

Windows Phone 8.1 Development for Absolute Beginners – Page 88

Lesson 9: Exercise: Tip Calculator

In this lesson we’ll build our first complete app, a Tip Calculator. It will help solve one of the

fundamental problems that I have whenever I'm out to a restaurant, and I'm trying to figure out

how much to tip the waitress based on the service. Usually, I'm a pretty generous tipper.

However, for the sake of this app that we're going to build, we're going to give three options to

help calculate either 10% for mediocre service, 18% for good service, or 25% for exceptional

service. You could expand this out for any type of simple calculation.

To begin, we’ll create a new (1) Blank App project (2) named TipCalculator. I’ll (3) click the OK

button to create the project:

I’ll begin by creating a number of RowDefinitions in the default Grid on the

MainPage.xaml:

<Page

 x:Class="TipCalculator.MainPage"

 . . .

 >

Windows Phone 8.1 Development for Absolute Beginners – Page 89

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="50" />

 <RowDefinition Height="100" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

I’ll use the top two rows for the app name and instructions using two TextBlocks like so:

 <TextBlock Margin="20, 0, 20, 0"

 Grid.Row="0"

 Style="{StaticResource TitleTextBlockStyle}">

 Tip Calculator

 </TextBlock>

 <TextBlock Margin="20, 0, 20, 0"

 Grid.Row="1"

 Style="{StaticResource TitleTextBlockStyle}"

 FontSize="48">

 Enter the Bill Amount

 </TextBlock>

Next, I’ll add a StackPanel and it will comprise the third row which uses star sizing to

take up the remainder of the height remaining. I’ll add the controls needed for this app to this

StackPanel. In fact, I’ll begin by adding a TextBlock that will serve as a label for the TextBox

control beneath it:

 <StackPanel Name="myStackPanel" Grid.Row="2" Margin="20, 0, 20, 0">

 <TextBlock HorizontalAlignment="Left"

 TextWrapping="Wrap"

 Text="Bill Amount"

 FontSize="24"/>

 <TextBox Name="billAmountTextBox"

 Text="$0.00"

 TextAlignment="Right"

 HorizontalAlignment="Left"

Windows Phone 8.1 Development for Absolute Beginners – Page 90

 TextWrapping="Wrap"

 VerticalAlignment="Top"

 InputScope="Number"

 Width="100"

 FontSize="24"

 LostFocus="amountTextBox_LostFocus"

 TextChanged="billAmountTextBox_TextChanged"

 GotFocus="amountTextBox_GotFocus" />

 </StackPanel>

The billAmountTextBox allows the user to type in the amount printed on the receipt.

Obviously, this will be a large part of the calculation for the tip.

Next, I’ll add a TextBlock (again, used as a label) and a series of RadioButtons to allow the user

to choose the percentage to tip based on the quality of the service:

 <TextBlock HorizontalAlignment="Left"

 TextWrapping="Wrap"

 Text="Percent To Tip:"

 VerticalAlignment="Top"

 FontSize="24"

 Margin="0,20,0,0"/>

 <RadioButton Content="10% - Horrible Service"

 Tag="0.1"

 GroupName="percentRadio"

 Click="RadioButton_Click" />

 <RadioButton Content="18% - Acceptable Service"

 Tag="0.18"

 GroupName="percentRadio"

 IsChecked="True"

 Click="RadioButton_Click" />

 <RadioButton Content="25% - Great Service"

 Tag="0.25"

 GroupName="percentRadio"

 Click="RadioButton_Click" />

Windows Phone 8.1 Development for Absolute Beginners – Page 91

Notice that I'm using the Tag property in each RadioButton. The Tag property is a holdover from

many years ago. It allows you to add anything you want. What I've used it for, in this particular

case, is the actual percentage amount that will be used for the calculation. Instead of having to

do some switch statement determine the percentage, I just input the actual percentage inside

of the Tag, so when a radio button is selected, I can programmatically retrieve the Tag, convert

it to a decimal and then use that in my calculation for the percentage ticked.

 .1 for 10%

 .18 for 18%

 .25 for 25%

Next, I’ll display the calculated tip amount. The first TextBlock is just the label

describing the purpose for the next TextBlock which actually will display the tip amount:

 <TextBlock HorizontalAlignment="Left"

 TextWrapping="Wrap"

 Text="Amount to Tip:"

 FontSize="24"

 Margin="0,20,0,0"

 />

 <TextBlock Name="amountToTipTextBlock"

 HorizontalAlignment="Left"

 TextWrapping="Wrap"

 VerticalAlignment="Top"

 Text="$0.00"

 FontSize="36"

 />

Finally, I’ll display the total amount of the bill which includes the pre-tip amount along with the

tip. This will be the amount charged to my credit card:

 <TextBlock HorizontalAlignment="Left"

 TextWrapping="Wrap"

 VerticalAlignment="Top"

 Text="Total Bill:"

Windows Phone 8.1 Development for Absolute Beginners – Page 92

 FontSize="24"

 Margin="0,20,0,0"

 />

 <TextBlock x:Name="totalTextBlock"

 HorizontalAlignment="Left"

 TextWrapping="Wrap"

 VerticalAlignment="Top"

 Text="$0.00"

 FontSize="36"

 />

The billAmountTextBox (as well as the RadioButton controls) have a number of events

that we’ll want to handle for various purposes. For example, when the user taps the

billAmountTextBox to enter an amount, we will want to clear the text and allow them to type in

what they want. When the user is typing or editing the number, we want to perform the

calculation instantly. When they move their mouse cursor out of the billAmountTextBox, we

want to nicely format the number they typed as dollars and cents with a dollar sign symbol.

To set this up, I’ll put my mouse cursor in each of the event handler names I created and

will right-click and select “Go To Definition”. Alternatively, I’ll put my mouse cursor in each

event handle name and select F12 on the keyboard to perform the same operation:

Windows Phone 8.1 Development for Absolute Beginners – Page 93

The result is a series of stubbed out event handler methods in the MainPage.xaml.cs:

Windows Phone 8.1 Development for Absolute Beginners – Page 94

Now I need to perform the calculation of the tip and the other amounts, and format

them for display. I could go about this in many different ways. I could just create all the code

right here in my MainPage.xaml.cs, but I have larger aspirations for this app. Sure, some people

might be using it on their phone, but some people might have their Microsoft Surface or other

Windows 8 tablet with them while they're out to eat. They may want to use the app in that

context instead. In the next lesson, we'll create a Universal app version of the Tip Calculator to

build both the phone version of the app, and a Windows store version of the app for use on

Windows tablets or on desktop.

With that in mind, I'm going to add a class that will know how to calculate the tip and

format the results as dollar values. This will make it easier for me in the future keeping all of

the important stuff, like the calculations and the data members, isolated into their own class.

I’ll (1) right-click the project name in the Solution Explorer, (2) select Add from the context

menu, and (3) select Class … from the sub menu:

In the Add New Item dialog, (1) I’ll make sure Class is selected, (2) I’ll rename the file:

Tip.cs, and (3) click the Add button:

Windows Phone 8.1 Development for Absolute Beginners – Page 95

I’ll add the following code to the Tip class. First, note that I change this to a public class.

Second, I create three auto-implemented properties, BillAmount, TipAmount and TotalAmount:

namespace TipCalculator

{

 public class Tip

 {

 public string BillAmount { get; set; }

 public string TipAmount { get; set; }

 public string TotalAmount { get; set; }

You might be wondering why I am using strings instead of double or decimal. The reason is

because I want to format these and make them publicly available, so I can more easily associate

the values, and not have to do the conversion of the values inside of the MainPage.xaml.cs file.

I want to just reference the BillAmount property, and automatically assign its formatted text

value to the TextBox. By keeping that formatting inside of my tip class, it will make it more

Windows Phone 8.1 Development for Absolute Beginners – Page 96

easily reusable for the Universal app for Windows 8 or for my phone. At least, that's my

thought process.

Next, we'll create a constructor. Inside of this constructor, I'll initialize each of the properties to

String.Empty.

 public Tip()

 {

 this.BillAmount = String.Empty;

 this.TipAmount = String.Empty;

 this.TotalAmount = String.Empty;

 }

Next, I’ll create a method that will actually calculate the tip:

 public void CalculateTip(string originalAmount, double tipPercentage)

 {

 double billAmount = 0.0;

 double tipAmount = 0.0;

 double totalAmount = 0.0;

 if (double.TryParse(originalAmount.Replace('$', ' '), out billAmount))

 {

 tipAmount = billAmount * tipPercentage;

 totalAmount = billAmount + tipAmount;

 }

 this.BillAmount = String.Format("{0:C}", billAmount);

 this.TipAmount = String.Format("{0:C}", tipAmount);

 this.TotalAmount = String.Format("{0:C}", totalAmount);

 }

 }

}

Frankly, this is a very simple method. I accept the original bill amount as well as the tip

percentage as input parameters. Next, since the original bill amount is typed in as a string, I’ll

do some minor checking to ensure that the string can be converted to a double. I’ll remove the

dollar sign to help ensure the success of the double.TryParse() method. TryParse() will return

true if the value can successfully be turned into a double, false if it cannot (i.e., the user typed

Windows Phone 8.1 Development for Absolute Beginners – Page 97

in non-numeric values). Furthermore, it will return the parsed value as an out parameter called

billAmount. We talked about out parameters, as well as other TryParse() style methods in the

C# Fundamentals for Absolute Beginners series so please review if you’ve forgotten how this

works.

Assuming the original bill amount can be parsed into a double, we perform the

calculation for tip and for the total bill amount. Lastly, we format each of those values and set

the public auto-implemented properties so that we can access from from our MainPage.xaml.cs

file.

Now that we’ve implemented our business rules in the Tip.cs class, we’ll utilize its

properties and methods back in our MainPage.xaml.cs file. (1) I’ll create a private field to hold

on to a reference to our Tip class, and (2) in the MainPage() constructor, I’ll create a new

instance of Tip and set it to the private field tip:

Since there are several event handler methods from which we’ll want to call the Tip’s

CalculateTip method, I’ll implement that call in a private helper method called

performCalculation():

 private void performCalculation()

 {

 var selectedRadio = myStackPanel.Children.OfType<RadioButton>().FirstOrDefault(r =>

r.IsChecked == true);

Windows Phone 8.1 Development for Absolute Beginners – Page 98

 tip.CalculateTip(billAmountTextBox.Text, double.Parse(selectedRadio.Tag.ToString()));

 amountToTipTextBlock.Text = tip.TipAmount;

 totalTextBlock.Text = tip.TotalAmount;

 }

The performCalculation first determines which RadioButton was checked by using a

clever LINQ statement. Here, we look at all children objects of the myStackPanel. Then, we

narrow it down to just those who are of type RadioButton. Finally, we look for the first

RadioButton whose IsChecked property is set to true. I like this instead of using a long switch

statement that would require me to add code each time a new RadioButton is added to the

StackPanel.

Once I know which RadioButton was selected, I’m ready to call the Tip’s CalculateTip()

method. I send in the billAmountTextBox.Text and then use the Tag property of the selected

RadioButton as the tip percentage. Since the Tag property is of type string, we’ll have to call

double.Parse() to pass it to CalculateTip() correctly as a double.

Now, we can use performCalculation() in the two places where I anticipate it will be

useful, namely, as the user is typing in a new bill amount number

(billAmountTextBox_TextChanged) and when a different RadioButton is selected

(RadioButton_Click):

 private void billAmountTextBox_TextChanged(object sender, TextChangedEventArgs e)

 {

 performCalculation();

 }

 private void RadioButton_Click(object sender, RoutedEventArgs e)

 {

 performCalculation();

 }

At this point, when testing the app, it works correct, but there are a few inconveniences.

Ideally when I tap the Bill Amount TextBox to edit the value, it would remove the number and

not require I use the delete button to remove the existing value before typing in a new one:

Windows Phone 8.1 Development for Absolute Beginners – Page 99

Also, I would like for the new value to be formatted as dollars and cents correctly when I

am finished typing it in the Bill Amount TextBox:

Windows Phone 8.1 Development for Absolute Beginners – Page 100

To accommodate these desired features, I’ll first clear out the bill amount TextBox when

it gets focus like so:

 private void amountTextBox_GotFocus(object sender, RoutedEventArgs e)

 {

 billAmountTextBox.Text = "";

 }

Now, when I tap in the TextBox, the previous value is cleared out. Perfect!

Windows Phone 8.1 Development for Absolute Beginners – Page 101

To accommodate the desire for the value to be properly formatted when the user exits

the bill amount TextBox, I’ll retrieve the BillAmount property counting on the fact that this

property is properly formatted from calls to the Tip class’ CalculateTip() method:

 private void amountTextBox_LostFocus(object sender, RoutedEventArgs e)

 {

 billAmountTextBox.Text = tip.BillAmount;

 }

Now, when I leave the bill amount TextBox, the value I typed will be nicely formatted as dollars

and cents:

Windows Phone 8.1 Development for Absolute Beginners – Page 102

Admittedly, if this were a complete app, I would want to add custom tiles, a splash screen, etc.

We’ll do that when we build our next app several lessons from now.

In the next lesson, we'll rebuild this app as a Universal app that can be submitted to both the

Phone and Windows 8 stores.

