for diverse information such as news, sport, etc
 - Delivery of messages to multiple subscribers

GSM Security Aspects

- > Access control/authentication
 - user → SIM (Subscriber Identity Module): secret PIN (personal identification number)
 - SIM → network: challenge response method
- Session key generation: Algorithm A8
 - Stored on SIM and in AuC
 - can be determined by network operator
- > Anonymity
 - temporary identity TMSI (Temporary Mobile Subscriber Identity)
 - newly assigned at each new location update (LUP)
- > Data encryption with algorithm A5:
 - stored in the Mobile Station
 - standardized in Europe and world wide
 - enhancement: A5/3 and 128 Bit key length

Mobility Management

- ➤ Mobility management is concerned with:
 - handling connection handoffs
 - tracking mobile devices
 - registering appropriate information in network databases
- > Connection Handoff can be done between:
 - channels in the same cell
 - channels in different cells under the same BSS
 - cells under the coverage of different BSSs
 - cells under the coverage of different MSC

GSM - Supplementary Services

- Services in addition to the basic services, cannot be offered stand-alone
- Similar to ISDN services besides lower bandwidth due to the radio link
- May differ between different service providers, countries and protocol versions
- Important services
 - identification: forwarding of caller number
 - suppression of number forwarding
 - automatic call-back
 - conferencing with up to 7 participants
 - locking of the mobile terminal (incoming or outgoing calls)

HSCSD

(High Speed Circuit Switched Data)

- ➤ GSM extension for higher data rates (evolutionary migration from 2G to 3G → backward compatibility)
- Parallel usage of several time slots limited to one frequency
- Channel bundling with asymmetric transmission (1TS Uplink / 3TS or 4 TS Downlink)
- Data rates up to 4 * 14,4 kbit/s = 57,6 kbit/s (theoretically)
- Existing network structure and accounting model maintained, only small changes necessary
- Limited international acceptance (Roaming)

GPRS

(General Packet Radio Service)

- ➤ GSM extension based on packet switching service and channel bundling based on multiple (1÷8) GSM time slots
- ➤ Data rates up to 171,2 kbit/s (theoretical, in practice ≈ HSCSD)
- Dynamic sharing of resources with GSM speech services
- > Advantages:
 - billing and accounting according to data volume,
 - "always on" data service (Internet, email, etc.)
 - more suitable carrier for services like WAP
- Disadvantage: more investment needed

EDGE

(Enhanced Data rates for GSM Evolution)

- New air interface to enable 3G data rates
 - Edge uses 8-PSK within the existing GSM slot structure.
 - Each GSM slot has a maximum data rate of 59 kbps
 - This is more than three times the maximum of GPRS
- Obtaining these data rates depends on the quality of the signal between the base station and the mobile device
- Thus to achieve the above mentioned data rates a higher concentration of base stations are needed to ensure signal quality (only urban or suburban areas)

3G

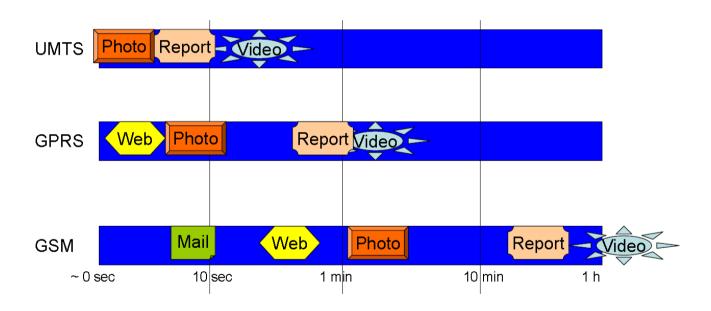
(third generation cellular networks)

- > The goal of 3G is to provide higher data rates than existing 2G system
- ➤ 3G Partnership Project (3GPP) was formed to coordinate the specification of the 3G standard:
 - European Telecommunication Standard Institute
 - Telecommunication Technology Committee (Japan)
 - T1 (Standardisation Telecommunications Committee) US
 - Standardisation organisation from Korea and China
- ➤ In Europe UMTS (Universal Mobile Telecommunications System) implementation of IMT (International Mobile Telecommunications) by ETSI (European Telecommunication Standards Institute)
- Known as IMT2000 in Japan and US

UMTS

(Universal Mobile Telecommunications System)

- ➤ Voice traffic expected to decline with increased use of data Internet based applications.
- ➤ UMTS provides relatively high data rates:
 - 144 kbit/s mobile (rural outdoor),
 - up to 2 Mbit/s in local area (urban indoor)
- ightharpoonup Data traffic is typically asymmetric ightharpoonup UMTS provides asymmetrical data rates on up-/downlink, use of CDMA
- integration of different mobile radio communications, wireless and pager-systems into one common system
- information services independent of network access
- Roaming between UMTS, GSM/GPRS and satellite networks



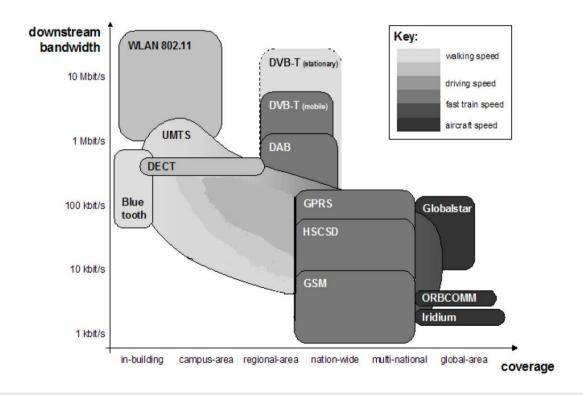
UMTS – Performance

(compared with GSM/GPRS)

High-performance is usually limited to urban areas, otherwise GPRS has to be used

HSDPA

(High-speed Downlink Packet Access)


- extension of UMTS
- Data rates up to 14,4 Mbit/s (10,8 Mbit/s with errorcorrection encoding) on downlink channel
- Combination of channel bundling (TDMA), wideband code multiplex (W-CDMA) and improved coding (adaptive modulation and coding with advanced scheduling)
- Separate control channel
- Basis for mobile internet and mobile multimedia applications (videophone, movies, games etc.)

Comparison of wireless/tele communication technologies

