
MP
Linia

Welcome	to	Swift

About	Swift

Swift	is	a	fantastic	way	to	write	software,	whether	it’s	for	phones,	desktops,
servers,	or	anything	else	that	runs	code.	It’s	a	safe,	fast,	and	interactive
programming	language	that	combines	the	best	in	modern	language	thinking	with
wisdom	from	the	wider	Apple	engineering	culture	and	the	diverse	contributions
from	its	open-source	community.	The	compiler	is	optimized	for	performance	and
the	language	is	optimized	for	development,	without	compromising	on	either.

Swift	is	friendly	to	new	programmers.	It’s	an	industrial-quality	programming
language	that’s	as	expressive	and	enjoyable	as	a	scripting	language.	Writing
Swift	code	in	a	playground	lets	you	experiment	with	code	and	see	the	results
immediately,	without	the	overhead	of	building	and	running	an	app.

Swift	defines	away	large	classes	of	common	programming	errors	by	adopting
modern	programming	patterns:

Variables	are	always	initialized	before	use.

Array	indices	are	checked	for	out-of-bounds	errors.

Integers	are	checked	for	overflow.

Optionals	ensure	that	nil	values	are	handled	explicitly.

Memory	is	managed	automatically.

Error	handling	allows	controlled	recovery	from	unexpected	failures.

Swift	code	is	compiled	and	optimized	to	get	the	most	out	of	modern	hardware.
The	syntax	and	standard	library	have	been	designed	based	on	the	guiding
principle	that	the	obvious	way	to	write	your	code	should	also	perform	the	best.
Its	combination	of	safety	and	speed	make	Swift	an	excellent	choice	for
everything	from	“Hello,	world!”	to	an	entire	operating	system.

Swift	combines	powerful	type	inference	and	pattern	matching	with	a	modern,
lightweight	syntax,	allowing	complex	ideas	to	be	expressed	in	a	clear	and

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

concise	manner.	As	a	result,	code	is	not	just	easier	to	write,	but	easier	to	read	and
maintain	as	well.

Swift	has	been	years	in	the	making,	and	it	continues	to	evolve	with	new	features
and	capabilities.	Our	goals	for	Swift	are	ambitious.	We	can’t	wait	to	see	what
you	create	with	it.

Version	Compatibility

This	book	describes	Swift	5.1,	the	default	version	of	Swift	that’s	included	in
Xcode	11.	You	can	use	Xcode	11	to	build	targets	that	are	written	in	either	Swift
5.1,	Swift	4.2,	or	Swift	4.

When	you	use	Xcode	11	to	build	Swift	4	and	Swift	4.2	code,	most	Swift	5.1
functionality	is	available.	That	said,	the	following	changes	are	available	only	to
code	that	uses	Swift	5.1	or	later:

Functions	that	return	an	opaque	type	require	the	Swift	5.1	runtime.

The	try?	expression	doesn’t	introduce	an	extra	level	of	optionality	to
expressions	that	already	return	optionals.

Large	integer	literal	initialization	expressions	are	inferred	to	be	of	the
correct	integer	type.	For	example,	UInt64(0xffff_ffff_ffff_ffff)
evaluates	to	the	correct	value	rather	than	overflowing.

A	target	written	in	Swift	5.1	can	depend	on	a	target	that’s	written	in	Swift	4.2	or
Swift	4,	and	vice	versa.	This	means,	if	you	have	a	large	project	that’s	divided
into	multiple	frameworks,	you	can	migrate	your	code	from	Swift	4	to	Swift	5.1
one	framework	at	a	time.

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

A	Swift	Tour

Tradition	suggests	that	the	first	program	in	a	new	language	should	print	the
words	“Hello,	world!”	on	the	screen.	In	Swift,	this	can	be	done	in	a	single	line:

1 print("Hello,	world!")

2 //	Prints	"Hello,	world!"

If	you	have	written	code	in	C	or	Objective-C,	this	syntax	looks	familiar	to	you—
in	Swift,	this	line	of	code	is	a	complete	program.	You	don’t	need	to	import	a
separate	library	for	functionality	like	input/output	or	string	handling.	Code
written	at	global	scope	is	used	as	the	entry	point	for	the	program,	so	you	don’t
need	a	main()	function.	You	also	don’t	need	to	write	semicolons	at	the	end	of
every	statement.

This	tour	gives	you	enough	information	to	start	writing	code	in	Swift	by
showing	you	how	to	accomplish	a	variety	of	programming	tasks.	Don’t	worry	if
you	don’t	understand	something—everything	introduced	in	this	tour	is	explained
in	detail	in	the	rest	of	this	book.

NOTE

On	a	Mac	with	Xcode	installed,	or	on	an	iPad	with	Swift	Playgrounds,	you	can	open	this	chapter	as	a
playground.	Playgrounds	allow	you	to	edit	the	code	listings	and	see	the	result	immediately.

Download	Playground

Simple	Values

Use	let	to	make	a	constant	and	var	to	make	a	variable.	The	value	of	a	constant
doesn’t	need	to	be	known	at	compile	time,	but	you	must	assign	it	a	value	exactly
once.	This	means	you	can	use	constants	to	name	a	value	that	you	determine	once
but	use	in	many	places.

https://docs.swift.org/swift-book/GuidedTour/GuidedTour.playground.zip
MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

1 var	myVariable	=	42

2 myVariable	=	50

3 let	myConstant	=	42

A	constant	or	variable	must	have	the	same	type	as	the	value	you	want	to	assign
to	it.	However,	you	don’t	always	have	to	write	the	type	explicitly.	Providing	a
value	when	you	create	a	constant	or	variable	lets	the	compiler	infer	its	type.	In
the	example	above,	the	compiler	infers	that	myVariable	is	an	integer	because	its
initial	value	is	an	integer.

If	the	initial	value	doesn’t	provide	enough	information	(or	if	there	is	no	initial
value),	specify	the	type	by	writing	it	after	the	variable,	separated	by	a	colon.

1 let	implicitInteger	=	70

2 let	implicitDouble	=	70.0

3 let	explicitDouble:	Double	=	70

EXPER IMENT

Create	a	constant	with	an	explicit	type	of	Float	and	a	value	of	4.

Values	are	never	implicitly	converted	to	another	type.	If	you	need	to	convert	a
value	to	a	different	type,	explicitly	make	an	instance	of	the	desired	type.

1 let	label	=	"The	width	is	"

2 let	width	=	94

3 let	widthLabel	=	label	+	String(width)

EXPER IMENT

Try	removing	the	conversion	to	String	from	the	last	line.	What	error	do	you	get?

There’s	an	even	simpler	way	to	include	values	in	strings:	Write	the	value	in
parentheses,	and	write	a	backslash	(\)	before	the	parentheses.	For	example:

MP
Prostokąt

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

1 let	apples	=	3

2 let	oranges	=	5

3 let	appleSummary	=	"I	have	\(apples)	apples."

4 let	fruitSummary	=	"I	have	\(apples	+	oranges)	pieces	of	

fruit."

EXPER IMENT

Use	\()	to	include	a	floating-point	calculation	in	a	string	and	to	include	someone’s	name	in	a
greeting.

Use	three	double	quotation	marks	(""")	for	strings	that	take	up	multiple	lines.
Indentation	at	the	start	of	each	quoted	line	is	removed,	as	long	as	it	matches	the
indentation	of	the	closing	quotation	marks.	For	example:

1 let	quotation	=	"""

2 I	said	"I	have	\(apples)	apples."

3 And	then	I	said	"I	have	\(apples	+	oranges)	pieces	of	fruit."

4 """

Create	arrays	and	dictionaries	using	brackets	([]),	and	access	their	elements	by
writing	the	index	or	key	in	brackets.	A	comma	is	allowed	after	the	last	element.

1 var	shoppingList	=	["catfish",	"water",	"tulips"]

2 shoppingList[1]	=	"bottle	of	water"

3

4 var	occupations	=	[

5 				"Malcolm":	"Captain",

6 				"Kaylee":	"Mechanic",

7]

8 occupations["Jayne"]	=	"Public	Relations"

Arrays	automatically	grow	as	you	add	elements.

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

1 shoppingList.append("blue	paint")

2 print(shoppingList)

To	create	an	empty	array	or	dictionary,	use	the	initializer	syntax.

1 let	emptyArray	=	[String]()

2 let	emptyDictionary	=	[String:	Float]()

If	type	information	can	be	inferred,	you	can	write	an	empty	array	as	[]	and	an
empty	dictionary	as	[:]—for	example,	when	you	set	a	new	value	for	a	variable
or	pass	an	argument	to	a	function.

1 shoppingList	=	[]

2 occupations	=	[:]

Control	Flow

Use	if	and	switch	to	make	conditionals,	and	use	for-in,	while,	and	repeat-
while	to	make	loops.	Parentheses	around	the	condition	or	loop	variable	are
optional.	Braces	around	the	body	are	required.

1 let	individualScores	=	[75,	43,	103,	87,	12]

2 var	teamScore	=	0

3 for	score	in	individualScores	{

4 				if	score	>	50	{

5 								teamScore	+=	3

6 				}	else	{

7 								teamScore	+=	1

8 				}

9 }

10 print(teamScore)

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Linia

11 //	Prints	"11"

In	an	if	statement,	the	conditional	must	be	a	Boolean	expression—this	means
that	code	such	as	if	score	{	...	}	is	an	error,	not	an	implicit	comparison	to
zero.

You	can	use	if	and	let	together	to	work	with	values	that	might	be	missing.
These	values	are	represented	as	optionals.	An	optional	value	either	contains	a
value	or	contains	nil	to	indicate	that	a	value	is	missing.	Write	a	question	mark
(?)	after	the	type	of	a	value	to	mark	the	value	as	optional.

1 var	optionalString:	String?	=	"Hello"

2 print(optionalString	==	nil)

3 //	Prints	"false"

4

5 var	optionalName:	String?	=	"John	Appleseed"

6 var	greeting	=	"Hello!"

7 if	let	name	=	optionalName	{

8 				greeting	=	"Hello,	\(name)"

9 }

EXPER IMENT

Change	optionalName	to	nil.	What	greeting	do	you	get?	Add	an	else	clause	that	sets	a
different	greeting	if	optionalName	is	nil.

If	the	optional	value	is	nil,	the	conditional	is	false	and	the	code	in	braces	is
skipped.	Otherwise,	the	optional	value	is	unwrapped	and	assigned	to	the	constant
after	let,	which	makes	the	unwrapped	value	available	inside	the	block	of	code.

Another	way	to	handle	optional	values	is	to	provide	a	default	value	using	the	??
operator.	If	the	optional	value	is	missing,	the	default	value	is	used	instead.

1 let	nickName:	String?	=	nil

2 let	fullName:	String	=	"John	Appleseed"

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

3 let	informalGreeting	=	"Hi	\(nickName	??	fullName)"

Switches	support	any	kind	of	data	and	a	wide	variety	of	comparison	operations
—they	aren’t	limited	to	integers	and	tests	for	equality.

1 let	vegetable	=	"red	pepper"

2 switch	vegetable	{

3 case	"celery":

4 				print("Add	some	raisins	and	make	ants	on	a	log.")

5 case	"cucumber",	"watercress":

6 				print("That	would	make	a	good	tea	sandwich.")

7 case	let	x	where	x.hasSuffix("pepper"):

8 				print("Is	it	a	spicy	\(x)?")

9 default:

10 				print("Everything	tastes	good	in	soup.")

11 }

12 //	Prints	"Is	it	a	spicy	red	pepper?"

EXPER IMENT

Try	removing	the	default	case.	What	error	do	you	get?

Notice	how	let	can	be	used	in	a	pattern	to	assign	the	value	that	matched	the
pattern	to	a	constant.

After	executing	the	code	inside	the	switch	case	that	matched,	the	program	exits
from	the	switch	statement.	Execution	doesn’t	continue	to	the	next	case,	so	there
is	no	need	to	explicitly	break	out	of	the	switch	at	the	end	of	each	case’s	code.

You	use	for-in	to	iterate	over	items	in	a	dictionary	by	providing	a	pair	of	names
to	use	for	each	key-value	pair.	Dictionaries	are	an	unordered	collection,	so	their
keys	and	values	are	iterated	over	in	an	arbitrary	order.

1 let	interestingNumbers	=	[

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

2 				"Prime":	[2,	3,	5,	7,	11,	13],

3 				"Fibonacci":	[1,	1,	2,	3,	5,	8],

4 				"Square":	[1,	4,	9,	16,	25],

5]

6 var	largest	=	0

7 for	(kind,	numbers)	in	interestingNumbers	{

8 				for	number	in	numbers	{

9 								if	number	>	largest	{

10 												largest	=	number

11 								}

12 				}

13 }

14 print(largest)

15 //	Prints	"25"

EXPER IMENT

Add	another	variable	to	keep	track	of	which	kind	of	number	was	the	largest,	as	well	as	what	that
largest	number	was.

Use	while	to	repeat	a	block	of	code	until	a	condition	changes.	The	condition	of	a
loop	can	be	at	the	end	instead,	ensuring	that	the	loop	is	run	at	least	once.

1 var	n	=	2

2 while	n	<	100	{

3 				n	*=	2

4 }

5 print(n)

6 //	Prints	"128"

7

8 var	m	=	2

9 repeat	{

MP
Linia

MP
Linia

MP
Linia

MP
Linia

10 				m	*=	2

11 }	while	m	<	100

12 print(m)

13 //	Prints	"128"

You	can	keep	an	index	in	a	loop	by	using	..<	to	make	a	range	of	indexes.

1 var	total	=	0

2 for	i	in	0..<4	{

3 				total	+=	i

4 }

5 print(total)

6 //	Prints	"6"

Use	..<	to	make	a	range	that	omits	its	upper	value,	and	use	...	to	make	a	range
that	includes	both	values.

Functions	and	Closures

Use	func	to	declare	a	function.	Call	a	function	by	following	its	name	with	a	list
of	arguments	in	parentheses.	Use	->	to	separate	the	parameter	names	and	types
from	the	function’s	return	type.

1 func	greet(person:	String,	day:	String)	->	String	{

2 				return	"Hello	\(person),	today	is	\(day)."

3 }

4 greet(person:	"Bob",	day:	"Tuesday")

EXPER IMENT

Remove	the	day	parameter.	Add	a	parameter	to	include	today’s	lunch	special	in	the	greeting.

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Linia

MP
Linia

By	default,	functions	use	their	parameter	names	as	labels	for	their	arguments.
Write	a	custom	argument	label	before	the	parameter	name,	or	write	_	to	use	no
argument	label.

1 func	greet(_	person:	String,	on	day:	String)	->	String	{

2 				return	"Hello	\(person),	today	is	\(day)."

3 }

4 greet("John",	on:	"Wednesday")

Use	a	tuple	to	make	a	compound	value—for	example,	to	return	multiple	values
from	a	function.	The	elements	of	a	tuple	can	be	referred	to	either	by	name	or	by
number.

1 func	calculateStatistics(scores:	[Int])	->	(min:	Int,	max:	Int,	

sum:	Int)	{

2 				var	min	=	scores[0]

3 				var	max	=	scores[0]

4 				var	sum	=	0

5

6 				for	score	in	scores	{

7 								if	score	>	max	{

8 												max	=	score

9 								}	else	if	score	<	min	{

10 												min	=	score

11 								}

12 								sum	+=	score

13 				}

14

15 				return	(min,	max,	sum)

16 }

17 let	statistics	=	calculateStatistics(scores:	[5,	3,	100,	3,	

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Linia

MP
Linia

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

9])

18 print(statistics.sum)

19 //	Prints	"120"

20 print(statistics.2)

21 //	Prints	"120"

Functions	can	be	nested.	Nested	functions	have	access	to	variables	that	were
declared	in	the	outer	function.	You	can	use	nested	functions	to	organize	the	code
in	a	function	that	is	long	or	complex.

1 func	returnFifteen()	->	Int	{

2 				var	y	=	10

3 				func	add()	{

4 								y	+=	5

5 				}

6 				add()

7 				return	y

8 }

9 returnFifteen()

Functions	are	a	first-class	type.	This	means	that	a	function	can	return	another
function	as	its	value.

1 func	makeIncrementer()	->	((Int)	->	Int)	{

2 				func	addOne(number:	Int)	->	Int	{

3 								return	1	+	number

4 				}

5 				return	addOne

6 }

7 var	increment	=	makeIncrementer()

8 increment(7)

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

MP
Prostokąt

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

A	function	can	take	another	function	as	one	of	its	arguments.

1 func	hasAnyMatches(list:	[Int],	condition:	(Int)	->	Bool)	->	

Bool	{

2 				for	item	in	list	{

3 								if	condition(item)	{

4 												return	true

5 								}

6 				}

7 				return	false

8 }

9 func	lessThanTen(number:	Int)	->	Bool	{

10 				return	number	<	10

11 }

12 var	numbers	=	[20,	19,	7,	12]

13 hasAnyMatches(list:	numbers,	condition:	lessThanTen)

Functions	are	actually	a	special	case	of	closures:	blocks	of	code	that	can	be
called	later.	The	code	in	a	closure	has	access	to	things	like	variables	and
functions	that	were	available	in	the	scope	where	the	closure	was	created,	even	if
the	closure	is	in	a	different	scope	when	it	is	executed—you	saw	an	example	of
this	already	with	nested	functions.	You	can	write	a	closure	without	a	name	by
surrounding	code	with	braces	({}).	Use	in	to	separate	the	arguments	and	return
type	from	the	body.

1 numbers.map({	(number:	Int)	->	Int	in

2 				let	result	=	3	*	number

3 				return	result

4 })

EXPER IMENT

Rewrite	the	closure	to	return	zero	for	all	odd	numbers.

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Prostokąt

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

MP
Linia

You	have	several	options	for	writing	closures	more	concisely.	When	a	closure’s
type	is	already	known,	such	as	the	callback	for	a	delegate,	you	can	omit	the	type
of	its	parameters,	its	return	type,	or	both.	Single	statement	closures	implicitly
return	the	value	of	their	only	statement.

1 let	mappedNumbers	=	numbers.map({	number	in	3	*	number	})

2 print(mappedNumbers)

3 //	Prints	"[60,	57,	21,	36]"

You	can	refer	to	parameters	by	number	instead	of	by	name—this	approach	is
especially	useful	in	very	short	closures.	A	closure	passed	as	the	last	argument	to
a	function	can	appear	immediately	after	the	parentheses.	When	a	closure	is	the
only	argument	to	a	function,	you	can	omit	the	parentheses	entirely.

1 let	sortedNumbers	=	numbers.sorted	{	$0	>	$1	}

2 print(sortedNumbers)

3 //	Prints	"[20,	19,	12,	7]"

Objects	and	Classes

Use	class	followed	by	the	class’s	name	to	create	a	class.	A	property	declaration
in	a	class	is	written	the	same	way	as	a	constant	or	variable	declaration,	except
that	it	is	in	the	context	of	a	class.	Likewise,	method	and	function	declarations	are
written	the	same	way.

1 class	Shape	{

2 				var	numberOfSides	=	0

3 				func	simpleDescription()	->	String	{

4 								return	"A	shape	with	\(numberOfSides)	sides."

5 				}

6 }

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

EXPER IMENT

Add	a	constant	property	with	let,	and	add	another	method	that	takes	an	argument.

Create	an	instance	of	a	class	by	putting	parentheses	after	the	class	name.	Use	dot
syntax	to	access	the	properties	and	methods	of	the	instance.

1 var	shape	=	Shape()

2 shape.numberOfSides	=	7

3 var	shapeDescription	=	shape.simpleDescription()

This	version	of	the	Shape	class	is	missing	something	important:	an	initializer	to
set	up	the	class	when	an	instance	is	created.	Use	init	to	create	one.

1 class	NamedShape	{

2 				var	numberOfSides:	Int	=	0

3 				var	name:	String

4

5 				init(name:	String)	{

6 								self.name	=	name

7 				}

8

9 				func	simpleDescription()	->	String	{

10 								return	"A	shape	with	\(numberOfSides)	sides."

11 				}

12 }

Notice	how	self	is	used	to	distinguish	the	name	property	from	the	name	argument
to	the	initializer.	The	arguments	to	the	initializer	are	passed	like	a	function	call
when	you	create	an	instance	of	the	class.	Every	property	needs	a	value	assigned
—either	in	its	declaration	(as	with	numberOfSides)	or	in	the	initializer	(as	with
name).

Use	deinit	to	create	a	deinitializer	if	you	need	to	perform	some	cleanup	before

MP
Wyróżnianie

MP
Wyróżnianie

MP
Linia

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

MP
Prostokąt

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

the	object	is	deallocated.

Subclasses	include	their	superclass	name	after	their	class	name,	separated	by	a
colon.	There	is	no	requirement	for	classes	to	subclass	any	standard	root	class,	so
you	can	include	or	omit	a	superclass	as	needed.

Methods	on	a	subclass	that	override	the	superclass’s	implementation	are	marked
with	override—overriding	a	method	by	accident,	without	override,	is	detected
by	the	compiler	as	an	error.	The	compiler	also	detects	methods	with	override
that	don’t	actually	override	any	method	in	the	superclass.

1 class	Square:	NamedShape	{

2 				var	sideLength:	Double

3

4 				init(sideLength:	Double,	name:	String)	{

5 								self.sideLength	=	sideLength

6 								super.init(name:	name)

7 								numberOfSides	=	4

8 				}

9

10 				func	area()	->	Double	{

11 								return	sideLength	*	sideLength

12 				}

13

14 				override	func	simpleDescription()	->	String	{

15 								return	"A	square	with	sides	of	length	\(sideLength)."

16 				}

17 }

18 let	test	=	Square(sideLength:	5.2,	name:	"my	test	square")

19 test.area()

20 test.simpleDescription()

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

MP
Linia

MP
Wyróżnianie

EXPER IMENT

Make	another	subclass	of	NamedShape	called	Circle	that	takes	a	radius	and	a	name	as	arguments
to	its	initializer.	Implement	an	area()	and	a	simpleDescription()	method	on	the	Circle
class.

In	addition	to	simple	properties	that	are	stored,	properties	can	have	a	getter	and	a
setter.

1 class	EquilateralTriangle:	NamedShape	{

2 				var	sideLength:	Double	=	0.0

3

4 				init(sideLength:	Double,	name:	String)	{

5 								self.sideLength	=	sideLength

6 								super.init(name:	name)

7 								numberOfSides	=	3

8 				}

9

10 				var	perimeter:	Double	{

11 								get	{

12 												return	3.0	*	sideLength

13 								}

14 								set	{

15 												sideLength	=	newValue	/	3.0

16 								}

17 				}

18

19 				override	func	simpleDescription()	->	String	{

20 								return	"An	equilateral	triangle	with	sides	of	length	\

(sideLength)."

21 				}

22 }

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Prostokąt

MP
Wyróżnianie

23 var	triangle	=	EquilateralTriangle(sideLength:	3.1,	name:	"a	

triangle")

24 print(triangle.perimeter)

25 //	Prints	"9.3"

26 triangle.perimeter	=	9.9

27 print(triangle.sideLength)

28 //	Prints	"3.3000000000000003"

In	the	setter	for	perimeter,	the	new	value	has	the	implicit	name	newValue.	You
can	provide	an	explicit	name	in	parentheses	after	set.

Notice	that	the	initializer	for	the	EquilateralTriangle	class	has	three	different
steps:

1.	 Setting	the	value	of	properties	that	the	subclass	declares.

2.	 Calling	the	superclass’s	initializer.

3.	 Changing	the	value	of	properties	defined	by	the	superclass.	Any	additional
setup	work	that	uses	methods,	getters,	or	setters	can	also	be	done	at	this
point.

If	you	don’t	need	to	compute	the	property	but	still	need	to	provide	code	that	is
run	before	and	after	setting	a	new	value,	use	willSet	and	didSet.	The	code	you
provide	is	run	any	time	the	value	changes	outside	of	an	initializer.	For	example,
the	class	below	ensures	that	the	side	length	of	its	triangle	is	always	the	same	as
the	side	length	of	its	square.

1 class	TriangleAndSquare	{

2 				var	triangle:	EquilateralTriangle	{

3 								willSet	{

4 												square.sideLength	=	newValue.sideLength

5 								}

6 				}

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

MP
Wyróżnianie

7 				var	square:	Square	{

8 								willSet	{

9 												triangle.sideLength	=	newValue.sideLength

10 								}

11 				}

12 				init(size:	Double,	name:	String)	{

13 								square	=	Square(sideLength:	size,	name:	name)

14 								triangle	=	EquilateralTriangle(sideLength:	size,	name:	

name)

15 				}

16 }

17 var	triangleAndSquare	=	TriangleAndSquare(size:	10,	name:	

"another	test	shape")

18 print(triangleAndSquare.square.sideLength)

19 //	Prints	"10.0"

20 print(triangleAndSquare.triangle.sideLength)

21 //	Prints	"10.0"

22 triangleAndSquare.square	=	Square(sideLength:	50,	name:	

"larger	square")

23 print(triangleAndSquare.triangle.sideLength)

24 //	Prints	"50.0"

When	working	with	optional	values,	you	can	write	?	before	operations	like
methods,	properties,	and	subscripting.	If	the	value	before	the	?	is	nil,	everything
after	the	?	is	ignored	and	the	value	of	the	whole	expression	is	nil.	Otherwise,	the
optional	value	is	unwrapped,	and	everything	after	the	?	acts	on	the	unwrapped
value.	In	both	cases,	the	value	of	the	whole	expression	is	an	optional	value.

1 let	optionalSquare:	Square?	=	Square(sideLength:	2.5,	name:	

"optional	square")

2 let	sideLength	=	optionalSquare?.sideLength

MP
Wyróżnianie

MP
Wyróżnianie

Enumerations	and	Structures

Use	enum	to	create	an	enumeration.	Like	classes	and	all	other	named	types,
enumerations	can	have	methods	associated	with	them.

1 enum	Rank:	Int	{

2 				case	ace	=	1

3 				case	two,	three,	four,	five,	six,	seven,	eight,	nine,	ten

4 				case	jack,	queen,	king

5

6 				func	simpleDescription()	->	String	{

7 								switch	self	{

8 								case	.ace:

9 												return	"ace"

10 								case	.jack:

11 												return	"jack"

12 								case	.queen:

13 												return	"queen"

14 								case	.king:

15 												return	"king"

16 								default:

17 												return	String(self.rawValue)

18 								}

19 				}

20 }

21 let	ace	=	Rank.ace

22 let	aceRawValue	=	ace.rawValue

EXPER IMENT

Write	a	function	that	compares	two	Rank	values	by	comparing	their	raw	values.

By	default,	Swift	assigns	the	raw	values	starting	at	zero	and	incrementing	by	one
each	time,	but	you	can	change	this	behavior	by	explicitly	specifying	values.	In
the	example	above,	Ace	is	explicitly	given	a	raw	value	of	1,	and	the	rest	of	the
raw	values	are	assigned	in	order.	You	can	also	use	strings	or	floating-point
numbers	as	the	raw	type	of	an	enumeration.	Use	the	rawValue	property	to	access
the	raw	value	of	an	enumeration	case.

Use	the	init?(rawValue:)	initializer	to	make	an	instance	of	an	enumeration	from
a	raw	value.	It	returns	either	the	enumeration	case	matching	the	raw	value	or	nil
if	there	is	no	matching	Rank.

1 if	let	convertedRank	=	Rank(rawValue:	3)	{

2 				let	threeDescription	=	convertedRank.simpleDescription()

3 }

The	case	values	of	an	enumeration	are	actual	values,	not	just	another	way	of
writing	their	raw	values.	In	fact,	in	cases	where	there	isn’t	a	meaningful	raw
value,	you	don’t	have	to	provide	one.

1 enum	Suit	{

2 				case	spades,	hearts,	diamonds,	clubs

3

4 				func	simpleDescription()	->	String	{

5 								switch	self	{

6 								case	.spades:

7 												return	"spades"

8 								case	.hearts:

9 												return	"hearts"

10 								case	.diamonds:

11 												return	"diamonds"

12 								case	.clubs:

13 												return	"clubs"

14 								}

15 				}

16 }

17 let	hearts	=	Suit.hearts

18 let	heartsDescription	=	hearts.simpleDescription()

EXPER IMENT

Add	a	color()	method	to	Suit	that	returns	“black”	for	spades	and	clubs,	and	returns	“red”	for
hearts	and	diamonds.

Notice	the	two	ways	that	the	hearts	case	of	the	enumeration	is	referred	to	above:
When	assigning	a	value	to	the	hearts	constant,	the	enumeration	case
Suit.hearts	is	referred	to	by	its	full	name	because	the	constant	doesn’t	have	an
explicit	type	specified.	Inside	the	switch,	the	enumeration	case	is	referred	to	by
the	abbreviated	form	.hearts	because	the	value	of	self	is	already	known	to	be	a
suit.	You	can	use	the	abbreviated	form	anytime	the	value’s	type	is	already
known.

If	an	enumeration	has	raw	values,	those	values	are	determined	as	part	of	the
declaration,	which	means	every	instance	of	a	particular	enumeration	case	always
has	the	same	raw	value.	Another	choice	for	enumeration	cases	is	to	have	values
associated	with	the	case—these	values	are	determined	when	you	make	the
instance,	and	they	can	be	different	for	each	instance	of	an	enumeration	case.	You
can	think	of	the	associated	values	as	behaving	like	stored	properties	of	the
enumeration	case	instance.	For	example,	consider	the	case	of	requesting	the
sunrise	and	sunset	times	from	a	server.	The	server	either	responds	with	the
requested	information,	or	it	responds	with	a	description	of	what	went	wrong.

1 enum	ServerResponse	{

2 				case	result(String,	String)

3 				case	failure(String)

4 }

5

6 let	success	=	ServerResponse.result("6:00	am",	"8:09	pm")

7 let	failure	=	ServerResponse.failure("Out	of	cheese.")

8

9 switch	success	{

10 case	let	.result(sunrise,	sunset):

11 				print("Sunrise	is	at	\(sunrise)	and	sunset	is	at	\

(sunset).")

12 case	let	.failure(message):

13 				print("Failure...		\(message)")

14 }

15 //	Prints	"Sunrise	is	at	6:00	am	and	sunset	is	at	8:09	pm."

EXPER IMENT

Add	a	third	case	to	ServerResponse	and	to	the	switch.

Notice	how	the	sunrise	and	sunset	times	are	extracted	from	the	ServerResponse
value	as	part	of	matching	the	value	against	the	switch	cases.

Use	struct	to	create	a	structure.	Structures	support	many	of	the	same	behaviors
as	classes,	including	methods	and	initializers.	One	of	the	most	important
differences	between	structures	and	classes	is	that	structures	are	always	copied
when	they	are	passed	around	in	your	code,	but	classes	are	passed	by	reference.

1 struct	Card	{

2 				var	rank:	Rank

3 				var	suit:	Suit

4 				func	simpleDescription()	->	String	{

5 								return	"The	\(rank.simpleDescription())	of	\

(suit.simpleDescription())"

6 				}

7 }

8 let	threeOfSpades	=	Card(rank:	.three,	suit:	.spades)

9 let	threeOfSpadesDescription	=	

threeOfSpades.simpleDescription()

EXPER IMENT

Write	a	function	that	returns	an	array	containing	a	full	deck	of	cards,	with	one	card	of	each
combination	of	rank	and	suit.

Protocols	and	Extensions

Use	protocol	to	declare	a	protocol.

1 protocol	ExampleProtocol	{

2 				var	simpleDescription:	String	{	get	}

3 				mutating	func	adjust()

4 }

Classes,	enumerations,	and	structs	can	all	adopt	protocols.

1 class	SimpleClass:	ExampleProtocol	{

2 				var	simpleDescription:	String	=	"A	very	simple	class."

3 				var	anotherProperty:	Int	=	69105

4 				func	adjust()	{

5 								simpleDescription	+=	"		Now	100%	adjusted."

6 				}

7 }

8 var	a	=	SimpleClass()

9 a.adjust()

10 let	aDescription	=	a.simpleDescription

11

12 struct	SimpleStructure:	ExampleProtocol	{

13 				var	simpleDescription:	String	=	"A	simple	structure"

14 				mutating	func	adjust()	{

15 								simpleDescription	+=	"	(adjusted)"

16 				}

17 }

18 var	b	=	SimpleStructure()

19 b.adjust()

20 let	bDescription	=	b.simpleDescription

EXPER IMENT

Add	another	requirement	to	ExampleProtocol.	What	changes	do	you	need	to	make	to
SimpleClass	and	SimpleStructure	so	that	they	still	conform	to	the	protocol?

Notice	the	use	of	the	mutating	keyword	in	the	declaration	of	SimpleStructure	to
mark	a	method	that	modifies	the	structure.	The	declaration	of	SimpleClass
doesn’t	need	any	of	its	methods	marked	as	mutating	because	methods	on	a	class
can	always	modify	the	class.

Use	extension	to	add	functionality	to	an	existing	type,	such	as	new	methods	and
computed	properties.	You	can	use	an	extension	to	add	protocol	conformance	to	a
type	that	is	declared	elsewhere,	or	even	to	a	type	that	you	imported	from	a
library	or	framework.

1 extension	Int:	ExampleProtocol	{

2 				var	simpleDescription:	String	{

3 								return	"The	number	\(self)"

4 				}

5 				mutating	func	adjust()	{

6 								self	+=	42

7 				}

8 }

9 print(7.simpleDescription)

10 //	Prints	"The	number	7"

EXPER IMENT

Write	an	extension	for	the	Double	type	that	adds	an	absoluteValue	property.

You	can	use	a	protocol	name	just	like	any	other	named	type—for	example,	to
create	a	collection	of	objects	that	have	different	types	but	that	all	conform	to	a
single	protocol.	When	you	work	with	values	whose	type	is	a	protocol	type,
methods	outside	the	protocol	definition	are	not	available.

1 let	protocolValue:	ExampleProtocol	=	a

2 print(protocolValue.simpleDescription)

3 //	Prints	"A	very	simple	class.		Now	100%	adjusted."

4 //	print(protocolValue.anotherProperty)		//	Uncomment	to	see	

the	error

Even	though	the	variable	protocolValue	has	a	runtime	type	of	SimpleClass,	the
compiler	treats	it	as	the	given	type	of	ExampleProtocol.	This	means	that	you
can’t	accidentally	access	methods	or	properties	that	the	class	implements	in
addition	to	its	protocol	conformance.

Error	Handling

You	represent	errors	using	any	type	that	adopts	the	Error	protocol.

1 enum	PrinterError:	Error	{

2 				case	outOfPaper

3 				case	noToner

4 				case	onFire

5 }

Use	throw	to	throw	an	error	and	throws	to	mark	a	function	that	can	throw	an
error.	If	you	throw	an	error	in	a	function,	the	function	returns	immediately	and
the	code	that	called	the	function	handles	the	error.

1 func	send(job:	Int,	toPrinter	printerName:	String)	throws	->	

String	{

2 				if	printerName	==	"Never	Has	Toner"	{

3 								throw	PrinterError.noToner

4 				}

5 				return	"Job	sent"

6 }

There	are	several	ways	to	handle	errors.	One	way	is	to	use	do-catch.	Inside	the
do	block,	you	mark	code	that	can	throw	an	error	by	writing	try	in	front	of	it.
Inside	the	catch	block,	the	error	is	automatically	given	the	name	error	unless
you	give	it	a	different	name.

1 do	{

2 				let	printerResponse	=	try	send(job:	1040,	toPrinter:	"Bi	

Sheng")

3 				print(printerResponse)

4 }	catch	{

5 				print(error)

6 }

7 //	Prints	"Job	sent"

EXPER IMENT

Change	the	printer	name	to	"Never	Has	Toner",	so	that	the	send(job:toPrinter:)
function	throws	an	error.

You	can	provide	multiple	catch	blocks	that	handle	specific	errors.	You	write	a
pattern	after	catch	just	as	you	do	after	case	in	a	switch.

1 do	{

2 				let	printerResponse	=	try	send(job:	1440,	toPrinter:	

"Gutenberg")

3 				print(printerResponse)

4 }	catch	PrinterError.onFire	{

5 				print("I'll	just	put	this	over	here,	with	the	rest	of	the	

fire.")

6 }	catch	let	printerError	as	PrinterError	{

7 				print("Printer	error:	\(printerError).")

8 }	catch	{

9 				print(error)

10 }

11 //	Prints	"Job	sent"

EXPER IMENT

Add	code	to	throw	an	error	inside	the	do	block.	What	kind	of	error	do	you	need	to	throw	so	that	the
error	is	handled	by	the	first	catch	block?	What	about	the	second	and	third	blocks?

Another	way	to	handle	errors	is	to	use	try?	to	convert	the	result	to	an	optional.	If
the	function	throws	an	error,	the	specific	error	is	discarded	and	the	result	is	nil.
Otherwise,	the	result	is	an	optional	containing	the	value	that	the	function
returned.

1 let	printerSuccess	=	try?	send(job:	1884,	toPrinter:	

"Mergenthaler")

2 let	printerFailure	=	try?	send(job:	1885,	toPrinter:	"Never	Has	

Toner")

Use	defer	to	write	a	block	of	code	that	is	executed	after	all	other	code	in	the
function,	just	before	the	function	returns.	The	code	is	executed	regardless	of
whether	the	function	throws	an	error.	You	can	use	defer	to	write	setup	and
cleanup	code	next	to	each	other,	even	though	they	need	to	be	executed	at
different	times.

1 var	fridgeIsOpen	=	false

2 let	fridgeContent	=	["milk",	"eggs",	"leftovers"]

3

4 func	fridgeContains(_	food:	String)	->	Bool	{

5 				fridgeIsOpen	=	true

6 				defer	{

7 								fridgeIsOpen	=	false

8 				}

9

10 				let	result	=	fridgeContent.contains(food)

11 				return	result

12 }

13 fridgeContains("banana")

14 print(fridgeIsOpen)

15 //	Prints	"false"

Generics

Write	a	name	inside	angle	brackets	to	make	a	generic	function	or	type.

1 func	makeArray<Item>(repeating	item:	Item,	numberOfTimes:	Int)	

->	[Item]	{

2 				var	result	=	[Item]()

3 				for	_	in	0..<numberOfTimes	{

4 								result.append(item)

5 				}

6 				return	result

7 }

8 makeArray(repeating:	"knock",	numberOfTimes:	4)

You	can	make	generic	forms	of	functions	and	methods,	as	well	as	classes,

enumerations,	and	structures.

1 //	Reimplement	the	Swift	standard	library's	optional	type

2 enum	OptionalValue<Wrapped>	{

3 				case	none

4 				case	some(Wrapped)

5 }

6 var	possibleInteger:	OptionalValue<Int>	=	.none

7 possibleInteger	=	.some(100)

Use	where	right	before	the	body	to	specify	a	list	of	requirements—for	example,
to	require	the	type	to	implement	a	protocol,	to	require	two	types	to	be	the	same,
or	to	require	a	class	to	have	a	particular	superclass.

1 func	anyCommonElements<T:	Sequence,	U:	Sequence>(_	lhs:	T,	_	

rhs:	U)	->	Bool

2 				where	T.Element:	Equatable,	T.Element	==	U.Element

3 {

4 				for	lhsItem	in	lhs	{

5 								for	rhsItem	in	rhs	{

6 												if	lhsItem	==	rhsItem	{

7 																return	true

8 												}

9 								}

10 				}

11 				return	false

12 }

13 anyCommonElements([1,	2,	3],	[3])

EXPER IMENT

Modify	the	anyCommonElements(_:_:)	function	to	make	a	function	that	returns	an	array	of	the
elements	that	any	two	sequences	have	in	common.

Writing	<T:	Equatable>	is	the	same	as	writing	<T>	...	where	T:	Equatable.

Language	Guide

The	Basics

Swift	is	a	new	programming	language	for	iOS,	macOS,	watchOS,	and	tvOS	app
development.	Nonetheless,	many	parts	of	Swift	will	be	familiar	from	your
experience	of	developing	in	C	and	Objective-C.

Swift	provides	its	own	versions	of	all	fundamental	C	and	Objective-C	types,
including	Int	for	integers,	Double	and	Float	for	floating-point	values,	Bool	for
Boolean	values,	and	String	for	textual	data.	Swift	also	provides	powerful
versions	of	the	three	primary	collection	types,	Array,	Set,	and	Dictionary,	as
described	in	Collection	Types.

Like	C,	Swift	uses	variables	to	store	and	refer	to	values	by	an	identifying	name.
Swift	also	makes	extensive	use	of	variables	whose	values	can’t	be	changed.
These	are	known	as	constants,	and	are	much	more	powerful	than	constants	in	C.
Constants	are	used	throughout	Swift	to	make	code	safer	and	clearer	in	intent
when	you	work	with	values	that	don’t	need	to	change.

In	addition	to	familiar	types,	Swift	introduces	advanced	types	not	found	in
Objective-C,	such	as	tuples.	Tuples	enable	you	to	create	and	pass	around
groupings	of	values.	You	can	use	a	tuple	to	return	multiple	values	from	a
function	as	a	single	compound	value.

Swift	also	introduces	optional	types,	which	handle	the	absence	of	a	value.
Optionals	say	either	“there	is	a	value,	and	it	equals	x”	or	“there	isn’t	a	value	at
all”.	Using	optionals	is	similar	to	using	nil	with	pointers	in	Objective-C,	but
they	work	for	any	type,	not	just	classes.	Not	only	are	optionals	safer	and	more
expressive	than	nil	pointers	in	Objective-C,	they’re	at	the	heart	of	many	of
Swift’s	most	powerful	features.

Swift	is	a	type-safe	language,	which	means	the	language	helps	you	to	be	clear
about	the	types	of	values	your	code	can	work	with.	If	part	of	your	code	requires
a	String,	type	safety	prevents	you	from	passing	it	an	Int	by	mistake.	Likewise,
type	safety	prevents	you	from	accidentally	passing	an	optional	String	to	a	piece
of	code	that	requires	a	non-optional	String.	Type	safety	helps	you	catch	and	fix
errors	as	early	as	possible	in	the	development	process.

Constants	and	Variables

Constants	and	variables	associate	a	name	(such	as
maximumNumberOfLoginAttempts	or	welcomeMessage)	with	a	value	of	a	particular
type	(such	as	the	number	10	or	the	string	"Hello").	The	value	of	a	constant	can’t
be	changed	once	it’s	set,	whereas	a	variable	can	be	set	to	a	different	value	in	the
future.

Declaring	Constants	and	Variables
Constants	and	variables	must	be	declared	before	they’re	used.	You	declare
constants	with	the	let	keyword	and	variables	with	the	var	keyword.	Here’s	an
example	of	how	constants	and	variables	can	be	used	to	track	the	number	of	login
attempts	a	user	has	made:

1 let	maximumNumberOfLoginAttempts	=	10

2 var	currentLoginAttempt	=	0

This	code	can	be	read	as:

“Declare	a	new	constant	called	maximumNumberOfLoginAttempts,	and	give	it	a
value	of	10.	Then,	declare	a	new	variable	called	currentLoginAttempt,	and	give
it	an	initial	value	of	0.”

In	this	example,	the	maximum	number	of	allowed	login	attempts	is	declared	as	a
constant,	because	the	maximum	value	never	changes.	The	current	login	attempt
counter	is	declared	as	a	variable,	because	this	value	must	be	incremented	after
each	failed	login	attempt.

You	can	declare	multiple	constants	or	multiple	variables	on	a	single	line,
separated	by	commas:

	 var	x	=	0.0,	y	=	0.0,	z	=	0.0

NOTE

If	a	stored	value	in	your	code	won’t	change,	always	declare	it	as	a	constant	with	the	let	keyword.

Use	variables	only	for	storing	values	that	need	to	be	able	to	change.

Type	Annotations
You	can	provide	a	type	annotation	when	you	declare	a	constant	or	variable,	to	be
clear	about	the	kind	of	values	the	constant	or	variable	can	store.	Write	a	type
annotation	by	placing	a	colon	after	the	constant	or	variable	name,	followed	by	a
space,	followed	by	the	name	of	the	type	to	use.

This	example	provides	a	type	annotation	for	a	variable	called	welcomeMessage,	to
indicate	that	the	variable	can	store	String	values:

	 var	welcomeMessage:	String

The	colon	in	the	declaration	means	“…of	type…,”	so	the	code	above	can	be	read
as:

“Declare	a	variable	called	welcomeMessage	that	is	of	type	String.”

The	phrase	“of	type	String”	means	“can	store	any	String	value.”	Think	of	it	as
meaning	“the	type	of	thing”	(or	“the	kind	of	thing”)	that	can	be	stored.

The	welcomeMessage	variable	can	now	be	set	to	any	string	value	without	error:

	 welcomeMessage	=	"Hello"

You	can	define	multiple	related	variables	of	the	same	type	on	a	single	line,
separated	by	commas,	with	a	single	type	annotation	after	the	final	variable	name:

	 var	red,	green,	blue:	Double

NOTE

It’s	rare	that	you	need	to	write	type	annotations	in	practice.	If	you	provide	an	initial	value	for	a
constant	or	variable	at	the	point	that	it’s	defined,	Swift	can	almost	always	infer	the	type	to	be	used	for
that	constant	or	variable,	as	described	in	Type	Safety	and	Type	Inference.	In	the	welcomeMessage
example	above,	no	initial	value	is	provided,	and	so	the	type	of	the	welcomeMessage	variable	is

specified	with	a	type	annotation	rather	than	being	inferred	from	an	initial	value.

Naming	Constants	and	Variables
Constant	and	variable	names	can	contain	almost	any	character,	including
Unicode	characters:

1 let	π	=	3.14159

2 let	 	=	""

3 let	 	=	"dogcow"

Constant	and	variable	names	can’t	contain	whitespace	characters,	mathematical
symbols,	arrows,	private-use	Unicode	scalar	values,	or	line-	and	box-drawing
characters.	Nor	can	they	begin	with	a	number,	although	numbers	may	be
included	elsewhere	within	the	name.

Once	you’ve	declared	a	constant	or	variable	of	a	certain	type,	you	can’t	declare	it
again	with	the	same	name,	or	change	it	to	store	values	of	a	different	type.	Nor
can	you	change	a	constant	into	a	variable	or	a	variable	into	a	constant.

NOTE

If	you	need	to	give	a	constant	or	variable	the	same	name	as	a	reserved	Swift	keyword,	surround	the
keyword	with	backticks	(`)	when	using	it	as	a	name.	However,	avoid	using	keywords	as	names
unless	you	have	absolutely	no	choice.

You	can	change	the	value	of	an	existing	variable	to	another	value	of	a
compatible	type.	In	this	example,	the	value	of	friendlyWelcome	is	changed	from
"Hello!"	to	"Bonjour!":

1 var	friendlyWelcome	=	"Hello!"

2 friendlyWelcome	=	"Bonjour!"

3 //	friendlyWelcome	is	now	"Bonjour!"

Unlike	a	variable,	the	value	of	a	constant	can’t	be	changed	after	it’s	set.

Attempting	to	do	so	is	reported	as	an	error	when	your	code	is	compiled:

1 let	languageName	=	"Swift"

2 languageName	=	"Swift++"

3 //	This	is	a	compile-time	error:	languageName	cannot	be	

changed.

Printing	Constants	and	Variables
You	can	print	the	current	value	of	a	constant	or	variable	with	the
print(_:separator:terminator:)	function:

1 print(friendlyWelcome)

2 //	Prints	"Bonjour!"

The	print(_:separator:terminator:)	function	is	a	global	function	that	prints
one	or	more	values	to	an	appropriate	output.	In	Xcode,	for	example,	the
print(_:separator:terminator:)	function	prints	its	output	in	Xcode’s	“console”
pane.	The	separator	and	terminator	parameter	have	default	values,	so	you	can
omit	them	when	you	call	this	function.	By	default,	the	function	terminates	the
line	it	prints	by	adding	a	line	break.	To	print	a	value	without	a	line	break	after	it,
pass	an	empty	string	as	the	terminator—for	example,	print(someValue,
terminator:	"").	For	information	about	parameters	with	default	values,	see
Default	Parameter	Values.

Swift	uses	string	interpolation	to	include	the	name	of	a	constant	or	variable	as	a
placeholder	in	a	longer	string,	and	to	prompt	Swift	to	replace	it	with	the	current
value	of	that	constant	or	variable.	Wrap	the	name	in	parentheses	and	escape	it
with	a	backslash	before	the	opening	parenthesis:

1 print("The	current	value	of	friendlyWelcome	is	\

(friendlyWelcome)")

2 //	Prints	"The	current	value	of	friendlyWelcome	is	Bonjour!"

NOTE

All	options	you	can	use	with	string	interpolation	are	described	in	String	Interpolation.

Comments

Use	comments	to	include	nonexecutable	text	in	your	code,	as	a	note	or	reminder
to	yourself.	Comments	are	ignored	by	the	Swift	compiler	when	your	code	is
compiled.

Comments	in	Swift	are	very	similar	to	comments	in	C.	Single-line	comments
begin	with	two	forward-slashes	(//):

	 //	This	is	a	comment.

Multiline	comments	start	with	a	forward-slash	followed	by	an	asterisk	(/*)	and
end	with	an	asterisk	followed	by	a	forward-slash	(*/):

1 /*	This	is	also	a	comment

2 but	is	written	over	multiple	lines.	*/

Unlike	multiline	comments	in	C,	multiline	comments	in	Swift	can	be	nested
inside	other	multiline	comments.	You	write	nested	comments	by	starting	a
multiline	comment	block	and	then	starting	a	second	multiline	comment	within
the	first	block.	The	second	block	is	then	closed,	followed	by	the	first	block:

1 /*	This	is	the	start	of	the	first	multiline	comment.

2 	/*	This	is	the	second,	nested	multiline	comment.	*/

3 This	is	the	end	of	the	first	multiline	comment.	*/

Nested	multiline	comments	enable	you	to	comment	out	large	blocks	of	code
quickly	and	easily,	even	if	the	code	already	contains	multiline	comments.

Semicolons

Unlike	many	other	languages,	Swift	doesn’t	require	you	to	write	a	semicolon	(;)
after	each	statement	in	your	code,	although	you	can	do	so	if	you	wish.	However,
semicolons	are	required	if	you	want	to	write	multiple	separate	statements	on	a
single	line:

1 let	cat	=	" ";	print(cat)

2 //	Prints	" "

Integers

Integers	are	whole	numbers	with	no	fractional	component,	such	as	42	and	-23.
Integers	are	either	signed	(positive,	zero,	or	negative)	or	unsigned	(positive	or
zero).

Swift	provides	signed	and	unsigned	integers	in	8,	16,	32,	and	64	bit	forms.	These
integers	follow	a	naming	convention	similar	to	C,	in	that	an	8-bit	unsigned
integer	is	of	type	UInt8,	and	a	32-bit	signed	integer	is	of	type	Int32.	Like	all
types	in	Swift,	these	integer	types	have	capitalized	names.

Integer	Bounds
You	can	access	the	minimum	and	maximum	values	of	each	integer	type	with	its
min	and	max	properties:

1 let	minValue	=	UInt8.min		//	minValue	is	equal	to	0,	and	is	of	

type	UInt8

2 let	maxValue	=	UInt8.max		//	maxValue	is	equal	to	255,	and	is	

of	type	UInt8

The	values	of	these	properties	are	of	the	appropriate-sized	number	type	(such	as
UInt8	in	the	example	above)	and	can	therefore	be	used	in	expressions	alongside

other	values	of	the	same	type.

Int
In	most	cases,	you	don’t	need	to	pick	a	specific	size	of	integer	to	use	in	your
code.	Swift	provides	an	additional	integer	type,	Int,	which	has	the	same	size	as
the	current	platform’s	native	word	size:

On	a	32-bit	platform,	Int	is	the	same	size	as	Int32.

On	a	64-bit	platform,	Int	is	the	same	size	as	Int64.

Unless	you	need	to	work	with	a	specific	size	of	integer,	always	use	Int	for
integer	values	in	your	code.	This	aids	code	consistency	and	interoperability.
Even	on	32-bit	platforms,	Int	can	store	any	value	between	-2,147,483,648	and
2,147,483,647,	and	is	large	enough	for	many	integer	ranges.

UInt
Swift	also	provides	an	unsigned	integer	type,	UInt,	which	has	the	same	size	as
the	current	platform’s	native	word	size:

On	a	32-bit	platform,	UInt	is	the	same	size	as	UInt32.

On	a	64-bit	platform,	UInt	is	the	same	size	as	UInt64.

NOTE

Use	UInt	only	when	you	specifically	need	an	unsigned	integer	type	with	the	same	size	as	the
platform’s	native	word	size.	If	this	isn’t	the	case,	Int	is	preferred,	even	when	the	values	to	be	stored
are	known	to	be	nonnegative.	A	consistent	use	of	Int	for	integer	values	aids	code	interoperability,
avoids	the	need	to	convert	between	different	number	types,	and	matches	integer	type	inference,	as
described	in	Type	Safety	and	Type	Inference.

Floating-Point	Numbers

Floating-point	numbers	are	numbers	with	a	fractional	component,	such	as
3.14159,	0.1,	and	-273.15.

Floating-point	types	can	represent	a	much	wider	range	of	values	than	integer
types,	and	can	store	numbers	that	are	much	larger	or	smaller	than	can	be	stored
in	an	Int.	Swift	provides	two	signed	floating-point	number	types:

Double	represents	a	64-bit	floating-point	number.

Float	represents	a	32-bit	floating-point	number.

NOTE

Double	has	a	precision	of	at	least	15	decimal	digits,	whereas	the	precision	of	Float	can	be	as	little
as	6	decimal	digits.	The	appropriate	floating-point	type	to	use	depends	on	the	nature	and	range	of
values	you	need	to	work	with	in	your	code.	In	situations	where	either	type	would	be	appropriate,
Double	is	preferred.

Type	Safety	and	Type	Inference

Swift	is	a	type-safe	language.	A	type	safe	language	encourages	you	to	be	clear
about	the	types	of	values	your	code	can	work	with.	If	part	of	your	code	requires
a	String,	you	can’t	pass	it	an	Int	by	mistake.

Because	Swift	is	type	safe,	it	performs	type	checks	when	compiling	your	code
and	flags	any	mismatched	types	as	errors.	This	enables	you	to	catch	and	fix
errors	as	early	as	possible	in	the	development	process.

Type-checking	helps	you	avoid	errors	when	you’re	working	with	different	types
of	values.	However,	this	doesn’t	mean	that	you	have	to	specify	the	type	of	every
constant	and	variable	that	you	declare.	If	you	don’t	specify	the	type	of	value	you
need,	Swift	uses	type	inference	to	work	out	the	appropriate	type.	Type	inference
enables	a	compiler	to	deduce	the	type	of	a	particular	expression	automatically
when	it	compiles	your	code,	simply	by	examining	the	values	you	provide.

Because	of	type	inference,	Swift	requires	far	fewer	type	declarations	than
languages	such	as	C	or	Objective-C.	Constants	and	variables	are	still	explicitly

typed,	but	much	of	the	work	of	specifying	their	type	is	done	for	you.

Type	inference	is	particularly	useful	when	you	declare	a	constant	or	variable
with	an	initial	value.	This	is	often	done	by	assigning	a	literal	value	(or	literal)	to
the	constant	or	variable	at	the	point	that	you	declare	it.	(A	literal	value	is	a	value
that	appears	directly	in	your	source	code,	such	as	42	and	3.14159	in	the	examples
below.)

For	example,	if	you	assign	a	literal	value	of	42	to	a	new	constant	without	saying
what	type	it	is,	Swift	infers	that	you	want	the	constant	to	be	an	Int,	because	you
have	initialized	it	with	a	number	that	looks	like	an	integer:

1 let	meaningOfLife	=	42

2 //	meaningOfLife	is	inferred	to	be	of	type	Int

Likewise,	if	you	don’t	specify	a	type	for	a	floating-point	literal,	Swift	infers	that
you	want	to	create	a	Double:

1 let	pi	=	3.14159

2 //	pi	is	inferred	to	be	of	type	Double

Swift	always	chooses	Double	(rather	than	Float)	when	inferring	the	type	of
floating-point	numbers.

If	you	combine	integer	and	floating-point	literals	in	an	expression,	a	type	of
Double	will	be	inferred	from	the	context:

1 let	anotherPi	=	3	+	0.14159

2 //	anotherPi	is	also	inferred	to	be	of	type	Double

The	literal	value	of	3	has	no	explicit	type	in	and	of	itself,	and	so	an	appropriate
output	type	of	Double	is	inferred	from	the	presence	of	a	floating-point	literal	as
part	of	the	addition.

Numeric	Literals

Integer	literals	can	be	written	as:

A	decimal	number,	with	no	prefix

A	binary	number,	with	a	0b	prefix

An	octal	number,	with	a	0o	prefix

A	hexadecimal	number,	with	a	0x	prefix

All	of	these	integer	literals	have	a	decimal	value	of	17:

1 let	decimalInteger	=	17

2 let	binaryInteger	=	0b10001							//	17	in	binary	notation

3 let	octalInteger	=	0o21											//	17	in	octal	notation

4 let	hexadecimalInteger	=	0x11					//	17	in	hexadecimal	notation

Floating-point	literals	can	be	decimal	(with	no	prefix),	or	hexadecimal	(with	a	0x
prefix).	They	must	always	have	a	number	(or	hexadecimal	number)	on	both
sides	of	the	decimal	point.	Decimal	floats	can	also	have	an	optional	exponent,
indicated	by	an	uppercase	or	lowercase	e;	hexadecimal	floats	must	have	an
exponent,	indicated	by	an	uppercase	or	lowercase	p.

For	decimal	numbers	with	an	exponent	of	exp,	the	base	number	is	multiplied	by
10exp:

1.25e2	means	1.25	x	102,	or	125.0.

1.25e-2	means	1.25	x	10-2,	or	0.0125.

For	hexadecimal	numbers	with	an	exponent	of	exp,	the	base	number	is
multiplied	by	2exp:

0xFp2	means	15	x	22,	or	60.0.

0xFp-2	means	15	x	2-2,	or	3.75.

All	of	these	floating-point	literals	have	a	decimal	value	of	12.1875:

1 let	decimalDouble	=	12.1875

2 let	exponentDouble	=	1.21875e1

3 let	hexadecimalDouble	=	0xC.3p0

Numeric	literals	can	contain	extra	formatting	to	make	them	easier	to	read.	Both
integers	and	floats	can	be	padded	with	extra	zeros	and	can	contain	underscores
to	help	with	readability.	Neither	type	of	formatting	affects	the	underlying	value
of	the	literal:

1 let	paddedDouble	=	000123.456

2 let	oneMillion	=	1_000_000

3 let	justOverOneMillion	=	1_000_000.000_000_1

Numeric	Type	Conversion

Use	the	Int	type	for	all	general-purpose	integer	constants	and	variables	in	your
code,	even	if	they’re	known	to	be	nonnegative.	Using	the	default	integer	type	in
everyday	situations	means	that	integer	constants	and	variables	are	immediately
interoperable	in	your	code	and	will	match	the	inferred	type	for	integer	literal
values.

Use	other	integer	types	only	when	they’re	specifically	needed	for	the	task	at
hand,	because	of	explicitly	sized	data	from	an	external	source,	or	for
performance,	memory	usage,	or	other	necessary	optimization.	Using	explicitly
sized	types	in	these	situations	helps	to	catch	any	accidental	value	overflows	and
implicitly	documents	the	nature	of	the	data	being	used.

Integer	Conversion

The	range	of	numbers	that	can	be	stored	in	an	integer	constant	or	variable	is
different	for	each	numeric	type.	An	Int8	constant	or	variable	can	store	numbers
between	-128	and	127,	whereas	a	UInt8	constant	or	variable	can	store	numbers
between	0	and	255.	A	number	that	won’t	fit	into	a	constant	or	variable	of	a	sized
integer	type	is	reported	as	an	error	when	your	code	is	compiled:

1 let	cannotBeNegative:	UInt8	=	-1

2 //	UInt8	cannot	store	negative	numbers,	and	so	this	will	report	

an	error

3 let	tooBig:	Int8	=	Int8.max	+	1

4 //	Int8	cannot	store	a	number	larger	than	its	maximum	value,

5 //	and	so	this	will	also	report	an	error

Because	each	numeric	type	can	store	a	different	range	of	values,	you	must	opt	in
to	numeric	type	conversion	on	a	case-by-case	basis.	This	opt-in	approach
prevents	hidden	conversion	errors	and	helps	make	type	conversion	intentions
explicit	in	your	code.

To	convert	one	specific	number	type	to	another,	you	initialize	a	new	number	of
the	desired	type	with	the	existing	value.	In	the	example	below,	the	constant
twoThousand	is	of	type	UInt16,	whereas	the	constant	one	is	of	type	UInt8.	They
can’t	be	added	together	directly,	because	they’re	not	of	the	same	type.	Instead,
this	example	calls	UInt16(one)	to	create	a	new	UInt16	initialized	with	the	value
of	one,	and	uses	this	value	in	place	of	the	original:

1 let	twoThousand:	UInt16	=	2_000

2 let	one:	UInt8	=	1

3 let	twoThousandAndOne	=	twoThousand	+	UInt16(one)

Because	both	sides	of	the	addition	are	now	of	type	UInt16,	the	addition	is
allowed.	The	output	constant	(twoThousandAndOne)	is	inferred	to	be	of	type
UInt16,	because	it’s	the	sum	of	two	UInt16	values.

SomeType(ofInitialValue)	is	the	default	way	to	call	the	initializer	of	a	Swift
type	and	pass	in	an	initial	value.	Behind	the	scenes,	UInt16	has	an	initializer	that

accepts	a	UInt8	value,	and	so	this	initializer	is	used	to	make	a	new	UInt16	from
an	existing	UInt8.	You	can’t	pass	in	any	type	here,	however—it	has	to	be	a	type
for	which	UInt16	provides	an	initializer.	Extending	existing	types	to	provide
initializers	that	accept	new	types	(including	your	own	type	definitions)	is
covered	in	Extensions.

Integer	and	Floating-Point	Conversion
Conversions	between	integer	and	floating-point	numeric	types	must	be	made
explicit:

1 let	three	=	3

2 let	pointOneFourOneFiveNine	=	0.14159

3 let	pi	=	Double(three)	+	pointOneFourOneFiveNine

4 //	pi	equals	3.14159,	and	is	inferred	to	be	of	type	Double

Here,	the	value	of	the	constant	three	is	used	to	create	a	new	value	of	type
Double,	so	that	both	sides	of	the	addition	are	of	the	same	type.	Without	this
conversion	in	place,	the	addition	would	not	be	allowed.

Floating-point	to	integer	conversion	must	also	be	made	explicit.	An	integer	type
can	be	initialized	with	a	Double	or	Float	value:

1 let	integerPi	=	Int(pi)

2 //	integerPi	equals	3,	and	is	inferred	to	be	of	type	Int

Floating-point	values	are	always	truncated	when	used	to	initialize	a	new	integer
value	in	this	way.	This	means	that	4.75	becomes	4,	and	-3.9	becomes	-3.

NOTE

The	rules	for	combining	numeric	constants	and	variables	are	different	from	the	rules	for	numeric
literals.	The	literal	value	3	can	be	added	directly	to	the	literal	value	0.14159,	because	number
literals	don’t	have	an	explicit	type	in	and	of	themselves.	Their	type	is	inferred	only	at	the	point	that
they’re	evaluated	by	the	compiler.

Type	Aliases

Type	aliases	define	an	alternative	name	for	an	existing	type.	You	define	type
aliases	with	the	typealias	keyword.

Type	aliases	are	useful	when	you	want	to	refer	to	an	existing	type	by	a	name	that
is	contextually	more	appropriate,	such	as	when	working	with	data	of	a	specific
size	from	an	external	source:

	 typealias	AudioSample	=	UInt16

Once	you	define	a	type	alias,	you	can	use	the	alias	anywhere	you	might	use	the
original	name:

1 var	maxAmplitudeFound	=	AudioSample.min

2 //	maxAmplitudeFound	is	now	0

Here,	AudioSample	is	defined	as	an	alias	for	UInt16.	Because	it’s	an	alias,	the	call
to	AudioSample.min	actually	calls	UInt16.min,	which	provides	an	initial	value	of
0	for	the	maxAmplitudeFound	variable.

Booleans

Swift	has	a	basic	Boolean	type,	called	Bool.	Boolean	values	are	referred	to	as
logical,	because	they	can	only	ever	be	true	or	false.	Swift	provides	two	Boolean
constant	values,	true	and	false:

1 let	orangesAreOrange	=	true

2 let	turnipsAreDelicious	=	false

The	types	of	orangesAreOrange	and	turnipsAreDelicious	have	been	inferred	as
Bool	from	the	fact	that	they	were	initialized	with	Boolean	literal	values.	As	with
Int	and	Double	above,	you	don’t	need	to	declare	constants	or	variables	as	Bool	if
you	set	them	to	true	or	false	as	soon	as	you	create	them.	Type	inference	helps

make	Swift	code	more	concise	and	readable	when	it	initializes	constants	or
variables	with	other	values	whose	type	is	already	known.

Boolean	values	are	particularly	useful	when	you	work	with	conditional
statements	such	as	the	if	statement:

1 if	turnipsAreDelicious	{

2 				print("Mmm,	tasty	turnips!")

3 }	else	{

4 				print("Eww,	turnips	are	horrible.")

5 }

6 //	Prints	"Eww,	turnips	are	horrible."

Conditional	statements	such	as	the	if	statement	are	covered	in	more	detail	in
Control	Flow.

Swift’s	type	safety	prevents	non-Boolean	values	from	being	substituted	for	Bool.
The	following	example	reports	a	compile-time	error:

1 let	i	=	1

2 if	i	{

3 				//	this	example	will	not	compile,	and	will	report	an	error

4 }

However,	the	alternative	example	below	is	valid:

1 let	i	=	1

2 if	i	==	1	{

3 				//	this	example	will	compile	successfully

4 }

The	result	of	the	i	==	1	comparison	is	of	type	Bool,	and	so	this	second	example
passes	the	type-check.	Comparisons	like	i	==	1	are	discussed	in	Basic
Operators.

As	with	other	examples	of	type	safety	in	Swift,	this	approach	avoids	accidental
errors	and	ensures	that	the	intention	of	a	particular	section	of	code	is	always
clear.

Tuples

Tuples	group	multiple	values	into	a	single	compound	value.	The	values	within	a
tuple	can	be	of	any	type	and	don’t	have	to	be	of	the	same	type	as	each	other.

In	this	example,	(404,	"Not	Found")	is	a	tuple	that	describes	an	HTTP	status
code.	An	HTTP	status	code	is	a	special	value	returned	by	a	web	server	whenever
you	request	a	web	page.	A	status	code	of	404	Not	Found	is	returned	if	you
request	a	webpage	that	doesn’t	exist.

1 let	http404Error	=	(404,	"Not	Found")

2 //	http404Error	is	of	type	(Int,	String),	and	equals	(404,	"Not	

Found")

The	(404,	"Not	Found")	tuple	groups	together	an	Int	and	a	String	to	give	the
HTTP	status	code	two	separate	values:	a	number	and	a	human-readable
description.	It	can	be	described	as	“a	tuple	of	type	(Int,	String)”.

You	can	create	tuples	from	any	permutation	of	types,	and	they	can	contain	as
many	different	types	as	you	like.	There’s	nothing	stopping	you	from	having	a
tuple	of	type	(Int,	Int,	Int),	or	(String,	Bool),	or	indeed	any	other
permutation	you	require.

You	can	decompose	a	tuple’s	contents	into	separate	constants	or	variables,	which
you	then	access	as	usual:

1 let	(statusCode,	statusMessage)	=	http404Error

2 print("The	status	code	is	\(statusCode)")

3 //	Prints	"The	status	code	is	404"

4 print("The	status	message	is	\(statusMessage)")

5 //	Prints	"The	status	message	is	Not	Found"

If	you	only	need	some	of	the	tuple’s	values,	ignore	parts	of	the	tuple	with	an
underscore	(_)	when	you	decompose	the	tuple:

1 let	(justTheStatusCode,	_)	=	http404Error

2 print("The	status	code	is	\(justTheStatusCode)")

3 //	Prints	"The	status	code	is	404"

Alternatively,	access	the	individual	element	values	in	a	tuple	using	index
numbers	starting	at	zero:

1 print("The	status	code	is	\(http404Error.0)")

2 //	Prints	"The	status	code	is	404"

3 print("The	status	message	is	\(http404Error.1)")

4 //	Prints	"The	status	message	is	Not	Found"

You	can	name	the	individual	elements	in	a	tuple	when	the	tuple	is	defined:

	 let	http200Status	=	(statusCode:	200,	description:	"OK")

If	you	name	the	elements	in	a	tuple,	you	can	use	the	element	names	to	access	the
values	of	those	elements:

1 print("The	status	code	is	\(http200Status.statusCode)")

2 //	Prints	"The	status	code	is	200"

3 print("The	status	message	is	\(http200Status.description)")

4 //	Prints	"The	status	message	is	OK"

Tuples	are	particularly	useful	as	the	return	values	of	functions.	A	function	that
tries	to	retrieve	a	web	page	might	return	the	(Int,	String)	tuple	type	to	describe
the	success	or	failure	of	the	page	retrieval.	By	returning	a	tuple	with	two	distinct
values,	each	of	a	different	type,	the	function	provides	more	useful	information
about	its	outcome	than	if	it	could	only	return	a	single	value	of	a	single	type.	For

more	information,	see	Functions	with	Multiple	Return	Values.

NOTE

Tuples	are	useful	for	simple	groups	of	related	values.	They’re	not	suited	to	the	creation	of	complex
data	structures.	If	your	data	structure	is	likely	to	be	more	complex,	model	it	as	a	class	or	structure,
rather	than	as	a	tuple.	For	more	information,	see	Structures	and	Classes.

Optionals

You	use	optionals	in	situations	where	a	value	may	be	absent.	An	optional
represents	two	possibilities:	Either	there	is	a	value,	and	you	can	unwrap	the
optional	to	access	that	value,	or	there	isn’t	a	value	at	all.

NOTE

The	concept	of	optionals	doesn’t	exist	in	C	or	Objective-C.	The	nearest	thing	in	Objective-C	is	the
ability	to	return	nil	from	a	method	that	would	otherwise	return	an	object,	with	nil	meaning	“the
absence	of	a	valid	object.”	However,	this	only	works	for	objects—it	doesn’t	work	for	structures,
basic	C	types,	or	enumeration	values.	For	these	types,	Objective-C	methods	typically	return	a	special
value	(such	as	NSNotFound)	to	indicate	the	absence	of	a	value.	This	approach	assumes	that	the
method’s	caller	knows	there’s	a	special	value	to	test	against	and	remembers	to	check	for	it.	Swift’s
optionals	let	you	indicate	the	absence	of	a	value	for	any	type	at	all,	without	the	need	for	special
constants.

Here’s	an	example	of	how	optionals	can	be	used	to	cope	with	the	absence	of	a
value.	Swift’s	Int	type	has	an	initializer	which	tries	to	convert	a	String	value
into	an	Int	value.	However,	not	every	string	can	be	converted	into	an	integer.
The	string	"123"	can	be	converted	into	the	numeric	value	123,	but	the	string
"hello,	world"	doesn’t	have	an	obvious	numeric	value	to	convert	to.

The	example	below	uses	the	initializer	to	try	to	convert	a	String	into	an	Int:

1 let	possibleNumber	=	"123"

2 let	convertedNumber	=	Int(possibleNumber)

3 //	convertedNumber	is	inferred	to	be	of	type	"Int?",	or	

"optional	Int"

Because	the	initializer	might	fail,	it	returns	an	optional	Int,	rather	than	an	Int.
An	optional	Int	is	written	as	Int?,	not	Int.	The	question	mark	indicates	that	the
value	it	contains	is	optional,	meaning	that	it	might	contain	some	Int	value,	or	it
might	contain	no	value	at	all.	(It	can’t	contain	anything	else,	such	as	a	Bool
value	or	a	String	value.	It’s	either	an	Int,	or	it’s	nothing	at	all.)

nil
You	set	an	optional	variable	to	a	valueless	state	by	assigning	it	the	special	value
nil:

1 var	serverResponseCode:	Int?	=	404

2 //	serverResponseCode	contains	an	actual	Int	value	of	404

3 serverResponseCode	=	nil

4 //	serverResponseCode	now	contains	no	value

NOTE

You	can’t	use	nil	with	non-optional	constants	and	variables.	If	a	constant	or	variable	in	your	code
needs	to	work	with	the	absence	of	a	value	under	certain	conditions,	always	declare	it	as	an	optional
value	of	the	appropriate	type.

If	you	define	an	optional	variable	without	providing	a	default	value,	the	variable
is	automatically	set	to	nil	for	you:

1 var	surveyAnswer:	String?

2 //	surveyAnswer	is	automatically	set	to	nil

NOTE

Swift’s	nil	isn’t	the	same	as	nil	in	Objective-C.	In	Objective-C,	nil	is	a	pointer	to	a	nonexistent
object.	In	Swift,	nil	isn’t	a	pointer—it’s	the	absence	of	a	value	of	a	certain	type.	Optionals	of	any
type	can	be	set	to	nil,	not	just	object	types.

If	Statements	and	Forced	Unwrapping
You	can	use	an	if	statement	to	find	out	whether	an	optional	contains	a	value	by
comparing	the	optional	against	nil.	You	perform	this	comparison	with	the
“equal	to”	operator	(==)	or	the	“not	equal	to”	operator	(!=).

If	an	optional	has	a	value,	it’s	considered	to	be	“not	equal	to”	nil:

1 if	convertedNumber	!=	nil	{

2 				print("convertedNumber	contains	some	integer	value.")

3 }

4 //	Prints	"convertedNumber	contains	some	integer	value."

Once	you’re	sure	that	the	optional	does	contain	a	value,	you	can	access	its
underlying	value	by	adding	an	exclamation	mark	(!)	to	the	end	of	the	optional’s
name.	The	exclamation	mark	effectively	says,	“I	know	that	this	optional
definitely	has	a	value;	please	use	it.”	This	is	known	as	forced	unwrapping	of	the
optional’s	value:

1 if	convertedNumber	!=	nil	{

2 				print("convertedNumber	has	an	integer	value	of	\

(convertedNumber!).")

3 }

4 //	Prints	"convertedNumber	has	an	integer	value	of	123."

For	more	about	the	if	statement,	see	Control	Flow.

NOTE

Trying	to	use	!	to	access	a	nonexistent	optional	value	triggers	a	runtime	error.	Always	make	sure	that
an	optional	contains	a	non-nil	value	before	using	!	to	force-unwrap	its	value.

Optional	Binding
You	use	optional	binding	to	find	out	whether	an	optional	contains	a	value,	and	if

so,	to	make	that	value	available	as	a	temporary	constant	or	variable.	Optional
binding	can	be	used	with	if	and	while	statements	to	check	for	a	value	inside	an
optional,	and	to	extract	that	value	into	a	constant	or	variable,	as	part	of	a	single
action.	if	and	while	statements	are	described	in	more	detail	in	Control	Flow.

Write	an	optional	binding	for	an	if	statement	as	follows:

	 if	let	 constantName 	=	 someOptional 	{

	 				 statements

	 }

You	can	rewrite	the	possibleNumber	example	from	the	Optionals	section	to	use
optional	binding	rather	than	forced	unwrapping:

1 if	let	actualNumber	=	Int(possibleNumber)	{

2 				print("The	string	\"\(possibleNumber)\"	has	an	integer	

value	of	\(actualNumber)")

3 }	else	{

4 				print("The	string	\"\(possibleNumber)\"	could	not	be	

converted	to	an	integer")

5 }

6 //	Prints	"The	string	"123"	has	an	integer	value	of	123"

This	code	can	be	read	as:

“If	the	optional	Int	returned	by	Int(possibleNumber)	contains	a	value,	set	a	new
constant	called	actualNumber	to	the	value	contained	in	the	optional.”

If	the	conversion	is	successful,	the	actualNumber	constant	becomes	available	for
use	within	the	first	branch	of	the	if	statement.	It	has	already	been	initialized
with	the	value	contained	within	the	optional,	and	so	there’s	no	need	to	use	the	!
suffix	to	access	its	value.	In	this	example,	actualNumber	is	simply	used	to	print
the	result	of	the	conversion.

You	can	use	both	constants	and	variables	with	optional	binding.	If	you	wanted	to

manipulate	the	value	of	actualNumber	within	the	first	branch	of	the	if	statement,
you	could	write	if	var	actualNumber	instead,	and	the	value	contained	within	the
optional	would	be	made	available	as	a	variable	rather	than	a	constant.

You	can	include	as	many	optional	bindings	and	Boolean	conditions	in	a	single	if
statement	as	you	need	to,	separated	by	commas.	If	any	of	the	values	in	the
optional	bindings	are	nil	or	any	Boolean	condition	evaluates	to	false,	the	whole
if	statement’s	condition	is	considered	to	be	false.	The	following	if	statements
are	equivalent:

1 if	let	firstNumber	=	Int("4"),	let	secondNumber	=	Int("42"),	

firstNumber	<	secondNumber	&&	secondNumber	<	100	{

2 				print("\(firstNumber)	<	\(secondNumber)	<	100")

3 }

4 //	Prints	"4	<	42	<	100"

5

6 if	let	firstNumber	=	Int("4")	{

7 				if	let	secondNumber	=	Int("42")	{

8 								if	firstNumber	<	secondNumber	&&	secondNumber	<	100	{

9 												print("\(firstNumber)	<	\(secondNumber)	<	100")

10 								}

11 				}

12 }

13 //	Prints	"4	<	42	<	100"

NOTE

Constants	and	variables	created	with	optional	binding	in	an	if	statement	are	available	only	within
the	body	of	the	if	statement.	In	contrast,	the	constants	and	variables	created	with	a	guard	statement
are	available	in	the	lines	of	code	that	follow	the	guard	statement,	as	described	in	Early	Exit.

Implicitly	Unwrapped	Optionals

As	described	above,	optionals	indicate	that	a	constant	or	variable	is	allowed	to
have	“no	value”.	Optionals	can	be	checked	with	an	if	statement	to	see	if	a	value
exists,	and	can	be	conditionally	unwrapped	with	optional	binding	to	access	the
optional’s	value	if	it	does	exist.

Sometimes	it’s	clear	from	a	program’s	structure	that	an	optional	will	always	have
a	value,	after	that	value	is	first	set.	In	these	cases,	it’s	useful	to	remove	the	need
to	check	and	unwrap	the	optional’s	value	every	time	it’s	accessed,	because	it	can
be	safely	assumed	to	have	a	value	all	of	the	time.

These	kinds	of	optionals	are	defined	as	implicitly	unwrapped	optionals.	You
write	an	implicitly	unwrapped	optional	by	placing	an	exclamation	mark
(String!)	rather	than	a	question	mark	(String?)	after	the	type	that	you	want	to
make	optional.

Implicitly	unwrapped	optionals	are	useful	when	an	optional’s	value	is	confirmed
to	exist	immediately	after	the	optional	is	first	defined	and	can	definitely	be
assumed	to	exist	at	every	point	thereafter.	The	primary	use	of	implicitly
unwrapped	optionals	in	Swift	is	during	class	initialization,	as	described	in
Unowned	References	and	Implicitly	Unwrapped	Optional	Properties.

An	implicitly	unwrapped	optional	is	a	normal	optional	behind	the	scenes,	but
can	also	be	used	like	a	non-optional	value,	without	the	need	to	unwrap	the
optional	value	each	time	it’s	accessed.	The	following	example	shows	the
difference	in	behavior	between	an	optional	string	and	an	implicitly	unwrapped
optional	string	when	accessing	their	wrapped	value	as	an	explicit	String:

1 let	possibleString:	String?	=	"An	optional	string."

2 let	forcedString:	String	=	possibleString!	//	requires	an	

exclamation	mark

3

4 let	assumedString:	String!	=	"An	implicitly	unwrapped	optional	

string."

5 let	implicitString:	String	=	assumedString	//	no	need	for	an	

exclamation	mark

You	can	think	of	an	implicitly	unwrapped	optional	as	giving	permission	for	the
optional	to	be	unwrapped	automatically	whenever	it’s	used.	Rather	than	placing
an	exclamation	mark	after	the	optional’s	name	each	time	you	use	it,	you	place	an
exclamation	mark	after	the	optional’s	type	when	you	declare	it.

NOTE

If	an	implicitly	unwrapped	optional	is	nil	and	you	try	to	access	its	wrapped	value,	you’ll	trigger	a
runtime	error.	The	result	is	exactly	the	same	as	if	you	place	an	exclamation	mark	after	a	normal
optional	that	doesn’t	contain	a	value.

You	can	still	treat	an	implicitly	unwrapped	optional	like	a	normal	optional,	to
check	if	it	contains	a	value:

1 if	assumedString	!=	nil	{

2 				print(assumedString!)

3 }

4 //	Prints	"An	implicitly	unwrapped	optional	string."

You	can	also	use	an	implicitly	unwrapped	optional	with	optional	binding,	to
check	and	unwrap	its	value	in	a	single	statement:

1 if	let	definiteString	=	assumedString	{

2 				print(definiteString)

3 }

4 //	Prints	"An	implicitly	unwrapped	optional	string."

NOTE

Don’t	use	an	implicitly	unwrapped	optional	when	there’s	a	possibility	of	a	variable	becoming	nil	at
a	later	point.	Always	use	a	normal	optional	type	if	you	need	to	check	for	a	nil	value	during	the
lifetime	of	a	variable.

Error	Handling

You	use	error	handling	to	respond	to	error	conditions	your	program	may
encounter	during	execution.

In	contrast	to	optionals,	which	can	use	the	presence	or	absence	of	a	value	to
communicate	success	or	failure	of	a	function,	error	handling	allows	you	to
determine	the	underlying	cause	of	failure,	and,	if	necessary,	propagate	the	error
to	another	part	of	your	program.

When	a	function	encounters	an	error	condition,	it	throws	an	error.	That
function’s	caller	can	then	catch	the	error	and	respond	appropriately.

1 func	canThrowAnError()	throws	{

2 				//	this	function	may	or	may	not	throw	an	error

3 }

A	function	indicates	that	it	can	throw	an	error	by	including	the	throws	keyword
in	its	declaration.	When	you	call	a	function	that	can	throw	an	error,	you	prepend
the	try	keyword	to	the	expression.

Swift	automatically	propagates	errors	out	of	their	current	scope	until	they’re
handled	by	a	catch	clause.

1 do	{

2 				try	canThrowAnError()

3 				//	no	error	was	thrown

4 }	catch	{

5 				//	an	error	was	thrown

6 }

A	do	statement	creates	a	new	containing	scope,	which	allows	errors	to	be
propagated	to	one	or	more	catch	clauses.

Here’s	an	example	of	how	error	handling	can	be	used	to	respond	to	different
error	conditions:

1 func	makeASandwich()	throws	{

2 				//	...

3 }

4

5 do	{

6 				try	makeASandwich()

7 				eatASandwich()

8 }	catch	SandwichError.outOfCleanDishes	{

9 				washDishes()

10 }	catch	SandwichError.missingIngredients(let	ingredients)	{

11 				buyGroceries(ingredients)

12 }

In	this	example,	the	makeASandwich()	function	will	throw	an	error	if	no	clean
dishes	are	available	or	if	any	ingredients	are	missing.	Because	makeASandwich()
can	throw	an	error,	the	function	call	is	wrapped	in	a	try	expression.	By	wrapping
the	function	call	in	a	do	statement,	any	errors	that	are	thrown	will	be	propagated
to	the	provided	catch	clauses.

If	no	error	is	thrown,	the	eatASandwich()	function	is	called.	If	an	error	is	thrown
and	it	matches	the	SandwichError.outOfCleanDishes	case,	then	the	washDishes()
function	will	be	called.	If	an	error	is	thrown	and	it	matches	the
SandwichError.missingIngredients	case,	then	the	buyGroceries(_:)	function	is
called	with	the	associated	[String]	value	captured	by	the	catch	pattern.

Throwing,	catching,	and	propagating	errors	is	covered	in	greater	detail	in	Error
Handling.

Assertions	and	Preconditions

Assertions	and	preconditions	are	checks	that	happen	at	runtime.	You	use	them	to
make	sure	an	essential	condition	is	satisfied	before	executing	any	further	code.	If

the	Boolean	condition	in	the	assertion	or	precondition	evaluates	to	true,	code
execution	continues	as	usual.	If	the	condition	evaluates	to	false,	the	current	state
of	the	program	is	invalid;	code	execution	ends,	and	your	app	is	terminated.

You	use	assertions	and	preconditions	to	express	the	assumptions	you	make	and
the	expectations	you	have	while	coding,	so	you	can	include	them	as	part	of	your
code.	Assertions	help	you	find	mistakes	and	incorrect	assumptions	during
development,	and	preconditions	help	you	detect	issues	in	production.

In	addition	to	verifying	your	expectations	at	runtime,	assertions	and
preconditions	also	become	a	useful	form	of	documentation	within	the	code.
Unlike	the	error	conditions	discussed	in	Error	Handling	above,	assertions	and
preconditions	aren’t	used	for	recoverable	or	expected	errors.	Because	a	failed
assertion	or	precondition	indicates	an	invalid	program	state,	there’s	no	way	to
catch	a	failed	assertion.

Using	assertions	and	preconditions	isn’t	a	substitute	for	designing	your	code	in
such	a	way	that	invalid	conditions	are	unlikely	to	arise.	However,	using	them	to
enforce	valid	data	and	state	causes	your	app	to	terminate	more	predictably	if	an
invalid	state	occurs,	and	helps	make	the	problem	easier	to	debug.	Stopping
execution	as	soon	as	an	invalid	state	is	detected	also	helps	limit	the	damage
caused	by	that	invalid	state.

The	difference	between	assertions	and	preconditions	is	in	when	they’re	checked:
Assertions	are	checked	only	in	debug	builds,	but	preconditions	are	checked	in
both	debug	and	production	builds.	In	production	builds,	the	condition	inside	an
assertion	isn’t	evaluated.	This	means	you	can	use	as	many	assertions	as	you	want
during	your	development	process,	without	impacting	performance	in	production.

Debugging	with	Assertions
You	write	an	assertion	by	calling	the	assert(_:_:file:line:)	function	from	the
Swift	standard	library.	You	pass	this	function	an	expression	that	evaluates	to
true	or	false	and	a	message	to	display	if	the	result	of	the	condition	is	false.	For
example:

1 let	age	=	-3

https://developer.apple.com/documentation/swift/1541112-assert

2 assert(age	>=	0,	"A	person's	age	can't	be	less	than	zero.")

3 //	This	assertion	fails	because	-3	is	not	>=	0.

In	this	example,	code	execution	continues	if	age	>=	0	evaluates	to	true,	that	is,
if	the	value	of	age	is	nonnegative.	If	the	value	of	age	is	negative,	as	in	the	code
above,	then	age	>=	0	evaluates	to	false,	and	the	assertion	fails,	terminating	the
application.

You	can	omit	the	assertion	message—for	example,	when	it	would	just	repeat	the
condition	as	prose.

	 assert(age	>=	0)

If	the	code	already	checks	the	condition,	you	use	the
assertionFailure(_:file:line:)	function	to	indicate	that	an	assertion	has
failed.	For	example:

1 if	age	>	10	{

2 				print("You	can	ride	the	roller-coaster	or	the	ferris	

wheel.")

3 }	else	if	age	>=	0	{

4 				print("You	can	ride	the	ferris	wheel.")

5 }	else	{

6 				assertionFailure("A	person's	age	can't	be	less	than	zero.")

7 }

Enforcing	Preconditions
Use	a	precondition	whenever	a	condition	has	the	potential	to	be	false,	but	must
definitely	be	true	for	your	code	to	continue	execution.	For	example,	use	a
precondition	to	check	that	a	subscript	is	not	out	of	bounds,	or	to	check	that	a
function	has	been	passed	a	valid	value.

You	write	a	precondition	by	calling	the	precondition(_:_:file:line:)	function.

https://developer.apple.com/documentation/swift/1539616-assertionfailure
https://developer.apple.com/documentation/swift/1540960-precondition

You	pass	this	function	an	expression	that	evaluates	to	true	or	false	and	a
message	to	display	if	the	result	of	the	condition	is	false.	For	example:

1 //	In	the	implementation	of	a	subscript...

2 precondition(index	>	0,	"Index	must	be	greater	than	zero.")

You	can	also	call	the	preconditionFailure(_:file:line:)	function	to	indicate
that	a	failure	has	occurred—for	example,	if	the	default	case	of	a	switch	was
taken,	but	all	valid	input	data	should	have	been	handled	by	one	of	the	switch’s
other	cases.

NOTE

If	you	compile	in	unchecked	mode	(-Ounchecked),	preconditions	aren’t	checked.	The	compiler
assumes	that	preconditions	are	always	true,	and	it	optimizes	your	code	accordingly.	However,	the
fatalError(_:file:line:)	function	always	halts	execution,	regardless	of	optimization
settings.

You	can	use	the	fatalError(_:file:line:)	function	during	prototyping	and	early
development	to	create	stubs	for	functionality	that	hasn’t	been	implemented	yet,	by	writing
fatalError("Unimplemented")	as	the	stub	implementation.	Because	fatal	errors	are	never
optimized	out,	unlike	assertions	or	preconditions,	you	can	be	sure	that	execution	always	halts	if	it
encounters	a	stub	implementation.

https://developer.apple.com/documentation/swift/1539374-preconditionfailure

Basic	Operators

An	operator	is	a	special	symbol	or	phrase	that	you	use	to	check,	change,	or
combine	values.	For	example,	the	addition	operator	(+)	adds	two	numbers,	as	in
let	i	=	1	+	2,	and	the	logical	AND	operator	(&&)	combines	two	Boolean
values,	as	in	if	enteredDoorCode	&&	passedRetinaScan.

Swift	supports	most	standard	C	operators	and	improves	several	capabilities	to
eliminate	common	coding	errors.	The	assignment	operator	(=)	doesn’t	return	a
value,	to	prevent	it	from	being	mistakenly	used	when	the	equal	to	operator	(==)
is	intended.	Arithmetic	operators	(+,	-,	*,	/,	%	and	so	forth)	detect	and	disallow
value	overflow,	to	avoid	unexpected	results	when	working	with	numbers	that
become	larger	or	smaller	than	the	allowed	value	range	of	the	type	that	stores
them.	You	can	opt	in	to	value	overflow	behavior	by	using	Swift’s	overflow
operators,	as	described	in	Overflow	Operators.

Swift	also	provides	range	operators	that	aren’t	found	in	C,	such	as	a..<b	and
a...b,	as	a	shortcut	for	expressing	a	range	of	values.

This	chapter	describes	the	common	operators	in	Swift.	Advanced	Operators
covers	Swift’s	advanced	operators,	and	describes	how	to	define	your	own
custom	operators	and	implement	the	standard	operators	for	your	own	custom
types.

Terminology

Operators	are	unary,	binary,	or	ternary:

Unary	operators	operate	on	a	single	target	(such	as	-a).	Unary	prefix
operators	appear	immediately	before	their	target	(such	as	!b),	and	unary
postfix	operators	appear	immediately	after	their	target	(such	as	c!).

Binary	operators	operate	on	two	targets	(such	as	2	+	3)	and	are	infix
because	they	appear	in	between	their	two	targets.

Ternary	operators	operate	on	three	targets.	Like	C,	Swift	has	only	one
ternary	operator,	the	ternary	conditional	operator	(a	?	b	:	c).

The	values	that	operators	affect	are	operands.	In	the	expression	1	+	2,	the	+
symbol	is	a	binary	operator	and	its	two	operands	are	the	values	1	and	2.

Assignment	Operator

The	assignment	operator	(a	=	b)	initializes	or	updates	the	value	of	a	with	the
value	of	b:

1 let	b	=	10

2 var	a	=	5

3 a	=	b

4 //	a	is	now	equal	to	10

If	the	right	side	of	the	assignment	is	a	tuple	with	multiple	values,	its	elements
can	be	decomposed	into	multiple	constants	or	variables	at	once:

1 let	(x,	y)	=	(1,	2)

2 //	x	is	equal	to	1,	and	y	is	equal	to	2

Unlike	the	assignment	operator	in	C	and	Objective-C,	the	assignment	operator	in
Swift	does	not	itself	return	a	value.	The	following	statement	is	not	valid:

1 if	x	=	y	{

2 				//	This	is	not	valid,	because	x	=	y	does	not	return	a	

value.

3 }

This	feature	prevents	the	assignment	operator	(=)	from	being	used	by	accident
when	the	equal	to	operator	(==)	is	actually	intended.	By	making	if	x	=	y
invalid,	Swift	helps	you	to	avoid	these	kinds	of	errors	in	your	code.

Arithmetic	Operators

Swift	supports	the	four	standard	arithmetic	operators	for	all	number	types:

Addition	(+)

Subtraction	(-)

Multiplication	(*)

Division	(/)

1 1	+	2							//	equals	3

2 5	-	3							//	equals	2

3 2	*	3							//	equals	6

4 10.0	/	2.5		//	equals	4.0

Unlike	the	arithmetic	operators	in	C	and	Objective-C,	the	Swift	arithmetic
operators	don’t	allow	values	to	overflow	by	default.	You	can	opt	in	to	value
overflow	behavior	by	using	Swift’s	overflow	operators	(such	as	a	&+	b).	See
Overflow	Operators.

The	addition	operator	is	also	supported	for	String	concatenation:

	 "hello,	"	+	"world"		//	equals	"hello,	world"

Remainder	Operator
The	remainder	operator	(a	%	b)	works	out	how	many	multiples	of	b	will	fit
inside	a	and	returns	the	value	that	is	left	over	(known	as	the	remainder).

NOTE

The	remainder	operator	(%)	is	also	known	as	a	modulo	operator	in	other	languages.	However,	its
behavior	in	Swift	for	negative	numbers	means	that,	strictly	speaking,	it’s	a	remainder	rather	than	a
modulo	operation.

Here’s	how	the	remainder	operator	works.	To	calculate	9	%	4,	you	first	work	out
how	many	4s	will	fit	inside	9:

You	can	fit	two	4s	inside	9,	and	the	remainder	is	1	(shown	in	orange).

In	Swift,	this	would	be	written	as:

	 9	%	4				//	equals	1

To	determine	the	answer	for	a	%	b,	the	%	operator	calculates	the	following
equation	and	returns	remainder	as	its	output:

a	=	(b	x	some	multiplier)	+	remainder

where	some	multiplier	is	the	largest	number	of	multiples	of	b	that	will	fit	inside
a.

Inserting	9	and	4	into	this	equation	yields:

9	=	(4	x	2)	+	1

The	same	method	is	applied	when	calculating	the	remainder	for	a	negative	value
of	a:

	 -9	%	4			//	equals	-1

Inserting	-9	and	4	into	the	equation	yields:

-9	=	(4	x	-2)	+	-1

giving	a	remainder	value	of	-1.

The	sign	of	b	is	ignored	for	negative	values	of	b.	This	means	that	a	%	b	and	a	%
-b	always	give	the	same	answer.

Unary	Minus	Operator
The	sign	of	a	numeric	value	can	be	toggled	using	a	prefixed	-,	known	as	the
unary	minus	operator:

1 let	three	=	3

2 let	minusThree	=	-three							//	minusThree	equals	-3

3 let	plusThree	=	-minusThree			//	plusThree	equals	3,	or	"minus	

minus	three"

The	unary	minus	operator	(-)	is	prepended	directly	before	the	value	it	operates
on,	without	any	white	space.

Unary	Plus	Operator
The	unary	plus	operator	(+)	simply	returns	the	value	it	operates	on,	without	any
change:

1 let	minusSix	=	-6

2 let	alsoMinusSix	=	+minusSix		//	alsoMinusSix	equals	-6

Although	the	unary	plus	operator	doesn’t	actually	do	anything,	you	can	use	it	to
provide	symmetry	in	your	code	for	positive	numbers	when	also	using	the	unary
minus	operator	for	negative	numbers.

Compound	Assignment	Operators

Like	C,	Swift	provides	compound	assignment	operators	that	combine
assignment	(=)	with	another	operation.	One	example	is	the	addition	assignment
operator	(+=):

1 var	a	=	1

2 a	+=	2

3 //	a	is	now	equal	to	3

The	expression	a	+=	2	is	shorthand	for	a	=	a	+	2.	Effectively,	the	addition	and
the	assignment	are	combined	into	one	operator	that	performs	both	tasks	at	the
same	time.

NOTE

The	compound	assignment	operators	don’t	return	a	value.	For	example,	you	can’t	write	let	b	=	a
+=	2.

For	information	about	the	operators	provided	by	the	Swift	standard	library,	see
Operator	Declarations.

Comparison	Operators

Swift	supports	all	standard	C	comparison	operators:

Equal	to	(a	==	b)

Not	equal	to	(a	!=	b)

Greater	than	(a	>	b)

Less	than	(a	<	b)

Greater	than	or	equal	to	(a	>=	b)

Less	than	or	equal	to	(a	<=	b)

NOTE

Swift	also	provides	two	identity	operators	(===	and	!==),	which	you	use	to	test	whether	two	object
references	both	refer	to	the	same	object	instance.	For	more	information,	see	Identity	Operators.

Each	of	the	comparison	operators	returns	a	Bool	value	to	indicate	whether	or	not
the	statement	is	true:

https://developer.apple.com/documentation/swift/operator_declarations

1 1	==	1			//	true	because	1	is	equal	to	1

2 2	!=	1			//	true	because	2	is	not	equal	to	1

3 2	>	1				//	true	because	2	is	greater	than	1

4 1	<	2				//	true	because	1	is	less	than	2

5 1	>=	1			//	true	because	1	is	greater	than	or	equal	to	1

6 2	<=	1			//	false	because	2	is	not	less	than	or	equal	to	1

Comparison	operators	are	often	used	in	conditional	statements,	such	as	the	if
statement:

1 let	name	=	"world"

2 if	name	==	"world"	{

3 				print("hello,	world")

4 }	else	{

5 				print("I'm	sorry	\(name),	but	I	don't	recognize	you")

6 }

7 //	Prints	"hello,	world",	because	name	is	indeed	equal	to	

"world".

For	more	about	the	if	statement,	see	Control	Flow.

You	can	compare	two	tuples	if	they	have	the	same	type	and	the	same	number	of
values.	Tuples	are	compared	from	left	to	right,	one	value	at	a	time,	until	the
comparison	finds	two	values	that	aren’t	equal.	Those	two	values	are	compared,
and	the	result	of	that	comparison	determines	the	overall	result	of	the	tuple
comparison.	If	all	the	elements	are	equal,	then	the	tuples	themselves	are	equal.
For	example:

1 (1,	"zebra")	<	(2,	"apple")			//	true	because	1	is	less	than	2;	

"zebra"	and	"apple"	are	not	compared

2 (3,	"apple")	<	(3,	"bird")				//	true	because	3	is	equal	to	3,	

and	"apple"	is	less	than	"bird"

3 (4,	"dog")	==	(4,	"dog")						//	true	because	4	is	equal	to	4,	

and	"dog"	is	equal	to	"dog"

In	the	example	above,	you	can	see	the	left-to-right	comparison	behavior	on	the
first	line.	Because	1	is	less	than	2,	(1,	"zebra")	is	considered	less	than	(2,
"apple"),	regardless	of	any	other	values	in	the	tuples.	It	doesn’t	matter	that
"zebra"	isn’t	less	than	"apple",	because	the	comparison	is	already	determined	by
the	tuples’	first	elements.	However,	when	the	tuples’	first	elements	are	the	same,
their	second	elements	are	compared—this	is	what	happens	on	the	second	and
third	line.

Tuples	can	be	compared	with	a	given	operator	only	if	the	operator	can	be	applied
to	each	value	in	the	respective	tuples.	For	example,	as	demonstrated	in	the	code
below,	you	can	compare	two	tuples	of	type	(String,	Int)	because	both	String
and	Int	values	can	be	compared	using	the	<	operator.	In	contrast,	two	tuples	of
type	(String,	Bool)	can’t	be	compared	with	the	<	operator	because	the	<
operator	can’t	be	applied	to	Bool	values.

1 ("blue",	-1)	<	("purple",	1)								//	OK,	evaluates	to	true

2 ("blue",	false)	<	("purple",	true)		//	Error	because	<	can't	

compare	Boolean	values

NOTE

The	Swift	standard	library	includes	tuple	comparison	operators	for	tuples	with	fewer	than	seven
elements.	To	compare	tuples	with	seven	or	more	elements,	you	must	implement	the	comparison
operators	yourself.

Ternary	Conditional	Operator

The	ternary	conditional	operator	is	a	special	operator	with	three	parts,	which
takes	the	form	question	?	answer1	:	answer2.	It’s	a	shortcut	for	evaluating	one
of	two	expressions	based	on	whether	question	is	true	or	false.	If	question	is
true,	it	evaluates	answer1	and	returns	its	value;	otherwise,	it	evaluates	answer2

and	returns	its	value.

The	ternary	conditional	operator	is	shorthand	for	the	code	below:

1 if	question	{

2 				answer1

3 }	else	{

4 				answer2

5 }

Here’s	an	example,	which	calculates	the	height	for	a	table	row.	The	row	height
should	be	50	points	taller	than	the	content	height	if	the	row	has	a	header,	and	20
points	taller	if	the	row	doesn’t	have	a	header:

1 let	contentHeight	=	40

2 let	hasHeader	=	true

3 let	rowHeight	=	contentHeight	+	(hasHeader	?	50	:	20)

4 //	rowHeight	is	equal	to	90

The	example	above	is	shorthand	for	the	code	below:

1 let	contentHeight	=	40

2 let	hasHeader	=	true

3 let	rowHeight:	Int

4 if	hasHeader	{

5 				rowHeight	=	contentHeight	+	50

6 }	else	{

7 				rowHeight	=	contentHeight	+	20

8 }

9 //	rowHeight	is	equal	to	90

The	first	example’s	use	of	the	ternary	conditional	operator	means	that	rowHeight
can	be	set	to	the	correct	value	on	a	single	line	of	code,	which	is	more	concise

than	the	code	used	in	the	second	example.

The	ternary	conditional	operator	provides	an	efficient	shorthand	for	deciding
which	of	two	expressions	to	consider.	Use	the	ternary	conditional	operator	with
care,	however.	Its	conciseness	can	lead	to	hard-to-read	code	if	overused.	Avoid
combining	multiple	instances	of	the	ternary	conditional	operator	into	one
compound	statement.

Nil-Coalescing	Operator

The	nil-coalescing	operator	(a	??	b)	unwraps	an	optional	a	if	it	contains	a	value,
or	returns	a	default	value	b	if	a	is	nil.	The	expression	a	is	always	of	an	optional
type.	The	expression	b	must	match	the	type	that	is	stored	inside	a.

The	nil-coalescing	operator	is	shorthand	for	the	code	below:

	 a	!=	nil	?	a!	:	b

The	code	above	uses	the	ternary	conditional	operator	and	forced	unwrapping
(a!)	to	access	the	value	wrapped	inside	a	when	a	is	not	nil,	and	to	return	b
otherwise.	The	nil-coalescing	operator	provides	a	more	elegant	way	to
encapsulate	this	conditional	checking	and	unwrapping	in	a	concise	and	readable
form.

NOTE

If	the	value	of	a	is	non-nil,	the	value	of	b	is	not	evaluated.	This	is	known	as	short-circuit
evaluation.

The	example	below	uses	the	nil-coalescing	operator	to	choose	between	a	default
color	name	and	an	optional	user-defined	color	name:

1 let	defaultColorName	=	"red"

2 var	userDefinedColorName:	String?			//	defaults	to	nil

3

4 var	colorNameToUse	=	userDefinedColorName	??	defaultColorName

5 //	userDefinedColorName	is	nil,	so	colorNameToUse	is	set	to	the	

default	of	"red"

The	userDefinedColorName	variable	is	defined	as	an	optional	String,	with	a
default	value	of	nil.	Because	userDefinedColorName	is	of	an	optional	type,	you
can	use	the	nil-coalescing	operator	to	consider	its	value.	In	the	example	above,
the	operator	is	used	to	determine	an	initial	value	for	a	String	variable	called
colorNameToUse.	Because	userDefinedColorName	is	nil,	the	expression
userDefinedColorName	??	defaultColorName	returns	the	value	of
defaultColorName,	or	"red".

If	you	assign	a	non-nil	value	to	userDefinedColorName	and	perform	the	nil-
coalescing	operator	check	again,	the	value	wrapped	inside
userDefinedColorName	is	used	instead	of	the	default:

1 userDefinedColorName	=	"green"

2 colorNameToUse	=	userDefinedColorName	??	defaultColorName

3 //	userDefinedColorName	is	not	nil,	so	colorNameToUse	is	set	to	

"green"

Range	Operators

Swift	includes	several	range	operators,	which	are	shortcuts	for	expressing	a
range	of	values.

Closed	Range	Operator
The	closed	range	operator	(a...b)	defines	a	range	that	runs	from	a	to	b,	and
includes	the	values	a	and	b.	The	value	of	a	must	not	be	greater	than	b.

The	closed	range	operator	is	useful	when	iterating	over	a	range	in	which	you

want	all	of	the	values	to	be	used,	such	as	with	a	for-in	loop:

1 for	index	in	1...5	{

2 				print("\(index)	times	5	is	\(index	*	5)")

3 }

4 //	1	times	5	is	5

5 //	2	times	5	is	10

6 //	3	times	5	is	15

7 //	4	times	5	is	20

8 //	5	times	5	is	25

For	more	about	for-in	loops,	see	Control	Flow.

Half-Open	Range	Operator
The	half-open	range	operator	(a..<b)	defines	a	range	that	runs	from	a	to	b,	but
doesn’t	include	b.	It’s	said	to	be	half-open	because	it	contains	its	first	value,	but
not	its	final	value.	As	with	the	closed	range	operator,	the	value	of	a	must	not	be
greater	than	b.	If	the	value	of	a	is	equal	to	b,	then	the	resulting	range	will	be
empty.

Half-open	ranges	are	particularly	useful	when	you	work	with	zero-based	lists
such	as	arrays,	where	it’s	useful	to	count	up	to	(but	not	including)	the	length	of
the	list:

1 let	names	=	["Anna",	"Alex",	"Brian",	"Jack"]

2 let	count	=	names.count

3 for	i	in	0..<count	{

4 				print("Person	\(i	+	1)	is	called	\(names[i])")

5 }

6 //	Person	1	is	called	Anna

7 //	Person	2	is	called	Alex

8 //	Person	3	is	called	Brian

9 //	Person	4	is	called	Jack

Note	that	the	array	contains	four	items,	but	0..<count	only	counts	as	far	as	3	(the
index	of	the	last	item	in	the	array),	because	it’s	a	half-open	range.	For	more
about	arrays,	see	Arrays.

One-Sided	Ranges
The	closed	range	operator	has	an	alternative	form	for	ranges	that	continue	as	far
as	possible	in	one	direction—for	example,	a	range	that	includes	all	the	elements
of	an	array	from	index	2	to	the	end	of	the	array.	In	these	cases,	you	can	omit	the
value	from	one	side	of	the	range	operator.	This	kind	of	range	is	called	a	one-
sided	range	because	the	operator	has	a	value	on	only	one	side.	For	example:

1 for	name	in	names[2...]	{

2 				print(name)

3 }

4 //	Brian

5 //	Jack

6

7 for	name	in	names[...2]	{

8 				print(name)

9 }

10 //	Anna

11 //	Alex

12 //	Brian

The	half-open	range	operator	also	has	a	one-sided	form	that’s	written	with	only
its	final	value.	Just	like	when	you	include	a	value	on	both	sides,	the	final	value
isn’t	part	of	the	range.	For	example:

1 for	name	in	names[..<2]	{

2 				print(name)

3 }

4 //	Anna

5 //	Alex

One-sided	ranges	can	be	used	in	other	contexts,	not	just	in	subscripts.	You	can’t
iterate	over	a	one-sided	range	that	omits	a	first	value,	because	it	isn’t	clear	where
iteration	should	begin.	You	can	iterate	over	a	one-sided	range	that	omits	its	final
value;	however,	because	the	range	continues	indefinitely,	make	sure	you	add	an
explicit	end	condition	for	the	loop.	You	can	also	check	whether	a	one-sided
range	contains	a	particular	value,	as	shown	in	the	code	below.

1 let	range	=	...5

2 range.contains(7)			//	false

3 range.contains(4)			//	true

4 range.contains(-1)		//	true

Logical	Operators

Logical	operators	modify	or	combine	the	Boolean	logic	values	true	and	false.
Swift	supports	the	three	standard	logical	operators	found	in	C-based	languages:

Logical	NOT	(!a)

Logical	AND	(a	&&	b)

Logical	OR	(a	||	b)

Logical	NOT	Operator
The	logical	NOT	operator	(!a)	inverts	a	Boolean	value	so	that	true	becomes

false,	and	false	becomes	true.

The	logical	NOT	operator	is	a	prefix	operator,	and	appears	immediately	before
the	value	it	operates	on,	without	any	white	space.	It	can	be	read	as	“not	a”,	as
seen	in	the	following	example:

1 let	allowedEntry	=	false

2 if	!allowedEntry	{

3 				print("ACCESS	DENIED")

4 }

5 //	Prints	"ACCESS	DENIED"

The	phrase	if	!allowedEntry	can	be	read	as	“if	not	allowed	entry.”	The
subsequent	line	is	only	executed	if	“not	allowed	entry”	is	true;	that	is,	if
allowedEntry	is	false.

As	in	this	example,	careful	choice	of	Boolean	constant	and	variable	names	can
help	to	keep	code	readable	and	concise,	while	avoiding	double	negatives	or
confusing	logic	statements.

Logical	AND	Operator
The	logical	AND	operator	(a	&&	b)	creates	logical	expressions	where	both
values	must	be	true	for	the	overall	expression	to	also	be	true.

If	either	value	is	false,	the	overall	expression	will	also	be	false.	In	fact,	if	the
first	value	is	false,	the	second	value	won’t	even	be	evaluated,	because	it	can’t
possibly	make	the	overall	expression	equate	to	true.	This	is	known	as	short-
circuit	evaluation.

This	example	considers	two	Bool	values	and	only	allows	access	if	both	values
are	true:

1 let	enteredDoorCode	=	true

2 let	passedRetinaScan	=	false

3 if	enteredDoorCode	&&	passedRetinaScan	{

4 				print("Welcome!")

5 }	else	{

6 				print("ACCESS	DENIED")

7 }

8 //	Prints	"ACCESS	DENIED"

Logical	OR	Operator
The	logical	OR	operator	(a	||	b)	is	an	infix	operator	made	from	two	adjacent
pipe	characters.	You	use	it	to	create	logical	expressions	in	which	only	one	of	the
two	values	has	to	be	true	for	the	overall	expression	to	be	true.

Like	the	Logical	AND	operator	above,	the	Logical	OR	operator	uses	short-
circuit	evaluation	to	consider	its	expressions.	If	the	left	side	of	a	Logical	OR
expression	is	true,	the	right	side	is	not	evaluated,	because	it	can’t	change	the
outcome	of	the	overall	expression.

In	the	example	below,	the	first	Bool	value	(hasDoorKey)	is	false,	but	the	second
value	(knowsOverridePassword)	is	true.	Because	one	value	is	true,	the	overall
expression	also	evaluates	to	true,	and	access	is	allowed:

1 let	hasDoorKey	=	false

2 let	knowsOverridePassword	=	true

3 if	hasDoorKey	||	knowsOverridePassword	{

4 				print("Welcome!")

5 }	else	{

6 				print("ACCESS	DENIED")

7 }

8 //	Prints	"Welcome!"

Combining	Logical	Operators
You	can	combine	multiple	logical	operators	to	create	longer	compound
expressions:

1 if	enteredDoorCode	&&	passedRetinaScan	||	hasDoorKey	||	

knowsOverridePassword	{

2 				print("Welcome!")

3 }	else	{

4 				print("ACCESS	DENIED")

5 }

6 //	Prints	"Welcome!"

This	example	uses	multiple	&&	and	||	operators	to	create	a	longer	compound
expression.	However,	the	&&	and	||	operators	still	operate	on	only	two	values,	so
this	is	actually	three	smaller	expressions	chained	together.	The	example	can	be
read	as:

If	we’ve	entered	the	correct	door	code	and	passed	the	retina	scan,	or	if	we	have	a
valid	door	key,	or	if	we	know	the	emergency	override	password,	then	allow
access.

Based	on	the	values	of	enteredDoorCode,	passedRetinaScan,	and	hasDoorKey,	the
first	two	subexpressions	are	false.	However,	the	emergency	override	password
is	known,	so	the	overall	compound	expression	still	evaluates	to	true.

NOTE

The	Swift	logical	operators	&&	and	||	are	left-associative,	meaning	that	compound	expressions	with
multiple	logical	operators	evaluate	the	leftmost	subexpression	first.

Explicit	Parentheses
It’s	sometimes	useful	to	include	parentheses	when	they’re	not	strictly	needed,	to
make	the	intention	of	a	complex	expression	easier	to	read.	In	the	door	access
example	above,	it’s	useful	to	add	parentheses	around	the	first	part	of	the

compound	expression	to	make	its	intent	explicit:

1 if	(enteredDoorCode	&&	passedRetinaScan)	||	hasDoorKey	||	

knowsOverridePassword	{

2 				print("Welcome!")

3 }	else	{

4 				print("ACCESS	DENIED")

5 }

6 //	Prints	"Welcome!"

The	parentheses	make	it	clear	that	the	first	two	values	are	considered	as	part	of	a
separate	possible	state	in	the	overall	logic.	The	output	of	the	compound
expression	doesn’t	change,	but	the	overall	intention	is	clearer	to	the	reader.
Readability	is	always	preferred	over	brevity;	use	parentheses	where	they	help	to
make	your	intentions	clear.

Strings	and	Characters

A	string	is	a	series	of	characters,	such	as	"hello,	world"	or	"albatross".	Swift
strings	are	represented	by	the	String	type.	The	contents	of	a	String	can	be
accessed	in	various	ways,	including	as	a	collection	of	Character	values.

Swift’s	String	and	Character	types	provide	a	fast,	Unicode-compliant	way	to
work	with	text	in	your	code.	The	syntax	for	string	creation	and	manipulation	is
lightweight	and	readable,	with	a	string	literal	syntax	that	is	similar	to	C.	String
concatenation	is	as	simple	as	combining	two	strings	with	the	+	operator,	and
string	mutability	is	managed	by	choosing	between	a	constant	or	a	variable,	just
like	any	other	value	in	Swift.	You	can	also	use	strings	to	insert	constants,
variables,	literals,	and	expressions	into	longer	strings,	in	a	process	known	as
string	interpolation.	This	makes	it	easy	to	create	custom	string	values	for	display,
storage,	and	printing.

Despite	this	simplicity	of	syntax,	Swift’s	String	type	is	a	fast,	modern	string
implementation.	Every	string	is	composed	of	encoding-independent	Unicode
characters,	and	provides	support	for	accessing	those	characters	in	various
Unicode	representations.

NOTE

Swift’s	String	type	is	bridged	with	Foundation’s	NSString	class.	Foundation	also	extends
String	to	expose	methods	defined	by	NSString.	This	means,	if	you	import	Foundation,	you	can
access	those	NSString	methods	on	String	without	casting.

For	more	information	about	using	String	with	Foundation	and	Cocoa,	see	Bridging	Between
String	and	NSString.

String	Literals

You	can	include	predefined	String	values	within	your	code	as	string	literals.	A
string	literal	is	a	sequence	of	characters	surrounded	by	double	quotation	marks
(").

https://developer.apple.com/documentation/swift/string#2919514

Use	a	string	literal	as	an	initial	value	for	a	constant	or	variable:

	 let	someString	=	"Some	string	literal	value"

Note	that	Swift	infers	a	type	of	String	for	the	someString	constant	because	it’s
initialized	with	a	string	literal	value.

Multiline	String	Literals
If	you	need	a	string	that	spans	several	lines,	use	a	multiline	string	literal—a
sequence	of	characters	surrounded	by	three	double	quotation	marks:

1 let	quotation	=	"""

2 The	White	Rabbit	put	on	his	spectacles.		"Where	shall	I	begin,

3 please	your	Majesty?"	he	asked.

4

5 "Begin	at	the	beginning,"	the	King	said	gravely,	"and	go	on

6 till	you	come	to	the	end;	then	stop."

7 """

A	multiline	string	literal	includes	all	of	the	lines	between	its	opening	and	closing
quotation	marks.	The	string	begins	on	the	first	line	after	the	opening	quotation
marks	(""")	and	ends	on	the	line	before	the	closing	quotation	marks,	which
means	that	neither	of	the	strings	below	start	or	end	with	a	line	break:

1 let	singleLineString	=	"These	are	the	same."

2 let	multilineString	=	"""

3 These	are	the	same.

4 """

When	your	source	code	includes	a	line	break	inside	of	a	multiline	string	literal,
that	line	break	also	appears	in	the	string’s	value.	If	you	want	to	use	line	breaks	to
make	your	source	code	easier	to	read,	but	you	don’t	want	the	line	breaks	to	be

part	of	the	string’s	value,	write	a	backslash	(\)	at	the	end	of	those	lines:

1 let	softWrappedQuotation	=	"""

2 The	White	Rabbit	put	on	his	spectacles.		"Where	shall	I	begin,	

\

3 please	your	Majesty?"	he	asked.

4

5 "Begin	at	the	beginning,"	the	King	said	gravely,	"and	go	on	\

6 till	you	come	to	the	end;	then	stop."

7 """

To	make	a	multiline	string	literal	that	begins	or	ends	with	a	line	feed,	write	a
blank	line	as	the	first	or	last	line.	For	example:

1 let	lineBreaks	=	"""

2

3 This	string	starts	with	a	line	break.

4 It	also	ends	with	a	line	break.

5

6 """

A	multiline	string	can	be	indented	to	match	the	surrounding	code.	The
whitespace	before	the	closing	quotation	marks	(""")	tells	Swift	what	whitespace
to	ignore	before	all	of	the	other	lines.	However,	if	you	write	whitespace	at	the
beginning	of	a	line	in	addition	to	what’s	before	the	closing	quotation	marks,	that
whitespace	is	included.

In	the	example	above,	even	though	the	entire	multiline	string	literal	is	indented,

the	first	and	last	lines	in	the	string	don’t	begin	with	any	whitespace.	The	middle
line	has	more	indentation	than	the	closing	quotation	marks,	so	it	starts	with	that
extra	four-space	indentation.

Special	Characters	in	String	Literals
String	literals	can	include	the	following	special	characters:

The	escaped	special	characters	\0	(null	character),	\\	(backslash),	\t
(horizontal	tab),	\n	(line	feed),	\r	(carriage	return),	\"	(double	quotation
mark)	and	\'	(single	quotation	mark)

An	arbitrary	Unicode	scalar	value,	written	as	\u{n},	where	n	is	a	1–8	digit
hexadecimal	number	(Unicode	is	discussed	in	Unicode	below)

The	code	below	shows	four	examples	of	these	special	characters.	The	wiseWords
constant	contains	two	escaped	double	quotation	marks.	The	dollarSign,
blackHeart,	and	sparklingHeart	constants	demonstrate	the	Unicode	scalar
format:

1 let	wiseWords	=	"\"Imagination	is	more	important	than	

knowledge\"	-	Einstein"

2 //	"Imagination	is	more	important	than	knowledge"	-	Einstein

3 let	dollarSign	=	"\u{24}"								//	$,		Unicode	scalar	U+0024

4 let	blackHeart	=	"\u{2665}"						//	♥,		Unicode	scalar	U+2665

5 let	sparklingHeart	=	"\u{1F496}"	//	,	Unicode	scalar	U+1F496

Because	multiline	string	literals	use	three	double	quotation	marks	instead	of	just
one,	you	can	include	a	double	quotation	mark	(")	inside	of	a	multiline	string
literal	without	escaping	it.	To	include	the	text	"""	in	a	multiline	string,	escape	at
least	one	of	the	quotation	marks.	For	example:

1 let	threeDoubleQuotationMarks	=	"""

2 Escaping	the	first	quotation	mark	\"""

3 Escaping	all	three	quotation	marks	\"\"\"

4 """

Extended	String	Delimiters
You	can	place	a	string	literal	within	extended	delimiters	to	include	special
characters	in	a	string	without	invoking	their	effect.	You	place	your	string	within
quotation	marks	(")	and	surround	that	with	number	signs	(#).	For	example,
printing	the	string	literal	#"Line	1\nLine	2"#	prints	the	line	feed	escape
sequence	(\n)	rather	than	printing	the	string	across	two	lines.

If	you	need	the	special	effects	of	a	character	in	a	string	literal,	match	the	number
of	number	signs	within	the	string	following	the	escape	character	(\).	For
example,	if	your	string	is	#"Line	1\nLine	2"#	and	you	want	to	break	the	line,
you	can	use	#"Line	1\#nLine	2"#	instead.	Similarly,	###"Line1\###nLine2"###
also	breaks	the	line.

String	literals	created	using	extended	delimiters	can	also	be	multiline	string
literals.	You	can	use	extended	delimiters	to	include	the	text	"""	in	a	multiline
string,	overriding	the	default	behavior	that	ends	the	literal.	For	example:

1 let	threeMoreDoubleQuotationMarks	=	#"""

2 Here	are	three	more	double	quotes:	"""

3 """#

Initializing	an	Empty	String

To	create	an	empty	String	value	as	the	starting	point	for	building	a	longer	string,
either	assign	an	empty	string	literal	to	a	variable,	or	initialize	a	new	String
instance	with	initializer	syntax:

1 var	emptyString	=	""															//	empty	string	literal

2 var	anotherEmptyString	=	String()		//	initializer	syntax

3 //	these	two	strings	are	both	empty,	and	are	equivalent	to	each	

other

Find	out	whether	a	String	value	is	empty	by	checking	its	Boolean	isEmpty
property:

1 if	emptyString.isEmpty	{

2 				print("Nothing	to	see	here")

3 }

4 //	Prints	"Nothing	to	see	here"

String	Mutability

You	indicate	whether	a	particular	String	can	be	modified	(or	mutated)	by
assigning	it	to	a	variable	(in	which	case	it	can	be	modified),	or	to	a	constant	(in
which	case	it	can’t	be	modified):

1 var	variableString	=	"Horse"

2 variableString	+=	"	and	carriage"

3 //	variableString	is	now	"Horse	and	carriage"

4

5 let	constantString	=	"Highlander"

6 constantString	+=	"	and	another	Highlander"

7 //	this	reports	a	compile-time	error	-	a	constant	string	cannot	

be	modified

NOTE

This	approach	is	different	from	string	mutation	in	Objective-C	and	Cocoa,	where	you	choose
between	two	classes	(NSString	and	NSMutableString)	to	indicate	whether	a	string	can	be
mutated.

Strings	Are	Value	Types

Swift’s	String	type	is	a	value	type.	If	you	create	a	new	String	value,	that	String
value	is	copied	when	it’s	passed	to	a	function	or	method,	or	when	it’s	assigned	to
a	constant	or	variable.	In	each	case,	a	new	copy	of	the	existing	String	value	is
created,	and	the	new	copy	is	passed	or	assigned,	not	the	original	version.	Value
types	are	described	in	Structures	and	Enumerations	Are	Value	Types.

Swift’s	copy-by-default	String	behavior	ensures	that	when	a	function	or	method
passes	you	a	String	value,	it’s	clear	that	you	own	that	exact	String	value,
regardless	of	where	it	came	from.	You	can	be	confident	that	the	string	you	are
passed	won’t	be	modified	unless	you	modify	it	yourself.

Behind	the	scenes,	Swift’s	compiler	optimizes	string	usage	so	that	actual
copying	takes	place	only	when	absolutely	necessary.	This	means	you	always	get
great	performance	when	working	with	strings	as	value	types.

Working	with	Characters

You	can	access	the	individual	Character	values	for	a	String	by	iterating	over	the
string	with	a	for-in	loop:

1 for	character	in	"Dog!" 	{

2 				print(character)

3 }

4 //	D

5 //	o

6 //	g

7 //	!

8 //	

The	for-in	loop	is	described	in	For-In	Loops.

Alternatively,	you	can	create	a	stand-alone	Character	constant	or	variable	from	a
single-character	string	literal	by	providing	a	Character	type	annotation:

	 let	exclamationMark:	Character	=	"!"

String	values	can	be	constructed	by	passing	an	array	of	Character	values	as	an
argument	to	its	initializer:

1 let	catCharacters:	[Character]	=	["C",	"a",	"t",	"!",	" "]

2 let	catString	=	String(catCharacters)

3 print(catString)

4 //	Prints	"Cat! "

Concatenating	Strings	and	Characters

String	values	can	be	added	together	(or	concatenated)	with	the	addition	operator
(+)	to	create	a	new	String	value:

1 let	string1	=	"hello"

2 let	string2	=	"	there"

3 var	welcome	=	string1	+	string2

4 //	welcome	now	equals	"hello	there"

You	can	also	append	a	String	value	to	an	existing	String	variable	with	the
addition	assignment	operator	(+=):

1 var	instruction	=	"look	over"

2 instruction	+=	string2

3 //	instruction	now	equals	"look	over	there"

You	can	append	a	Character	value	to	a	String	variable	with	the	String	type’s
append()	method:

1 let	exclamationMark:	Character	=	"!"

2 welcome.append(exclamationMark)

3 //	welcome	now	equals	"hello	there!"

NOTE

You	can’t	append	a	String	or	Character	to	an	existing	Character	variable,	because	a
Character	value	must	contain	a	single	character	only.

If	you’re	using	multiline	string	literals	to	build	up	the	lines	of	a	longer	string,
you	want	every	line	in	the	string	to	end	with	a	line	break,	including	the	last	line.
For	example:

1 let	badStart	=	"""

2 one

3 two

4 """

5 let	end	=	"""

6 three

7 """

8 print(badStart	+	end)

9 //	Prints	two	lines:

10 //	one

11 //	twothree

12

13 let	goodStart	=	"""

14 one

15 two

16

17 """

18 print(goodStart	+	end)

19 //	Prints	three	lines:

20 //	one

21 //	two

22 //	three

In	the	code	above,	concatenating	badStart	with	end	produces	a	two-line	string,
which	isn’t	the	desired	result.	Because	the	last	line	of	badStart	doesn’t	end	with
a	line	break,	that	line	gets	combined	with	the	first	line	of	end.	In	contrast,	both
lines	of	goodStart	end	with	a	line	break,	so	when	it’s	combined	with	end	the
result	has	three	lines,	as	expected.

String	Interpolation

String	interpolation	is	a	way	to	construct	a	new	String	value	from	a	mix	of
constants,	variables,	literals,	and	expressions	by	including	their	values	inside	a
string	literal.	You	can	use	string	interpolation	in	both	single-line	and	multiline
string	literals.	Each	item	that	you	insert	into	the	string	literal	is	wrapped	in	a	pair
of	parentheses,	prefixed	by	a	backslash	(\):

1 let	multiplier	=	3

2 let	message	=	"\(multiplier)	times	2.5	is	\(Double(multiplier)	

*	2.5)"

3 //	message	is	"3	times	2.5	is	7.5"

In	the	example	above,	the	value	of	multiplier	is	inserted	into	a	string	literal	as	\
(multiplier).	This	placeholder	is	replaced	with	the	actual	value	of	multiplier
when	the	string	interpolation	is	evaluated	to	create	an	actual	string.

The	value	of	multiplier	is	also	part	of	a	larger	expression	later	in	the	string.
This	expression	calculates	the	value	of	Double(multiplier)	*	2.5	and	inserts
the	result	(7.5)	into	the	string.	In	this	case,	the	expression	is	written	as	\
(Double(multiplier)	*	2.5)	when	it’s	included	inside	the	string	literal.

You	can	use	extended	string	delimiters	to	create	strings	containing	characters

that	would	otherwise	be	treated	as	a	string	interpolation.	For	example:

1 print(#"Write	an	interpolated	string	in	Swift	using	\

(multiplier)."#)

2 //	Prints	"Write	an	interpolated	string	in	Swift	using	\

(multiplier)."

To	use	string	interpolation	inside	a	string	that	uses	extended	delimiters,	match
the	number	of	number	signs	before	the	backslash	to	the	number	of	number	signs
at	the	beginning	and	end	of	the	string.	For	example:

1 print(#"6	times	7	is	\#(6	*	7)."#)

2 //	Prints	"6	times	7	is	42."

NOTE

The	expressions	you	write	inside	parentheses	within	an	interpolated	string	can’t	contain	an	unescaped
backslash	(\),	a	carriage	return,	or	a	line	feed.	However,	they	can	contain	other	string	literals.

Unicode

Unicode	is	an	international	standard	for	encoding,	representing,	and	processing
text	in	different	writing	systems.	It	enables	you	to	represent	almost	any	character
from	any	language	in	a	standardized	form,	and	to	read	and	write	those	characters
to	and	from	an	external	source	such	as	a	text	file	or	web	page.	Swift’s	String	and
Character	types	are	fully	Unicode-compliant,	as	described	in	this	section.

Unicode	Scalar	Values
Behind	the	scenes,	Swift’s	native	String	type	is	built	from	Unicode	scalar
values.	A	Unicode	scalar	value	is	a	unique	21-bit	number	for	a	character	or
modifier,	such	as	U+0061	for	LATIN	SMALL	LETTER	A	("a"),	or	U+1F425	for	FRONT-
FACING	BABY	CHICK	("").

Note	that	not	all	21-bit	Unicode	scalar	values	are	assigned	to	a	character—some
scalars	are	reserved	for	future	assignment	or	for	use	in	UTF-16	encoding.	Scalar
values	that	have	been	assigned	to	a	character	typically	also	have	a	name,	such	as
LATIN	SMALL	LETTER	A	and	FRONT-FACING	BABY	CHICK	in	the	examples	above.

Extended	Grapheme	Clusters
Every	instance	of	Swift’s	Character	type	represents	a	single	extended	grapheme
cluster.	An	extended	grapheme	cluster	is	a	sequence	of	one	or	more	Unicode
scalars	that	(when	combined)	produce	a	single	human-readable	character.

Here’s	an	example.	The	letter	é	can	be	represented	as	the	single	Unicode	scalar	é
(LATIN	SMALL	LETTER	E	WITH	ACUTE,	or	U+00E9).	However,	the	same	letter	can
also	be	represented	as	a	pair	of	scalars—a	standard	letter	e	(LATIN	SMALL	LETTER
E,	or	U+0065),	followed	by	the	COMBINING	ACUTE	ACCENT	scalar	(U+0301).	The
COMBINING	ACUTE	ACCENT	scalar	is	graphically	applied	to	the	scalar	that	precedes
it,	turning	an	e	into	an	é	when	it’s	rendered	by	a	Unicode-aware	text-rendering
system.

In	both	cases,	the	letter	é	is	represented	as	a	single	Swift	Character	value	that
represents	an	extended	grapheme	cluster.	In	the	first	case,	the	cluster	contains	a
single	scalar;	in	the	second	case,	it’s	a	cluster	of	two	scalars:

1 let	eAcute:	Character	=	"\u{E9}"																									//	é

2 let	combinedEAcute:	Character	=	"\u{65}\u{301}"										//	e	

followed	by	́

3 //	eAcute	is	é,	combinedEAcute	is	é

Extended	grapheme	clusters	are	a	flexible	way	to	represent	many	complex	script
characters	as	a	single	Character	value.	For	example,	Hangul	syllables	from	the
Korean	alphabet	can	be	represented	as	either	a	precomposed	or	decomposed
sequence.	Both	of	these	representations	qualify	as	a	single	Character	value	in
Swift:

1 let	precomposed:	Character	=	"\u{D55C}"																		//	

2 let	decomposed:	Character	=	"\u{1112}\u{1161}\u{11AB}"			//	�,	

�,	�

3 //	precomposed	is	�,	decomposed	is	�

Extended	grapheme	clusters	enable	scalars	for	enclosing	marks	(such	as
COMBINING	ENCLOSING	CIRCLE,	or	U+20DD)	to	enclose	other	Unicode	scalars	as	part
of	a	single	Character	value:

1 let	enclosedEAcute:	Character	=	"\u{E9}\u{20DD}"

2 //	enclosedEAcute	is	é�

Unicode	scalars	for	regional	indicator	symbols	can	be	combined	in	pairs	to	make
a	single	Character	value,	such	as	this	combination	of	REGIONAL	INDICATOR
SYMBOL	LETTER	U	(U+1F1FA)	and	REGIONAL	INDICATOR	SYMBOL	LETTER	S	(U+1F1F8):

1 let	regionalIndicatorForUS:	Character	=	"\u{1F1FA}\u{1F1F8}"

2 //	regionalIndicatorForUS	is	��

Counting	Characters

To	retrieve	a	count	of	the	Character	values	in	a	string,	use	the	count	property	of
the	string:

1 let	unusualMenagerie	=	"Koala	,	Snail	,	Penguin	,	Dromedary 	

"

2 print("unusualMenagerie	has	\(unusualMenagerie.count)	

characters")

3 //	Prints	"unusualMenagerie	has	40	characters"

Note	that	Swift’s	use	of	extended	grapheme	clusters	for	Character	values	means
that	string	concatenation	and	modification	may	not	always	affect	a	string’s
character	count.

For	example,	if	you	initialize	a	new	string	with	the	four-character	word	cafe,	and
then	append	a	COMBINING	ACUTE	ACCENT	(U+0301)	to	the	end	of	the	string,	the
resulting	string	will	still	have	a	character	count	of	4,	with	a	fourth	character	of	é,
not	e:

1 var	word	=	"cafe"

2 print("the	number	of	characters	in	\(word)	is	\(word.count)")

3 //	Prints	"the	number	of	characters	in	cafe	is	4"

4

5 word	+=	"\u{301}"				//	COMBINING	ACUTE	ACCENT,	U+0301

6

7 print("the	number	of	characters	in	\(word)	is	\(word.count)")

8 //	Prints	"the	number	of	characters	in	café	is	4"

NOTE

Extended	grapheme	clusters	can	be	composed	of	multiple	Unicode	scalars.	This	means	that	different
characters—and	different	representations	of	the	same	character—can	require	different	amounts	of
memory	to	store.	Because	of	this,	characters	in	Swift	don’t	each	take	up	the	same	amount	of	memory
within	a	string’s	representation.	As	a	result,	the	number	of	characters	in	a	string	can’t	be	calculated
without	iterating	through	the	string	to	determine	its	extended	grapheme	cluster	boundaries.	If	you	are
working	with	particularly	long	string	values,	be	aware	that	the	count	property	must	iterate	over	the
Unicode	scalars	in	the	entire	string	in	order	to	determine	the	characters	for	that	string.

The	count	of	the	characters	returned	by	the	count	property	isn’t	always	the	same	as	the	length
property	of	an	NSString	that	contains	the	same	characters.	The	length	of	an	NSString	is	based
on	the	number	of	16-bit	code	units	within	the	string’s	UTF-16	representation	and	not	the	number	of
Unicode	extended	grapheme	clusters	within	the	string.

Accessing	and	Modifying	a	String

You	access	and	modify	a	string	through	its	methods	and	properties,	or	by	using
subscript	syntax.

String	Indices
Each	String	value	has	an	associated	index	type,	String.Index,	which
corresponds	to	the	position	of	each	Character	in	the	string.

As	mentioned	above,	different	characters	can	require	different	amounts	of
memory	to	store,	so	in	order	to	determine	which	Character	is	at	a	particular
position,	you	must	iterate	over	each	Unicode	scalar	from	the	start	or	end	of	that
String.	For	this	reason,	Swift	strings	can’t	be	indexed	by	integer	values.

Use	the	startIndex	property	to	access	the	position	of	the	first	Character	of	a
String.	The	endIndex	property	is	the	position	after	the	last	character	in	a	String.
As	a	result,	the	endIndex	property	isn’t	a	valid	argument	to	a	string’s	subscript.	If
a	String	is	empty,	startIndex	and	endIndex	are	equal.

You	access	the	indices	before	and	after	a	given	index	using	the	index(before:)
and	index(after:)	methods	of	String.	To	access	an	index	farther	away	from	the
given	index,	you	can	use	the	index(_:offsetBy:)	method	instead	of	calling	one
of	these	methods	multiple	times.

You	can	use	subscript	syntax	to	access	the	Character	at	a	particular	String
index.

1 let	greeting	=	"Guten	Tag!"

2 greeting[greeting.startIndex]

3 //	G

4 greeting[greeting.index(before:	greeting.endIndex)]

5 //	!

6 greeting[greeting.index(after:	greeting.startIndex)]

7 //	u

8 let	index	=	greeting.index(greeting.startIndex,	offsetBy:	7)

9 greeting[index]

10 //	a

Attempting	to	access	an	index	outside	of	a	string’s	range	or	a	Character	at	an
index	outside	of	a	string’s	range	will	trigger	a	runtime	error.

1 greeting[greeting.endIndex]	//	Error

2 greeting.index(after:	greeting.endIndex)	//	Error

Use	the	indices	property	to	access	all	of	the	indices	of	individual	characters	in	a
string.

1 for	index	in	greeting.indices	{

2 				print("\(greeting[index])	",	terminator:	"")

3 }

4 //	Prints	"G	u	t	e	n			T	a	g	!	"

NOTE

You	can	use	the	startIndex	and	endIndex	properties	and	the	index(before:),
index(after:),	and	index(_:offsetBy:)	methods	on	any	type	that	conforms	to	the
Collection	protocol.	This	includes	String,	as	shown	here,	as	well	as	collection	types	such	as
Array,	Dictionary,	and	Set.

Inserting	and	Removing
To	insert	a	single	character	into	a	string	at	a	specified	index,	use	the
insert(_:at:)	method,	and	to	insert	the	contents	of	another	string	at	a	specified
index,	use	the	insert(contentsOf:at:)	method.

1 var	welcome	=	"hello"

2 welcome.insert("!",	at:	welcome.endIndex)

3 //	welcome	now	equals	"hello!"

4

5 welcome.insert(contentsOf:	"	there",	at:	welcome.index(before:	

welcome.endIndex))

6 //	welcome	now	equals	"hello	there!"

To	remove	a	single	character	from	a	string	at	a	specified	index,	use	the
remove(at:)	method,	and	to	remove	a	substring	at	a	specified	range,	use	the

removeSubrange(_:)	method:

1 welcome.remove(at:	welcome.index(before:	welcome.endIndex))

2 //	welcome	now	equals	"hello	there"

3

4 let	range	=	welcome.index(welcome.endIndex,	offsetBy:	-6)..

<welcome.endIndex

5 welcome.removeSubrange(range)

6 //	welcome	now	equals	"hello"

NOTE

You	can	use	the	insert(_:at:),	insert(contentsOf:at:),	remove(at:),	and
removeSubrange(_:)	methods	on	any	type	that	conforms	to	the
RangeReplaceableCollection	protocol.	This	includes	String,	as	shown	here,	as	well	as
collection	types	such	as	Array,	Dictionary,	and	Set.

Substrings

When	you	get	a	substring	from	a	string—for	example,	using	a	subscript	or	a
method	like	prefix(_:)—the	result	is	an	instance	of	Substring,	not	another
string.	Substrings	in	Swift	have	most	of	the	same	methods	as	strings,	which
means	you	can	work	with	substrings	the	same	way	you	work	with	strings.
However,	unlike	strings,	you	use	substrings	for	only	a	short	amount	of	time
while	performing	actions	on	a	string.	When	you’re	ready	to	store	the	result	for	a
longer	time,	you	convert	the	substring	to	an	instance	of	String.	For	example:

1 let	greeting	=	"Hello,	world!"

2 let	index	=	greeting.firstIndex(of:	",")	??	greeting.endIndex

3 let	beginning	=	greeting[..<index]

4 //	beginning	is	"Hello"

5

https://developer.apple.com/documentation/swift/substring

6 //	Convert	the	result	to	a	String	for	long-term	storage.

7 let	newString	=	String(beginning)

Like	strings,	each	substring	has	a	region	of	memory	where	the	characters	that
make	up	the	substring	are	stored.	The	difference	between	strings	and	substrings
is	that,	as	a	performance	optimization,	a	substring	can	reuse	part	of	the	memory
that’s	used	to	store	the	original	string,	or	part	of	the	memory	that’s	used	to	store
another	substring.	(Strings	have	a	similar	optimization,	but	if	two	strings	share
memory,	they	are	equal.)	This	performance	optimization	means	you	don’t	have
to	pay	the	performance	cost	of	copying	memory	until	you	modify	either	the
string	or	substring.	As	mentioned	above,	substrings	aren’t	suitable	for	long-term
storage—because	they	reuse	the	storage	of	the	original	string,	the	entire	original
string	must	be	kept	in	memory	as	long	as	any	of	its	substrings	are	being	used.

In	the	example	above,	greeting	is	a	string,	which	means	it	has	a	region	of
memory	where	the	characters	that	make	up	the	string	are	stored.	Because
beginning	is	a	substring	of	greeting,	it	reuses	the	memory	that	greeting	uses.	In
contrast,	newString	is	a	string—when	it’s	created	from	the	substring,	it	has	its
own	storage.	The	figure	below	shows	these	relationships:

NOTE

Both	String	and	Substring	conform	to	the	StringProtocol	protocol,	which	means	it’s
often	convenient	for	string-manipulation	functions	to	accept	a	StringProtocol	value.	You	can
call	such	functions	with	either	a	String	or	Substring	value.

https://developer.apple.com/documentation/swift/stringprotocol

Comparing	Strings

Swift	provides	three	ways	to	compare	textual	values:	string	and	character
equality,	prefix	equality,	and	suffix	equality.

String	and	Character	Equality
String	and	character	equality	is	checked	with	the	“equal	to”	operator	(==)	and	the
“not	equal	to”	operator	(!=),	as	described	in	Comparison	Operators:

1 let	quotation	=	"We're	a	lot	alike,	you	and	I."

2 let	sameQuotation	=	"We're	a	lot	alike,	you	and	I."

3 if	quotation	==	sameQuotation	{

4 				print("These	two	strings	are	considered	equal")

5 }

6 //	Prints	"These	two	strings	are	considered	equal"

Two	String	values	(or	two	Character	values)	are	considered	equal	if	their
extended	grapheme	clusters	are	canonically	equivalent.	Extended	grapheme
clusters	are	canonically	equivalent	if	they	have	the	same	linguistic	meaning	and
appearance,	even	if	they’re	composed	from	different	Unicode	scalars	behind	the
scenes.

For	example,	LATIN	SMALL	LETTER	E	WITH	ACUTE	(U+00E9)	is	canonically
equivalent	to	LATIN	SMALL	LETTER	E	(U+0065)	followed	by	COMBINING	ACUTE
ACCENT	(U+0301).	Both	of	these	extended	grapheme	clusters	are	valid	ways	to
represent	the	character	é,	and	so	they’re	considered	to	be	canonically	equivalent:

1 //	"Voulez-vous	un	café?"	using	LATIN	SMALL	LETTER	E	WITH	ACUTE

2 let	eAcuteQuestion	=	"Voulez-vous	un	caf\u{E9}?"

3

4 //	"Voulez-vous	un	café?"	using	LATIN	SMALL	LETTER	E	and	

COMBINING	ACUTE	ACCENT

5 let	combinedEAcuteQuestion	=	"Voulez-vous	un	caf\u{65}\u{301}?"

6

7 if	eAcuteQuestion	==	combinedEAcuteQuestion	{

8 				print("These	two	strings	are	considered	equal")

9 }

10 //	Prints	"These	two	strings	are	considered	equal"

Conversely,	LATIN	CAPITAL	LETTER	A	(U+0041,	or	"A"),	as	used	in	English,	is	not
equivalent	to	CYRILLIC	CAPITAL	LETTER	A	(U+0410,	or	"А"),	as	used	in	Russian.
The	characters	are	visually	similar,	but	don’t	have	the	same	linguistic	meaning:

1 let	latinCapitalLetterA:	Character	=	"\u{41}"

2

3 let	cyrillicCapitalLetterA:	Character	=	"\u{0410}"

4

5 if	latinCapitalLetterA	!=	cyrillicCapitalLetterA	{

6 				print("These	two	characters	are	not	equivalent.")

7 }

8 //	Prints	"These	two	characters	are	not	equivalent."

NOTE

String	and	character	comparisons	in	Swift	are	not	locale-sensitive.

Prefix	and	Suffix	Equality
To	check	whether	a	string	has	a	particular	string	prefix	or	suffix,	call	the	string’s
hasPrefix(_:)	and	hasSuffix(_:)	methods,	both	of	which	take	a	single
argument	of	type	String	and	return	a	Boolean	value.

The	examples	below	consider	an	array	of	strings	representing	the	scene	locations
from	the	first	two	acts	of	Shakespeare’s	Romeo	and	Juliet:

1 let	romeoAndJuliet	=	[

2 				"Act	1	Scene	1:	Verona,	A	public	place",

3 				"Act	1	Scene	2:	Capulet's	mansion",

4 				"Act	1	Scene	3:	A	room	in	Capulet's	mansion",

5 				"Act	1	Scene	4:	A	street	outside	Capulet's	mansion",

6 				"Act	1	Scene	5:	The	Great	Hall	in	Capulet's	mansion",

7 				"Act	2	Scene	1:	Outside	Capulet's	mansion",

8 				"Act	2	Scene	2:	Capulet's	orchard",

9 				"Act	2	Scene	3:	Outside	Friar	Lawrence's	cell",

10 				"Act	2	Scene	4:	A	street	in	Verona",

11 				"Act	2	Scene	5:	Capulet's	mansion",

12 				"Act	2	Scene	6:	Friar	Lawrence's	cell"

13]

You	can	use	the	hasPrefix(_:)	method	with	the	romeoAndJuliet	array	to	count
the	number	of	scenes	in	Act	1	of	the	play:

1 var	act1SceneCount	=	0

2 for	scene	in	romeoAndJuliet	{

3 				if	scene.hasPrefix("Act	1	")	{

4 								act1SceneCount	+=	1

5 				}

6 }

7 print("There	are	\(act1SceneCount)	scenes	in	Act	1")

8 //	Prints	"There	are	5	scenes	in	Act	1"

Similarly,	use	the	hasSuffix(_:)	method	to	count	the	number	of	scenes	that	take
place	in	or	around	Capulet’s	mansion	and	Friar	Lawrence’s	cell:

1 var	mansionCount	=	0

2 var	cellCount	=	0

3 for	scene	in	romeoAndJuliet	{

4 				if	scene.hasSuffix("Capulet's	mansion")	{

5 								mansionCount	+=	1

6 				}	else	if	scene.hasSuffix("Friar	Lawrence's	cell")	{

7 								cellCount	+=	1

8 				}

9 }

10 print("\(mansionCount)	mansion	scenes;	\(cellCount)	cell	

scenes")

11 //	Prints	"6	mansion	scenes;	2	cell	scenes"

NOTE

The	hasPrefix(_:)	and	hasSuffix(_:)	methods	perform	a	character-by-character	canonical
equivalence	comparison	between	the	extended	grapheme	clusters	in	each	string,	as	described	in
String	and	Character	Equality.

Unicode	Representations	of	Strings

When	a	Unicode	string	is	written	to	a	text	file	or	some	other	storage,	the
Unicode	scalars	in	that	string	are	encoded	in	one	of	several	Unicode-defined
encoding	forms.	Each	form	encodes	the	string	in	small	chunks	known	as	code
units.	These	include	the	UTF-8	encoding	form	(which	encodes	a	string	as	8-bit
code	units),	the	UTF-16	encoding	form	(which	encodes	a	string	as	16-bit	code
units),	and	the	UTF-32	encoding	form	(which	encodes	a	string	as	32-bit	code
units).

Swift	provides	several	different	ways	to	access	Unicode	representations	of
strings.	You	can	iterate	over	the	string	with	a	for-in	statement,	to	access	its
individual	Character	values	as	Unicode	extended	grapheme	clusters.	This
process	is	described	in	Working	with	Characters.

Alternatively,	access	a	String	value	in	one	of	three	other	Unicode-compliant

representations:

A	collection	of	UTF-8	code	units	(accessed	with	the	string’s	utf8	property)

A	collection	of	UTF-16	code	units	(accessed	with	the	string’s	utf16
property)

A	collection	of	21-bit	Unicode	scalar	values,	equivalent	to	the	string’s	UTF-
32	encoding	form	(accessed	with	the	string’s	unicodeScalars	property)

Each	example	below	shows	a	different	representation	of	the	following	string,
which	is	made	up	of	the	characters	D,	o,	g,	‼	(DOUBLE	EXCLAMATION	MARK,	or
Unicode	scalar	U+203C),	and	the		character	(DOG	FACE,	or	Unicode	scalar
U+1F436):

	 let	dogString	=	"Dog‼"

UTF-8	Representation
You	can	access	a	UTF-8	representation	of	a	String	by	iterating	over	its	utf8
property.	This	property	is	of	type	String.UTF8View,	which	is	a	collection	of
unsigned	8-bit	(UInt8)	values,	one	for	each	byte	in	the	string’s	UTF-8
representation:

1 for	codeUnit	in	dogString.utf8	{

2 				print("\(codeUnit)	",	terminator:	"")

3 }

4 print("")

5 //	Prints	"68	111	103	226	128	188	240	159	144	182	"

In	the	example	above,	the	first	three	decimal	codeUnit	values	(68,	111,	103)
represent	the	characters	D,	o,	and	g,	whose	UTF-8	representation	is	the	same	as
their	ASCII	representation.	The	next	three	decimal	codeUnit	values	(226,	128,
188)	are	a	three-byte	UTF-8	representation	of	the	DOUBLE	EXCLAMATION	MARK
character.	The	last	four	codeUnit	values	(240,	159,	144,	182)	are	a	four-byte	UTF-
8	representation	of	the	DOG	FACE	character.

UTF-16	Representation
You	can	access	a	UTF-16	representation	of	a	String	by	iterating	over	its	utf16
property.	This	property	is	of	type	String.UTF16View,	which	is	a	collection	of
unsigned	16-bit	(UInt16)	values,	one	for	each	16-bit	code	unit	in	the	string’s
UTF-16	representation:

1 for	codeUnit	in	dogString.utf16	{

2 				print("\(codeUnit)	",	terminator:	"")

3 }

4 print("")

5 //	Prints	"68	111	103	8252	55357	56374	"

Again,	the	first	three	codeUnit	values	(68,	111,	103)	represent	the	characters	D,	o,
and	g,	whose	UTF-16	code	units	have	the	same	values	as	in	the	string’s	UTF-8
representation	(because	these	Unicode	scalars	represent	ASCII	characters).

The	fourth	codeUnit	value	(8252)	is	a	decimal	equivalent	of	the	hexadecimal
value	203C,	which	represents	the	Unicode	scalar	U+203C	for	the	DOUBLE
EXCLAMATION	MARK	character.	This	character	can	be	represented	as	a	single	code
unit	in	UTF-16.

The	fifth	and	sixth	codeUnit	values	(55357	and	56374)	are	a	UTF-16	surrogate
pair	representation	of	the	DOG	FACE	character.	These	values	are	a	high-surrogate
value	of	U+D83D	(decimal	value	55357)	and	a	low-surrogate	value	of	U+DC36
(decimal	value	56374).

Unicode	Scalar	Representation
You	can	access	a	Unicode	scalar	representation	of	a	String	value	by	iterating
over	its	unicodeScalars	property.	This	property	is	of	type	UnicodeScalarView,
which	is	a	collection	of	values	of	type	UnicodeScalar.

Each	UnicodeScalar	has	a	value	property	that	returns	the	scalar’s	21-bit	value,
represented	within	a	UInt32	value:

1 for	scalar	in	dogString.unicodeScalars	{

2 				print("\(scalar.value)	",	terminator:	"")

3 }

4 print("")

5 //	Prints	"68	111	103	8252	128054	"

The	value	properties	for	the	first	three	UnicodeScalar	values	(68,	111,	103)	once
again	represent	the	characters	D,	o,	and	g.

The	fourth	codeUnit	value	(8252)	is	again	a	decimal	equivalent	of	the
hexadecimal	value	203C,	which	represents	the	Unicode	scalar	U+203C	for	the
DOUBLE	EXCLAMATION	MARK	character.

The	value	property	of	the	fifth	and	final	UnicodeScalar,	128054,	is	a	decimal
equivalent	of	the	hexadecimal	value	1F436,	which	represents	the	Unicode	scalar
U+1F436	for	the	DOG	FACE	character.

As	an	alternative	to	querying	their	value	properties,	each	UnicodeScalar	value
can	also	be	used	to	construct	a	new	String	value,	such	as	with	string
interpolation:

1 for	scalar	in	dogString.unicodeScalars	{

2 				print("\(scalar)	")

3 }

4 //	D

5 //	o

6 //	g

7 //	‼

8 //	

Collection	Types

Swift	provides	three	primary	collection	types,	known	as	arrays,	sets,	and
dictionaries,	for	storing	collections	of	values.	Arrays	are	ordered	collections	of
values.	Sets	are	unordered	collections	of	unique	values.	Dictionaries	are
unordered	collections	of	key-value	associations.

Arrays,	sets,	and	dictionaries	in	Swift	are	always	clear	about	the	types	of	values
and	keys	that	they	can	store.	This	means	that	you	cannot	insert	a	value	of	the
wrong	type	into	a	collection	by	mistake.	It	also	means	you	can	be	confident
about	the	type	of	values	you	will	retrieve	from	a	collection.

NOTE

Swift’s	array,	set,	and	dictionary	types	are	implemented	as	generic	collections.	For	more	about
generic	types	and	collections,	see	Generics.

Mutability	of	Collections

If	you	create	an	array,	a	set,	or	a	dictionary,	and	assign	it	to	a	variable,	the
collection	that	is	created	will	be	mutable.	This	means	that	you	can	change	(or
mutate)	the	collection	after	it’s	created	by	adding,	removing,	or	changing	items
in	the	collection.	If	you	assign	an	array,	a	set,	or	a	dictionary	to	a	constant,	that

collection	is	immutable,	and	its	size	and	contents	cannot	be	changed.

NOTE

It	is	good	practice	to	create	immutable	collections	in	all	cases	where	the	collection	does	not	need	to
change.	Doing	so	makes	it	easier	for	you	to	reason	about	your	code	and	enables	the	Swift	compiler	to
optimize	the	performance	of	the	collections	you	create.

Arrays

An	array	stores	values	of	the	same	type	in	an	ordered	list.	The	same	value	can
appear	in	an	array	multiple	times	at	different	positions.

NOTE

Swift’s	Array	type	is	bridged	to	Foundation’s	NSArray	class.

For	more	information	about	using	Array	with	Foundation	and	Cocoa,	see	Bridging	Between	Array
and	NSArray.

Array	Type	Shorthand	Syntax
The	type	of	a	Swift	array	is	written	in	full	as	Array<Element>,	where	Element	is
the	type	of	values	the	array	is	allowed	to	store.	You	can	also	write	the	type	of	an
array	in	shorthand	form	as	[Element].	Although	the	two	forms	are	functionally
identical,	the	shorthand	form	is	preferred	and	is	used	throughout	this	guide	when
referring	to	the	type	of	an	array.

Creating	an	Empty	Array
You	can	create	an	empty	array	of	a	certain	type	using	initializer	syntax:

1 var	someInts	=	[Int]()

2 print("someInts	is	of	type	[Int]	with	\(someInts.count)	

https://developer.apple.com/documentation/swift/array#2846730

items.")

3 //	Prints	"someInts	is	of	type	[Int]	with	0	items."

Note	that	the	type	of	the	someInts	variable	is	inferred	to	be	[Int]	from	the	type
of	the	initializer.

Alternatively,	if	the	context	already	provides	type	information,	such	as	a	function
argument	or	an	already	typed	variable	or	constant,	you	can	create	an	empty	array
with	an	empty	array	literal,	which	is	written	as	[]	(an	empty	pair	of	square
brackets):

1 someInts.append(3)

2 //	someInts	now	contains	1	value	of	type	Int

3 someInts	=	[]

4 //	someInts	is	now	an	empty	array,	but	is	still	of	type	[Int]

Creating	an	Array	with	a	Default	Value
Swift’s	Array	type	also	provides	an	initializer	for	creating	an	array	of	a	certain
size	with	all	of	its	values	set	to	the	same	default	value.	You	pass	this	initializer	a
default	value	of	the	appropriate	type	(called	repeating):	and	the	number	of	times
that	value	is	repeated	in	the	new	array	(called	count):

1 var	threeDoubles	=	Array(repeating:	0.0,	count:	3)

2 //	threeDoubles	is	of	type	[Double],	and	equals	[0.0,	0.0,	0.0]

Creating	an	Array	by	Adding	Two	Arrays	Together
You	can	create	a	new	array	by	adding	together	two	existing	arrays	with
compatible	types	with	the	addition	operator	(+).	The	new	array’s	type	is	inferred
from	the	type	of	the	two	arrays	you	add	together:

1 var	anotherThreeDoubles	=	Array(repeating:	2.5,	count:	3)

2 //	anotherThreeDoubles	is	of	type	[Double],	and	equals	[2.5,	

2.5,	2.5]

3

4 var	sixDoubles	=	threeDoubles	+	anotherThreeDoubles

5 //	sixDoubles	is	inferred	as	[Double],	and	equals	[0.0,	0.0,	

0.0,	2.5,	2.5,	2.5]

Creating	an	Array	with	an	Array	Literal
You	can	also	initialize	an	array	with	an	array	literal,	which	is	a	shorthand	way	to
write	one	or	more	values	as	an	array	collection.	An	array	literal	is	written	as	a
list	of	values,	separated	by	commas,	surrounded	by	a	pair	of	square	brackets:

	 [value	1 ,	 value	2 ,	 value	3]

The	example	below	creates	an	array	called	shoppingList	to	store	String	values:

1 var	shoppingList:	[String]	=	["Eggs",	"Milk"]

2 //	shoppingList	has	been	initialized	with	two	initial	items

The	shoppingList	variable	is	declared	as	“an	array	of	string	values”,	written	as
[String].	Because	this	particular	array	has	specified	a	value	type	of	String,	it	is
allowed	to	store	String	values	only.	Here,	the	shoppingList	array	is	initialized
with	two	String	values	("Eggs"	and	"Milk"),	written	within	an	array	literal.

NOTE

The	shoppingList	array	is	declared	as	a	variable	(with	the	var	introducer)	and	not	a	constant
(with	the	let	introducer)	because	more	items	are	added	to	the	shopping	list	in	the	examples	below.

In	this	case,	the	array	literal	contains	two	String	values	and	nothing	else.	This
matches	the	type	of	the	shoppingList	variable’s	declaration	(an	array	that	can
only	contain	String	values),	and	so	the	assignment	of	the	array	literal	is
permitted	as	a	way	to	initialize	shoppingList	with	two	initial	items.

Thanks	to	Swift’s	type	inference,	you	don’t	have	to	write	the	type	of	the	array	if
you’re	initializing	it	with	an	array	literal	containing	values	of	the	same	type.	The
initialization	of	shoppingList	could	have	been	written	in	a	shorter	form	instead:

	 var	shoppingList	=	["Eggs",	"Milk"]

Because	all	values	in	the	array	literal	are	of	the	same	type,	Swift	can	infer	that
[String]	is	the	correct	type	to	use	for	the	shoppingList	variable.

Accessing	and	Modifying	an	Array
You	access	and	modify	an	array	through	its	methods	and	properties,	or	by	using
subscript	syntax.

To	find	out	the	number	of	items	in	an	array,	check	its	read-only	count	property:

1 print("The	shopping	list	contains	\(shoppingList.count)	

items.")

2 //	Prints	"The	shopping	list	contains	2	items."

Use	the	Boolean	isEmpty	property	as	a	shortcut	for	checking	whether	the	count
property	is	equal	to	0:

1 if	shoppingList.isEmpty	{

2 				print("The	shopping	list	is	empty.")

3 }	else	{

4 				print("The	shopping	list	is	not	empty.")

5 }

6 //	Prints	"The	shopping	list	is	not	empty."

You	can	add	a	new	item	to	the	end	of	an	array	by	calling	the	array’s	append(_:)
method:

1 shoppingList.append("Flour")

2 //	shoppingList	now	contains	3	items,	and	someone	is	making	

pancakes

Alternatively,	append	an	array	of	one	or	more	compatible	items	with	the	addition
assignment	operator	(+=):

1 shoppingList	+=	["Baking	Powder"]

2 //	shoppingList	now	contains	4	items

3 shoppingList	+=	["Chocolate	Spread",	"Cheese",	"Butter"]

4 //	shoppingList	now	contains	7	items

Retrieve	a	value	from	the	array	by	using	subscript	syntax,	passing	the	index	of
the	value	you	want	to	retrieve	within	square	brackets	immediately	after	the	name
of	the	array:

1 var	firstItem	=	shoppingList[0]

2 //	firstItem	is	equal	to	"Eggs"

NOTE

The	first	item	in	the	array	has	an	index	of	0,	not	1.	Arrays	in	Swift	are	always	zero-indexed.

You	can	use	subscript	syntax	to	change	an	existing	value	at	a	given	index:

1 shoppingList[0]	=	"Six	eggs"

2 //	the	first	item	in	the	list	is	now	equal	to	"Six	eggs"	rather	

than	"Eggs"

When	you	use	subscript	syntax,	the	index	you	specify	needs	to	be	valid.	For
example,	writing	shoppingList[shoppingList.count]	=	"Salt"	to	try	to	append
an	item	to	the	end	of	the	array	results	in	a	runtime	error.

You	can	also	use	subscript	syntax	to	change	a	range	of	values	at	once,	even	if	the
replacement	set	of	values	has	a	different	length	than	the	range	you	are	replacing.
The	following	example	replaces	"Chocolate	Spread",	"Cheese",	and	"Butter"

with	"Bananas"	and	"Apples":

1 shoppingList[4...6]	=	["Bananas",	"Apples"]

2 //	shoppingList	now	contains	6	items

To	insert	an	item	into	the	array	at	a	specified	index,	call	the	array’s
insert(_:at:)	method:

1 shoppingList.insert("Maple	Syrup",	at:	0)

2 //	shoppingList	now	contains	7	items

3 //	"Maple	Syrup"	is	now	the	first	item	in	the	list

This	call	to	the	insert(_:at:)	method	inserts	a	new	item	with	a	value	of	"Maple
Syrup"	at	the	very	beginning	of	the	shopping	list,	indicated	by	an	index	of	0.

Similarly,	you	remove	an	item	from	the	array	with	the	remove(at:)	method.	This
method	removes	the	item	at	the	specified	index	and	returns	the	removed	item
(although	you	can	ignore	the	returned	value	if	you	do	not	need	it):

1 let	mapleSyrup	=	shoppingList.remove(at:	0)

2 //	the	item	that	was	at	index	0	has	just	been	removed

3 //	shoppingList	now	contains	6	items,	and	no	Maple	Syrup

4 //	the	mapleSyrup	constant	is	now	equal	to	the	removed	"Maple	

Syrup"	string

NOTE

If	you	try	to	access	or	modify	a	value	for	an	index	that	is	outside	of	an	array’s	existing	bounds,	you
will	trigger	a	runtime	error.	You	can	check	that	an	index	is	valid	before	using	it	by	comparing	it	to	the
array’s	count	property.	The	largest	valid	index	in	an	array	is	count	-	1	because	arrays	are
indexed	from	zero—however,	when	count	is	0	(meaning	the	array	is	empty),	there	are	no	valid
indexes.

Any	gaps	in	an	array	are	closed	when	an	item	is	removed,	and	so	the	value	at
index	0	is	once	again	equal	to	"Six	eggs":

1 firstItem	=	shoppingList[0]

2 //	firstItem	is	now	equal	to	"Six	eggs"

If	you	want	to	remove	the	final	item	from	an	array,	use	the	removeLast()	method
rather	than	the	remove(at:)	method	to	avoid	the	need	to	query	the	array’s	count
property.	Like	the	remove(at:)	method,	removeLast()	returns	the	removed	item:

1 let	apples	=	shoppingList.removeLast()

2 //	the	last	item	in	the	array	has	just	been	removed

3 //	shoppingList	now	contains	5	items,	and	no	apples

4 //	the	apples	constant	is	now	equal	to	the	removed	"Apples"	

string

Iterating	Over	an	Array
You	can	iterate	over	the	entire	set	of	values	in	an	array	with	the	for-in	loop:

1 for	item	in	shoppingList	{

2 				print(item)

3 }

4 //	Six	eggs

5 //	Milk

6 //	Flour

7 //	Baking	Powder

8 //	Bananas

If	you	need	the	integer	index	of	each	item	as	well	as	its	value,	use	the
enumerated()	method	to	iterate	over	the	array	instead.	For	each	item	in	the	array,
the	enumerated()	method	returns	a	tuple	composed	of	an	integer	and	the	item.
The	integers	start	at	zero	and	count	up	by	one	for	each	item;	if	you	enumerate
over	a	whole	array,	these	integers	match	the	items’	indices.	You	can	decompose
the	tuple	into	temporary	constants	or	variables	as	part	of	the	iteration:

1 for	(index,	value)	in	shoppingList.enumerated()	{

2 				print("Item	\(index	+	1):	\(value)")

3 }

4 //	Item	1:	Six	eggs

5 //	Item	2:	Milk

6 //	Item	3:	Flour

7 //	Item	4:	Baking	Powder

8 //	Item	5:	Bananas

For	more	about	the	for-in	loop,	see	For-In	Loops.

Sets

A	set	stores	distinct	values	of	the	same	type	in	a	collection	with	no	defined
ordering.	You	can	use	a	set	instead	of	an	array	when	the	order	of	items	is	not
important,	or	when	you	need	to	ensure	that	an	item	only	appears	once.

NOTE

Swift’s	Set	type	is	bridged	to	Foundation’s	NSSet	class.

For	more	information	about	using	Set	with	Foundation	and	Cocoa,	see	Bridging	Between	Set	and
NSSet.

Hash	Values	for	Set	Types
A	type	must	be	hashable	in	order	to	be	stored	in	a	set—that	is,	the	type	must
provide	a	way	to	compute	a	hash	value	for	itself.	A	hash	value	is	an	Int	value
that	is	the	same	for	all	objects	that	compare	equally,	such	that	if	a	==	b,	it
follows	that	a.hashValue	==	b.hashValue.

All	of	Swift’s	basic	types	(such	as	String,	Int,	Double,	and	Bool)	are	hashable	by
default,	and	can	be	used	as	set	value	types	or	dictionary	key	types.	Enumeration

https://developer.apple.com/documentation/swift/set#2845530

case	values	without	associated	values	(as	described	in	Enumerations)	are	also
hashable	by	default.

NOTE

You	can	use	your	own	custom	types	as	set	value	types	or	dictionary	key	types	by	making	them
conform	to	the	Hashable	protocol	from	Swift’s	standard	library.	Types	that	conform	to	the
Hashable	protocol	must	provide	a	gettable	Int	property	called	hashValue.	The	value	returned
by	a	type’s	hashValue	property	is	not	required	to	be	the	same	across	different	executions	of	the
same	program,	or	in	different	programs.

Because	the	Hashable	protocol	conforms	to	Equatable,	conforming	types	must	also	provide	an
implementation	of	the	equals	operator	(==).	The	Equatable	protocol	requires	any	conforming
implementation	of	==	to	be	an	equivalence	relation.	That	is,	an	implementation	of	==	must	satisfy
the	following	three	conditions,	for	all	values	a,	b,	and	c:

a	==	a	(Reflexivity)

a	==	b	implies	b	==	a	(Symmetry)

a	==	b	&&	b	==	c	implies	a	==	c	(Transitivity)

For	more	information	about	conforming	to	protocols,	see	Protocols.

Set	Type	Syntax
The	type	of	a	Swift	set	is	written	as	Set<Element>,	where	Element	is	the	type	that
the	set	is	allowed	to	store.	Unlike	arrays,	sets	do	not	have	an	equivalent
shorthand	form.

Creating	and	Initializing	an	Empty	Set
You	can	create	an	empty	set	of	a	certain	type	using	initializer	syntax:

1 var	letters	=	Set<Character>()

2 print("letters	is	of	type	Set<Character>	with	\(letters.count)	

items.")

3 //	Prints	"letters	is	of	type	Set<Character>	with	0	items."

NOTE

The	type	of	the	letters	variable	is	inferred	to	be	Set<Character>,	from	the	type	of	the
initializer.

Alternatively,	if	the	context	already	provides	type	information,	such	as	a	function
argument	or	an	already	typed	variable	or	constant,	you	can	create	an	empty	set
with	an	empty	array	literal:

1 letters.insert("a")

2 //	letters	now	contains	1	value	of	type	Character

3 letters	=	[]

4 //	letters	is	now	an	empty	set,	but	is	still	of	type	

Set<Character>

Creating	a	Set	with	an	Array	Literal
You	can	also	initialize	a	set	with	an	array	literal,	as	a	shorthand	way	to	write	one
or	more	values	as	a	set	collection.

The	example	below	creates	a	set	called	favoriteGenres	to	store	String	values:

1 var	favoriteGenres:	Set<String>	=	["Rock",	"Classical",	"Hip	

hop"]

2 //	favoriteGenres	has	been	initialized	with	three	initial	items

The	favoriteGenres	variable	is	declared	as	“a	set	of	String	values”,	written	as
Set<String>.	Because	this	particular	set	has	specified	a	value	type	of	String,	it	is
only	allowed	to	store	String	values.	Here,	the	favoriteGenres	set	is	initialized
with	three	String	values	("Rock",	"Classical",	and	"Hip	hop"),	written	within	an
array	literal.

NOTE

The	favoriteGenres	set	is	declared	as	a	variable	(with	the	var	introducer)	and	not	a	constant
(with	the	let	introducer)	because	items	are	added	and	removed	in	the	examples	below.

A	set	type	cannot	be	inferred	from	an	array	literal	alone,	so	the	type	Set	must	be
explicitly	declared.	However,	because	of	Swift’s	type	inference,	you	don’t	have
to	write	the	type	of	the	set’s	elements	if	you’re	initializing	it	with	an	array	literal
that	contains	values	of	just	one	type.	The	initialization	of	favoriteGenres	could
have	been	written	in	a	shorter	form	instead:

	 var	favoriteGenres:	Set	=	["Rock",	"Classical",	"Hip	hop"]

Because	all	values	in	the	array	literal	are	of	the	same	type,	Swift	can	infer	that
Set<String>	is	the	correct	type	to	use	for	the	favoriteGenres	variable.

Accessing	and	Modifying	a	Set
You	access	and	modify	a	set	through	its	methods	and	properties.

To	find	out	the	number	of	items	in	a	set,	check	its	read-only	count	property:

1 print("I	have	\(favoriteGenres.count)	favorite	music	genres.")

2 //	Prints	"I	have	3	favorite	music	genres."

Use	the	Boolean	isEmpty	property	as	a	shortcut	for	checking	whether	the	count
property	is	equal	to	0:

1 if	favoriteGenres.isEmpty	{

2 				print("As	far	as	music	goes,	I'm	not	picky.")

3 }	else	{

4 				print("I	have	particular	music	preferences.")

5 }

6 //	Prints	"I	have	particular	music	preferences."

You	can	add	a	new	item	into	a	set	by	calling	the	set’s	insert(_:)	method:

1 favoriteGenres.insert("Jazz")

2 //	favoriteGenres	now	contains	4	items

You	can	remove	an	item	from	a	set	by	calling	the	set’s	remove(_:)	method,
which	removes	the	item	if	it’s	a	member	of	the	set,	and	returns	the	removed
value,	or	returns	nil	if	the	set	did	not	contain	it.	Alternatively,	all	items	in	a	set
can	be	removed	with	its	removeAll()	method.

1 if	let	removedGenre	=	favoriteGenres.remove("Rock")	{

2 				print("\(removedGenre)?	I'm	over	it.")

3 }	else	{

4 				print("I	never	much	cared	for	that.")

5 }

6 //	Prints	"Rock?	I'm	over	it."

To	check	whether	a	set	contains	a	particular	item,	use	the	contains(_:)	method.

1 if	favoriteGenres.contains("Funk")	{

2 				print("I	get	up	on	the	good	foot.")

3 }	else	{

4 				print("It's	too	funky	in	here.")

5 }

6 //	Prints	"It's	too	funky	in	here."

Iterating	Over	a	Set
You	can	iterate	over	the	values	in	a	set	with	a	for-in	loop.

1 for	genre	in	favoriteGenres	{

2 				print("\(genre)")

3 }

4 //	Classical

5 //	Jazz

6 //	Hip	hop

For	more	about	the	for-in	loop,	see	For-In	Loops.

Swift’s	Set	type	does	not	have	a	defined	ordering.	To	iterate	over	the	values	of	a
set	in	a	specific	order,	use	the	sorted()	method,	which	returns	the	set’s	elements
as	an	array	sorted	using	the	<	operator.

1 for	genre	in	favoriteGenres.sorted()	{

2 				print("\(genre)")

3 }

4 //	Classical

5 //	Hip	hop

6 //	Jazz

Performing	Set	Operations

You	can	efficiently	perform	fundamental	set	operations,	such	as	combining	two
sets	together,	determining	which	values	two	sets	have	in	common,	or
determining	whether	two	sets	contain	all,	some,	or	none	of	the	same	values.

Fundamental	Set	Operations
The	illustration	below	depicts	two	sets—a	and	b—with	the	results	of	various	set
operations	represented	by	the	shaded	regions.

Use	the	intersection(_:)	method	to	create	a	new	set	with	only	the	values
common	to	both	sets.

Use	the	symmetricDifference(_:)	method	to	create	a	new	set	with	values	in
either	set,	but	not	both.

Use	the	union(_:)	method	to	create	a	new	set	with	all	of	the	values	in	both
sets.

Use	the	subtracting(_:)	method	to	create	a	new	set	with	values	not	in	the
specified	set.

1 let	oddDigits:	Set	=	[1,	3,	5,	7,	9]

2 let	evenDigits:	Set	=	[0,	2,	4,	6,	8]

3 let	singleDigitPrimeNumbers:	Set	=	[2,	3,	5,	7]

4

5 oddDigits.union(evenDigits).sorted()

6 //	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

7 oddDigits.intersection(evenDigits).sorted()

8 //	[]

9 oddDigits.subtracting(singleDigitPrimeNumbers).sorted()

10 //	[1,	9]

11 oddDigits.symmetricDifference(singleDigitPrimeNumbers).sorted()

12 //	[1,	2,	9]

Set	Membership	and	Equality
The	illustration	below	depicts	three	sets—a,	b	and	c—with	overlapping	regions
representing	elements	shared	among	sets.	Set	a	is	a	superset	of	set	b,	because	a
contains	all	elements	in	b.	Conversely,	set	b	is	a	subset	of	set	a,	because	all
elements	in	b	are	also	contained	by	a.	Set	b	and	set	c	are	disjoint	with	one
another,	because	they	share	no	elements	in	common.

Use	the	“is	equal”	operator	(==)	to	determine	whether	two	sets	contain	all	of
the	same	values.

Use	the	isSubset(of:)	method	to	determine	whether	all	of	the	values	of	a
set	are	contained	in	the	specified	set.

Use	the	isSuperset(of:)	method	to	determine	whether	a	set	contains	all	of
the	values	in	a	specified	set.

Use	the	isStrictSubset(of:)	or	isStrictSuperset(of:)	methods	to
determine	whether	a	set	is	a	subset	or	superset,	but	not	equal	to,	a	specified
set.

Use	the	isDisjoint(with:)	method	to	determine	whether	two	sets	have	no
values	in	common.

1 let	houseAnimals:	Set	=	["" ,	" "]

2 let	farmAnimals:	Set	=	[" ",	"" ,	"" ,	"" ,	" "]

3 let	cityAnimals:	Set	=	["" ,	" "]

4

5 houseAnimals.isSubset(of:	farmAnimals)

6 //	true

7 farmAnimals.isSuperset(of:	houseAnimals)

8 //	true

9 farmAnimals.isDisjoint(with:	cityAnimals)

10 //	true

Dictionaries

A	dictionary	stores	associations	between	keys	of	the	same	type	and	values	of	the
same	type	in	a	collection	with	no	defined	ordering.	Each	value	is	associated	with
a	unique	key,	which	acts	as	an	identifier	for	that	value	within	the	dictionary.
Unlike	items	in	an	array,	items	in	a	dictionary	do	not	have	a	specified	order.	You
use	a	dictionary	when	you	need	to	look	up	values	based	on	their	identifier,	in
much	the	same	way	that	a	real-world	dictionary	is	used	to	look	up	the	definition
for	a	particular	word.

NOTE

Swift’s	Dictionary	type	is	bridged	to	Foundation’s	NSDictionary	class.

For	more	information	about	using	Dictionary	with	Foundation	and	Cocoa,	see	Bridging	Between
Dictionary	and	NSDictionary.

Dictionary	Type	Shorthand	Syntax
The	type	of	a	Swift	dictionary	is	written	in	full	as	Dictionary<Key,	Value>,
where	Key	is	the	type	of	value	that	can	be	used	as	a	dictionary	key,	and	Value	is
the	type	of	value	that	the	dictionary	stores	for	those	keys.

NOTE

A	dictionary	Key	type	must	conform	to	the	Hashable	protocol,	like	a	set’s	value	type.

You	can	also	write	the	type	of	a	dictionary	in	shorthand	form	as	[Key:	Value].
Although	the	two	forms	are	functionally	identical,	the	shorthand	form	is
preferred	and	is	used	throughout	this	guide	when	referring	to	the	type	of	a
dictionary.

Creating	an	Empty	Dictionary
As	with	arrays,	you	can	create	an	empty	Dictionary	of	a	certain	type	by	using
initializer	syntax:

1 var	namesOfIntegers	=	[Int:	String]()

2 //	namesOfIntegers	is	an	empty	[Int:	String]	dictionary

This	example	creates	an	empty	dictionary	of	type	[Int:	String]	to	store	human-
readable	names	of	integer	values.	Its	keys	are	of	type	Int,	and	its	values	are	of
type	String.

If	the	context	already	provides	type	information,	you	can	create	an	empty
dictionary	with	an	empty	dictionary	literal,	which	is	written	as	[:]	(a	colon
inside	a	pair	of	square	brackets):

https://developer.apple.com/documentation/swift/dictionary#2846239

1 namesOfIntegers[16]	=	"sixteen"

2 //	namesOfIntegers	now	contains	1	key-value	pair

3 namesOfIntegers	=	[:]

4 //	namesOfIntegers	is	once	again	an	empty	dictionary	of	type	

[Int:	String]

Creating	a	Dictionary	with	a	Dictionary	Literal
You	can	also	initialize	a	dictionary	with	a	dictionary	literal,	which	has	a	similar
syntax	to	the	array	literal	seen	earlier.	A	dictionary	literal	is	a	shorthand	way	to
write	one	or	more	key-value	pairs	as	a	Dictionary	collection.

A	key-value	pair	is	a	combination	of	a	key	and	a	value.	In	a	dictionary	literal,	the
key	and	value	in	each	key-value	pair	are	separated	by	a	colon.	The	key-value
pairs	are	written	as	a	list,	separated	by	commas,	surrounded	by	a	pair	of	square
brackets:

	 [key	1 :	 value	1 ,	 key	2 :	 value	2 ,	 key	3 :	 value	3]

The	example	below	creates	a	dictionary	to	store	the	names	of	international
airports.	In	this	dictionary,	the	keys	are	three-letter	International	Air	Transport
Association	codes,	and	the	values	are	airport	names:

	 var	airports:	[String:	String]	=	["YYZ":	"Toronto	Pearson",	

"DUB":	"Dublin"]

The	airports	dictionary	is	declared	as	having	a	type	of	[String:	String],	which
means	“a	Dictionary	whose	keys	are	of	type	String,	and	whose	values	are	also
of	type	String”.

NOTE

The	airports	dictionary	is	declared	as	a	variable	(with	the	var	introducer),	and	not	a	constant
(with	the	let	introducer),	because	more	airports	are	added	to	the	dictionary	in	the	examples	below.

The	airports	dictionary	is	initialized	with	a	dictionary	literal	containing	two
key-value	pairs.	The	first	pair	has	a	key	of	"YYZ"	and	a	value	of	"Toronto
Pearson".	The	second	pair	has	a	key	of	"DUB"	and	a	value	of	"Dublin".

This	dictionary	literal	contains	two	String:	String	pairs.	This	key-value	type
matches	the	type	of	the	airports	variable	declaration	(a	dictionary	with	only
String	keys,	and	only	String	values),	and	so	the	assignment	of	the	dictionary
literal	is	permitted	as	a	way	to	initialize	the	airports	dictionary	with	two	initial
items.

As	with	arrays,	you	don’t	have	to	write	the	type	of	the	dictionary	if	you’re
initializing	it	with	a	dictionary	literal	whose	keys	and	values	have	consistent
types.	The	initialization	of	airports	could	have	been	written	in	a	shorter	form
instead:

	 var	airports	=	["YYZ":	"Toronto	Pearson",	"DUB":	"Dublin"]

Because	all	keys	in	the	literal	are	of	the	same	type	as	each	other,	and	likewise	all
values	are	of	the	same	type	as	each	other,	Swift	can	infer	that	[String:	String]
is	the	correct	type	to	use	for	the	airports	dictionary.

Accessing	and	Modifying	a	Dictionary
You	access	and	modify	a	dictionary	through	its	methods	and	properties,	or	by
using	subscript	syntax.

As	with	an	array,	you	find	out	the	number	of	items	in	a	Dictionary	by	checking
its	read-only	count	property:

1 print("The	airports	dictionary	contains	\(airports.count)	

items.")

2 //	Prints	"The	airports	dictionary	contains	2	items."

Use	the	Boolean	isEmpty	property	as	a	shortcut	for	checking	whether	the	count
property	is	equal	to	0:

1 if	airports.isEmpty	{

2 				print("The	airports	dictionary	is	empty.")

3 }	else	{

4 				print("The	airports	dictionary	is	not	empty.")

5 }

6 //	Prints	"The	airports	dictionary	is	not	empty."

You	can	add	a	new	item	to	a	dictionary	with	subscript	syntax.	Use	a	new	key	of
the	appropriate	type	as	the	subscript	index,	and	assign	a	new	value	of	the
appropriate	type:

1 airports["LHR"]	=	"London"

2 //	the	airports	dictionary	now	contains	3	items

You	can	also	use	subscript	syntax	to	change	the	value	associated	with	a
particular	key:

1 airports["LHR"]	=	"London	Heathrow"

2 //	the	value	for	"LHR"	has	been	changed	to	"London	Heathrow"

As	an	alternative	to	subscripting,	use	a	dictionary’s	updateValue(_:forKey:)
method	to	set	or	update	the	value	for	a	particular	key.	Like	the	subscript
examples	above,	the	updateValue(_:forKey:)	method	sets	a	value	for	a	key	if
none	exists,	or	updates	the	value	if	that	key	already	exists.	Unlike	a	subscript,
however,	the	updateValue(_:forKey:)	method	returns	the	old	value	after
performing	an	update.	This	enables	you	to	check	whether	or	not	an	update	took
place.

The	updateValue(_:forKey:)	method	returns	an	optional	value	of	the
dictionary’s	value	type.	For	a	dictionary	that	stores	String	values,	for	example,
the	method	returns	a	value	of	type	String?,	or	“optional	String”.	This	optional
value	contains	the	old	value	for	that	key	if	one	existed	before	the	update,	or	nil
if	no	value	existed:

1 if	let	oldValue	=	airports.updateValue("Dublin	Airport",	

forKey:	"DUB")	{

2 				print("The	old	value	for	DUB	was	\(oldValue).")

3 }

4 //	Prints	"The	old	value	for	DUB	was	Dublin."

You	can	also	use	subscript	syntax	to	retrieve	a	value	from	the	dictionary	for	a
particular	key.	Because	it	is	possible	to	request	a	key	for	which	no	value	exists,	a
dictionary’s	subscript	returns	an	optional	value	of	the	dictionary’s	value	type.	If
the	dictionary	contains	a	value	for	the	requested	key,	the	subscript	returns	an
optional	value	containing	the	existing	value	for	that	key.	Otherwise,	the	subscript
returns	nil:

1 if	let	airportName	=	airports["DUB"]	{

2 				print("The	name	of	the	airport	is	\(airportName).")

3 }	else	{

4 				print("That	airport	is	not	in	the	airports	dictionary.")

5 }

6 //	Prints	"The	name	of	the	airport	is	Dublin	Airport."

You	can	use	subscript	syntax	to	remove	a	key-value	pair	from	a	dictionary	by
assigning	a	value	of	nil	for	that	key:

1 airports["APL"]	=	"Apple	International"

2 //	"Apple	International"	is	not	the	real	airport	for	APL,	so	

delete	it

3 airports["APL"]	=	nil

4 //	APL	has	now	been	removed	from	the	dictionary

Alternatively,	remove	a	key-value	pair	from	a	dictionary	with	the
removeValue(forKey:)	method.	This	method	removes	the	key-value	pair	if	it
exists	and	returns	the	removed	value,	or	returns	nil	if	no	value	existed:

1 if	let	removedValue	=	airports.removeValue(forKey:	"DUB")	{

2 				print("The	removed	airport's	name	is	\(removedValue).")

3 }	else	{

4 				print("The	airports	dictionary	does	not	contain	a	value	for	

DUB.")

5 }

6 //	Prints	"The	removed	airport's	name	is	Dublin	Airport."

Iterating	Over	a	Dictionary
You	can	iterate	over	the	key-value	pairs	in	a	dictionary	with	a	for-in	loop.	Each
item	in	the	dictionary	is	returned	as	a	(key,	value)	tuple,	and	you	can
decompose	the	tuple’s	members	into	temporary	constants	or	variables	as	part	of
the	iteration:

1 for	(airportCode,	airportName)	in	airports	{

2 				print("\(airportCode):	\(airportName)")

3 }

4 //	LHR:	London	Heathrow

5 //	YYZ:	Toronto	Pearson

For	more	about	the	for-in	loop,	see	For-In	Loops.

You	can	also	retrieve	an	iterable	collection	of	a	dictionary’s	keys	or	values	by
accessing	its	keys	and	values	properties:

1 for	airportCode	in	airports.keys	{

2 				print("Airport	code:	\(airportCode)")

3 }

4 //	Airport	code:	LHR

5 //	Airport	code:	YYZ

6

7 for	airportName	in	airports.values	{

8 				print("Airport	name:	\(airportName)")

9 }

10 //	Airport	name:	London	Heathrow

11 //	Airport	name:	Toronto	Pearson

If	you	need	to	use	a	dictionary’s	keys	or	values	with	an	API	that	takes	an	Array
instance,	initialize	a	new	array	with	the	keys	or	values	property:

1 let	airportCodes	=	[String](airports.keys)

2 //	airportCodes	is	["LHR",	"YYZ"]

3

4 let	airportNames	=	[String](airports.values)

5 //	airportNames	is	["London	Heathrow",	"Toronto	Pearson"]

Swift’s	Dictionary	type	does	not	have	a	defined	ordering.	To	iterate	over	the
keys	or	values	of	a	dictionary	in	a	specific	order,	use	the	sorted()	method	on	its
keys	or	values	property.

Control	Flow

Swift	provides	a	variety	of	control	flow	statements.	These	include	while	loops	to
perform	a	task	multiple	times;	if,	guard,	and	switch	statements	to	execute
different	branches	of	code	based	on	certain	conditions;	and	statements	such	as
break	and	continue	to	transfer	the	flow	of	execution	to	another	point	in	your
code.

Swift	also	provides	a	for-in	loop	that	makes	it	easy	to	iterate	over	arrays,
dictionaries,	ranges,	strings,	and	other	sequences.

Swift’s	switch	statement	is	considerably	more	powerful	than	its	counterpart	in
many	C-like	languages.	Cases	can	match	many	different	patterns,	including
interval	matches,	tuples,	and	casts	to	a	specific	type.	Matched	values	in	a	switch
case	can	be	bound	to	temporary	constants	or	variables	for	use	within	the	case’s
body,	and	complex	matching	conditions	can	be	expressed	with	a	where	clause	for
each	case.

For-In	Loops

You	use	the	for-in	loop	to	iterate	over	a	sequence,	such	as	items	in	an	array,
ranges	of	numbers,	or	characters	in	a	string.

This	example	uses	a	for-in	loop	to	iterate	over	the	items	in	an	array:

1 let	names	=	["Anna",	"Alex",	"Brian",	"Jack"]

2 for	name	in	names	{

3 				print("Hello,	\(name)!")

4 }

5 //	Hello,	Anna!

6 //	Hello,	Alex!

7 //	Hello,	Brian!

8 //	Hello,	Jack!

You	can	also	iterate	over	a	dictionary	to	access	its	key-value	pairs.	Each	item	in
the	dictionary	is	returned	as	a	(key,	value)	tuple	when	the	dictionary	is	iterated,
and	you	can	decompose	the	(key,	value)	tuple’s	members	as	explicitly	named
constants	for	use	within	the	body	of	the	for-in	loop.	In	the	code	example	below,
the	dictionary’s	keys	are	decomposed	into	a	constant	called	animalName,	and	the
dictionary’s	values	are	decomposed	into	a	constant	called	legCount.

1 let	numberOfLegs	=	["spider":	8,	"ant":	6,	"cat":	4]

2 for	(animalName,	legCount)	in	numberOfLegs	{

3 				print("\(animalName)s	have	\(legCount)	legs")

4 }

5 //	cats	have	4	legs

6 //	ants	have	6	legs

7 //	spiders	have	8	legs

The	contents	of	a	Dictionary	are	inherently	unordered,	and	iterating	over	them
does	not	guarantee	the	order	in	which	they	will	be	retrieved.	In	particular,	the
order	you	insert	items	into	a	Dictionary	doesn’t	define	the	order	they	are
iterated.	For	more	about	arrays	and	dictionaries,	see	Collection	Types.

You	can	also	use	for-in	loops	with	numeric	ranges.	This	example	prints	the	first
few	entries	in	a	five-times	table:

1 for	index	in	1...5	{

2 				print("\(index)	times	5	is	\(index	*	5)")

3 }

4 //	1	times	5	is	5

5 //	2	times	5	is	10

6 //	3	times	5	is	15

7 //	4	times	5	is	20

8 //	5	times	5	is	25

The	sequence	being	iterated	over	is	a	range	of	numbers	from	1	to	5,	inclusive,	as
indicated	by	the	use	of	the	closed	range	operator	(...).	The	value	of	index	is	set
to	the	first	number	in	the	range	(1),	and	the	statements	inside	the	loop	are
executed.	In	this	case,	the	loop	contains	only	one	statement,	which	prints	an
entry	from	the	five-times	table	for	the	current	value	of	index.	After	the	statement
is	executed,	the	value	of	index	is	updated	to	contain	the	second	value	in	the
range	(2),	and	the	print(_:separator:terminator:)	function	is	called	again.
This	process	continues	until	the	end	of	the	range	is	reached.

In	the	example	above,	index	is	a	constant	whose	value	is	automatically	set	at	the
start	of	each	iteration	of	the	loop.	As	such,	index	does	not	have	to	be	declared
before	it	is	used.	It	is	implicitly	declared	simply	by	its	inclusion	in	the	loop
declaration,	without	the	need	for	a	let	declaration	keyword.

If	you	don’t	need	each	value	from	a	sequence,	you	can	ignore	the	values	by
using	an	underscore	in	place	of	a	variable	name.

1 let	base	=	3

2 let	power	=	10

3 var	answer	=	1

4 for	_	in	1...power	{

5 				answer	*=	base

6 }

7 print("\(base)	to	the	power	of	\(power)	is	\(answer)")

8 //	Prints	"3	to	the	power	of	10	is	59049"

The	example	above	calculates	the	value	of	one	number	to	the	power	of	another
(in	this	case,	3	to	the	power	of	10).	It	multiplies	a	starting	value	of	1	(that	is,	3	to
the	power	of	0)	by	3,	ten	times,	using	a	closed	range	that	starts	with	1	and	ends
with	10.	For	this	calculation,	the	individual	counter	values	each	time	through	the
loop	are	unnecessary—the	code	simply	executes	the	loop	the	correct	number	of
times.	The	underscore	character	(_)	used	in	place	of	a	loop	variable	causes	the
individual	values	to	be	ignored	and	does	not	provide	access	to	the	current	value
during	each	iteration	of	the	loop.

In	some	situations,	you	might	not	want	to	use	closed	ranges,	which	include	both

endpoints.	Consider	drawing	the	tick	marks	for	every	minute	on	a	watch	face.
You	want	to	draw	60	tick	marks,	starting	with	the	0	minute.	Use	the	half-open
range	operator	(..<)	to	include	the	lower	bound	but	not	the	upper	bound.	For
more	about	ranges,	see	Range	Operators.

1 let	minutes	=	60

2 for	tickMark	in	0..<minutes	{

3 				//	render	the	tick	mark	each	minute	(60	times)

4 }

Some	users	might	want	fewer	tick	marks	in	their	UI.	They	could	prefer	one	mark
every	5	minutes	instead.	Use	the	stride(from:to:by:)	function	to	skip	the
unwanted	marks.

1 let	minuteInterval	=	5

2 for	tickMark	in	stride(from:	0,	to:	minutes,	by:	

minuteInterval)	{

3 				//	render	the	tick	mark	every	5	minutes	(0,	5,	10,	15	...	

45,	50,	55)

4 }

Closed	ranges	are	also	available,	by	using	stride(from:through:by:)	instead:

1 let	hours	=	12

2 let	hourInterval	=	3

3 for	tickMark	in	stride(from:	3,	through:	hours,	by:	

hourInterval)	{

4 				//	render	the	tick	mark	every	3	hours	(3,	6,	9,	12)

5 }

While	Loops

A	while	loop	performs	a	set	of	statements	until	a	condition	becomes	false.
These	kinds	of	loops	are	best	used	when	the	number	of	iterations	is	not	known
before	the	first	iteration	begins.	Swift	provides	two	kinds	of	while	loops:

while	evaluates	its	condition	at	the	start	of	each	pass	through	the	loop.

repeat-while	evaluates	its	condition	at	the	end	of	each	pass	through	the
loop.

While
A	while	loop	starts	by	evaluating	a	single	condition.	If	the	condition	is	true,	a
set	of	statements	is	repeated	until	the	condition	becomes	false.

Here’s	the	general	form	of	a	while	loop:

	 while	 condition 	{

	 				 statements

	 }

This	example	plays	a	simple	game	of	Snakes	and	Ladders	(also	known	as	Chutes
and	Ladders):

The	rules	of	the	game	are	as	follows:

The	board	has	25	squares,	and	the	aim	is	to	land	on	or	beyond	square	25.

The	player’s	starting	square	is	“square	zero”,	which	is	just	off	the	bottom-
left	corner	of	the	board.

Each	turn,	you	roll	a	six-sided	dice	and	move	by	that	number	of	squares,
following	the	horizontal	path	indicated	by	the	dotted	arrow	above.

If	your	turn	ends	at	the	bottom	of	a	ladder,	you	move	up	that	ladder.

If	your	turn	ends	at	the	head	of	a	snake,	you	move	down	that	snake.

The	game	board	is	represented	by	an	array	of	Int	values.	Its	size	is	based	on	a
constant	called	finalSquare,	which	is	used	to	initialize	the	array	and	also	to
check	for	a	win	condition	later	in	the	example.	Because	the	players	start	off	the
board,	on	“square	zero”,	the	board	is	initialized	with	26	zero	Int	values,	not	25.

1 let	finalSquare	=	25

2 var	board	=	[Int](repeating:	0,	count:	finalSquare	+	1)

Some	squares	are	then	set	to	have	more	specific	values	for	the	snakes	and
ladders.	Squares	with	a	ladder	base	have	a	positive	number	to	move	you	up	the
board,	whereas	squares	with	a	snake	head	have	a	negative	number	to	move	you
back	down	the	board.

1 board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	board[10]	=	

+02

2 board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	board[24]	=	

-08

Square	3	contains	the	bottom	of	a	ladder	that	moves	you	up	to	square	11.	To
represent	this,	board[03]	is	equal	to	+08,	which	is	equivalent	to	an	integer	value
of	8	(the	difference	between	3	and	11).	To	align	the	values	and	statements,	the
unary	plus	operator	(+i)	is	explicitly	used	with	the	unary	minus	operator	(-i)	and
numbers	lower	than	10	are	padded	with	zeros.	(Neither	stylistic	technique	is

strictly	necessary,	but	they	lead	to	neater	code.)

1 var	square	=	0

2 var	diceRoll	=	0

3 while	square	<	finalSquare	{

4 				//	roll	the	dice

5 				diceRoll	+=	1

6 				if	diceRoll	==	7	{	diceRoll	=	1	}

7 				//	move	by	the	rolled	amount

8 				square	+=	diceRoll

9 				if	square	<	board.count	{

10 								//	if	we're	still	on	the	board,	move	up	or	down	for	a	

snake	or	a	ladder

11 								square	+=	board[square]

12 				}

13 }

14 print("Game	over!")

The	example	above	uses	a	very	simple	approach	to	dice	rolling.	Instead	of
generating	a	random	number,	it	starts	with	a	diceRoll	value	of	0.	Each	time
through	the	while	loop,	diceRoll	is	incremented	by	one	and	is	then	checked	to
see	whether	it	has	become	too	large.	Whenever	this	return	value	equals	7,	the
dice	roll	has	become	too	large	and	is	reset	to	a	value	of	1.	The	result	is	a
sequence	of	diceRoll	values	that	is	always	1,	2,	3,	4,	5,	6,	1,	2	and	so	on.

After	rolling	the	dice,	the	player	moves	forward	by	diceRoll	squares.	It’s
possible	that	the	dice	roll	may	have	moved	the	player	beyond	square	25,	in
which	case	the	game	is	over.	To	cope	with	this	scenario,	the	code	checks	that
square	is	less	than	the	board	array’s	count	property.	If	square	is	valid,	the	value
stored	in	board[square]	is	added	to	the	current	square	value	to	move	the	player
up	or	down	any	ladders	or	snakes.

NOTE

If	this	check	is	not	performed,	board[square]	might	try	to	access	a	value	outside	the	bounds	of
the	board	array,	which	would	trigger	a	runtime	error.

The	current	while	loop	execution	then	ends,	and	the	loop’s	condition	is	checked
to	see	if	the	loop	should	be	executed	again.	If	the	player	has	moved	on	or	beyond
square	number	25,	the	loop’s	condition	evaluates	to	false	and	the	game	ends.

A	while	loop	is	appropriate	in	this	case,	because	the	length	of	the	game	is	not
clear	at	the	start	of	the	while	loop.	Instead,	the	loop	is	executed	until	a	particular
condition	is	satisfied.

Repeat-While
The	other	variation	of	the	while	loop,	known	as	the	repeat-while	loop,	performs
a	single	pass	through	the	loop	block	first,	before	considering	the	loop’s
condition.	It	then	continues	to	repeat	the	loop	until	the	condition	is	false.

NOTE

The	repeat-while	loop	in	Swift	is	analogous	to	a	do-while	loop	in	other	languages.

Here’s	the	general	form	of	a	repeat-while	loop:

	 repeat	{

	 				 statements

	 }	while	 condition

Here’s	the	Snakes	and	Ladders	example	again,	written	as	a	repeat-while	loop
rather	than	a	while	loop.	The	values	of	finalSquare,	board,	square,	and	diceRoll
are	initialized	in	exactly	the	same	way	as	with	a	while	loop.

1 let	finalSquare	=	25

2 var	board	=	[Int](repeating:	0,	count:	finalSquare	+	1)

3 board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	board[10]	=	

+02

4 board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	board[24]	=	

-08

5 var	square	=	0

6 var	diceRoll	=	0

In	this	version	of	the	game,	the	first	action	in	the	loop	is	to	check	for	a	ladder	or
a	snake.	No	ladder	on	the	board	takes	the	player	straight	to	square	25,	and	so	it
isn’t	possible	to	win	the	game	by	moving	up	a	ladder.	Therefore,	it’s	safe	to
check	for	a	snake	or	a	ladder	as	the	first	action	in	the	loop.

At	the	start	of	the	game,	the	player	is	on	“square	zero”.	board[0]	always	equals	0
and	has	no	effect.

1 repeat	{

2 				//	move	up	or	down	for	a	snake	or	ladder

3 				square	+=	board[square]

4 				//	roll	the	dice

5 				diceRoll	+=	1

6 				if	diceRoll	==	7	{	diceRoll	=	1	}

7 				//	move	by	the	rolled	amount

8 				square	+=	diceRoll

9 }	while	square	<	finalSquare

10 print("Game	over!")

After	the	code	checks	for	snakes	and	ladders,	the	dice	is	rolled	and	the	player	is
moved	forward	by	diceRoll	squares.	The	current	loop	execution	then	ends.

The	loop’s	condition	(while	square	<	finalSquare)	is	the	same	as	before,	but
this	time	it’s	not	evaluated	until	the	end	of	the	first	run	through	the	loop.	The
structure	of	the	repeat-while	loop	is	better	suited	to	this	game	than	the	while
loop	in	the	previous	example.	In	the	repeat-while	loop	above,	square	+=
board[square]	is	always	executed	immediately	after	the	loop’s	while	condition
confirms	that	square	is	still	on	the	board.	This	behavior	removes	the	need	for	the
array	bounds	check	seen	in	the	while	loop	version	of	the	game	described	earlier.

Conditional	Statements

It	is	often	useful	to	execute	different	pieces	of	code	based	on	certain	conditions.
You	might	want	to	run	an	extra	piece	of	code	when	an	error	occurs,	or	to	display
a	message	when	a	value	becomes	too	high	or	too	low.	To	do	this,	you	make	parts
of	your	code	conditional.

Swift	provides	two	ways	to	add	conditional	branches	to	your	code:	the	if
statement	and	the	switch	statement.	Typically,	you	use	the	if	statement	to
evaluate	simple	conditions	with	only	a	few	possible	outcomes.	The	switch
statement	is	better	suited	to	more	complex	conditions	with	multiple	possible
permutations	and	is	useful	in	situations	where	pattern	matching	can	help	select
an	appropriate	code	branch	to	execute.

If
In	its	simplest	form,	the	if	statement	has	a	single	if	condition.	It	executes	a	set
of	statements	only	if	that	condition	is	true.

1 var	temperatureInFahrenheit	=	30

2 if	temperatureInFahrenheit	<=	32	{

3 				print("It's	very	cold.	Consider	wearing	a	scarf.")

4 }

5 //	Prints	"It's	very	cold.	Consider	wearing	a	scarf."

The	example	above	checks	whether	the	temperature	is	less	than	or	equal	to	32
degrees	Fahrenheit	(the	freezing	point	of	water).	If	it	is,	a	message	is	printed.
Otherwise,	no	message	is	printed,	and	code	execution	continues	after	the	if
statement’s	closing	brace.

The	if	statement	can	provide	an	alternative	set	of	statements,	known	as	an	else
clause,	for	situations	when	the	if	condition	is	false.	These	statements	are
indicated	by	the	else	keyword.

1 temperatureInFahrenheit	=	40

2 if	temperatureInFahrenheit	<=	32	{

3 				print("It's	very	cold.	Consider	wearing	a	scarf.")

4 }	else	{

5 				print("It's	not	that	cold.	Wear	a	t-shirt.")

6 }

7 //	Prints	"It's	not	that	cold.	Wear	a	t-shirt."

One	of	these	two	branches	is	always	executed.	Because	the	temperature	has
increased	to	40	degrees	Fahrenheit,	it	is	no	longer	cold	enough	to	advise	wearing
a	scarf	and	so	the	else	branch	is	triggered	instead.

You	can	chain	multiple	if	statements	together	to	consider	additional	clauses.

1 temperatureInFahrenheit	=	90

2 if	temperatureInFahrenheit	<=	32	{

3 				print("It's	very	cold.	Consider	wearing	a	scarf.")

4 }	else	if	temperatureInFahrenheit	>=	86	{

5 				print("It's	really	warm.	Don't	forget	to	wear	sunscreen.")

6 }	else	{

7 				print("It's	not	that	cold.	Wear	a	t-shirt.")

8 }

9 //	Prints	"It's	really	warm.	Don't	forget	to	wear	sunscreen."

Here,	an	additional	if	statement	was	added	to	respond	to	particularly	warm
temperatures.	The	final	else	clause	remains,	and	it	prints	a	response	for	any
temperatures	that	are	neither	too	warm	nor	too	cold.

The	final	else	clause	is	optional,	however,	and	can	be	excluded	if	the	set	of
conditions	does	not	need	to	be	complete.

1 temperatureInFahrenheit	=	72

2 if	temperatureInFahrenheit	<=	32	{

3 				print("It's	very	cold.	Consider	wearing	a	scarf.")

4 }	else	if	temperatureInFahrenheit	>=	86	{

5 				print("It's	really	warm.	Don't	forget	to	wear	sunscreen.")

6 }

Because	the	temperature	is	neither	too	cold	nor	too	warm	to	trigger	the	if	or
else	if	conditions,	no	message	is	printed.

Switch
A	switch	statement	considers	a	value	and	compares	it	against	several	possible
matching	patterns.	It	then	executes	an	appropriate	block	of	code,	based	on	the
first	pattern	that	matches	successfully.	A	switch	statement	provides	an
alternative	to	the	if	statement	for	responding	to	multiple	potential	states.

In	its	simplest	form,	a	switch	statement	compares	a	value	against	one	or	more
values	of	the	same	type.

	 switch	 some	value	to	consider 	{

	 case	 value	1 :

	 				 respond	to	value	1

	 case	 value	2 ,

	 					 value	3 :

	 				 respond	to	value	2	or	3

	 default:

	 				 otherwise,	do	something	else

	 }

Every	switch	statement	consists	of	multiple	possible	cases,	each	of	which	begins
with	the	case	keyword.	In	addition	to	comparing	against	specific	values,	Swift
provides	several	ways	for	each	case	to	specify	more	complex	matching	patterns.
These	options	are	described	later	in	this	chapter.

Like	the	body	of	an	if	statement,	each	case	is	a	separate	branch	of	code
execution.	The	switch	statement	determines	which	branch	should	be	selected.

This	procedure	is	known	as	switching	on	the	value	that	is	being	considered.

Every	switch	statement	must	be	exhaustive.	That	is,	every	possible	value	of	the
type	being	considered	must	be	matched	by	one	of	the	switch	cases.	If	it’s	not
appropriate	to	provide	a	case	for	every	possible	value,	you	can	define	a	default
case	to	cover	any	values	that	are	not	addressed	explicitly.	This	default	case	is
indicated	by	the	default	keyword,	and	must	always	appear	last.

This	example	uses	a	switch	statement	to	consider	a	single	lowercase	character
called	someCharacter:

1 let	someCharacter:	Character	=	"z"

2 switch	someCharacter	{

3 case	"a":

4 				print("The	first	letter	of	the	alphabet")

5 case	"z":

6 				print("The	last	letter	of	the	alphabet")

7 default:

8 				print("Some	other	character")

9 }

10 //	Prints	"The	last	letter	of	the	alphabet"

The	switch	statement’s	first	case	matches	the	first	letter	of	the	English	alphabet,
a,	and	its	second	case	matches	the	last	letter,	z.	Because	the	switch	must	have	a
case	for	every	possible	character,	not	just	every	alphabetic	character,	this	switch
statement	uses	a	default	case	to	match	all	characters	other	than	a	and	z.	This
provision	ensures	that	the	switch	statement	is	exhaustive.

No	Implicit	Fallthrough

In	contrast	with	switch	statements	in	C	and	Objective-C,	switch	statements	in
Swift	do	not	fall	through	the	bottom	of	each	case	and	into	the	next	one	by
default.	Instead,	the	entire	switch	statement	finishes	its	execution	as	soon	as	the
first	matching	switch	case	is	completed,	without	requiring	an	explicit	break
statement.	This	makes	the	switch	statement	safer	and	easier	to	use	than	the	one

in	C	and	avoids	executing	more	than	one	switch	case	by	mistake.

NOTE

Although	break	is	not	required	in	Swift,	you	can	use	a	break	statement	to	match	and	ignore	a
particular	case	or	to	break	out	of	a	matched	case	before	that	case	has	completed	its	execution.	For
details,	see	Break	in	a	Switch	Statement.

The	body	of	each	case	must	contain	at	least	one	executable	statement.	It	is	not
valid	to	write	the	following	code,	because	the	first	case	is	empty:

1 let	anotherCharacter:	Character	=	"a"

2 switch	anotherCharacter	{

3 case	"a":	//	Invalid,	the	case	has	an	empty	body

4 case	"A":

5 				print("The	letter	A")

6 default:

7 				print("Not	the	letter	A")

8 }

9 //	This	will	report	a	compile-time	error.

Unlike	a	switch	statement	in	C,	this	switch	statement	does	not	match	both	"a"
and	"A".	Rather,	it	reports	a	compile-time	error	that	case	"a":	does	not	contain
any	executable	statements.	This	approach	avoids	accidental	fallthrough	from	one
case	to	another	and	makes	for	safer	code	that	is	clearer	in	its	intent.

To	make	a	switch	with	a	single	case	that	matches	both	"a"	and	"A",	combine	the
two	values	into	a	compound	case,	separating	the	values	with	commas.

1 let	anotherCharacter:	Character	=	"a"

2 switch	anotherCharacter	{

3 case	"a",	"A":

4 				print("The	letter	A")

5 default:

6 				print("Not	the	letter	A")

7 }

8 //	Prints	"The	letter	A"

For	readability,	a	compound	case	can	also	be	written	over	multiple	lines.	For
more	information	about	compound	cases,	see	Compound	Cases.

NOTE

To	explicitly	fall	through	at	the	end	of	a	particular	switch	case,	use	the	fallthrough	keyword,
as	described	in	Fallthrough.

Interval	Matching

Values	in	switch	cases	can	be	checked	for	their	inclusion	in	an	interval.	This
example	uses	number	intervals	to	provide	a	natural-language	count	for	numbers
of	any	size:

1 let	approximateCount	=	62

2 let	countedThings	=	"moons	orbiting	Saturn"

3 let	naturalCount:	String

4 switch	approximateCount	{

5 case	0:

6 				naturalCount	=	"no"

7 case	1..<5:

8 				naturalCount	=	"a	few"

9 case	5..<12:

10 				naturalCount	=	"several"

11 case	12..<100:

12 				naturalCount	=	"dozens	of"

13 case	100..<1000:

14 				naturalCount	=	"hundreds	of"

15 default:

16 				naturalCount	=	"many"

17 }

18 print("There	are	\(naturalCount)	\(countedThings).")

19 //	Prints	"There	are	dozens	of	moons	orbiting	Saturn."

In	the	above	example,	approximateCount	is	evaluated	in	a	switch	statement.
Each	case	compares	that	value	to	a	number	or	interval.	Because	the	value	of
approximateCount	falls	between	12	and	100,	naturalCount	is	assigned	the	value
"dozens	of",	and	execution	is	transferred	out	of	the	switch	statement.

Tuples

You	can	use	tuples	to	test	multiple	values	in	the	same	switch	statement.	Each
element	of	the	tuple	can	be	tested	against	a	different	value	or	interval	of	values.
Alternatively,	use	the	underscore	character	(_),	also	known	as	the	wildcard
pattern,	to	match	any	possible	value.

The	example	below	takes	an	(x,	y)	point,	expressed	as	a	simple	tuple	of	type
(Int,	Int),	and	categorizes	it	on	the	graph	that	follows	the	example.

1 let	somePoint	=	(1,	1)

2 switch	somePoint	{

3 case	(0,	0):

4 				print("\(somePoint)	is	at	the	origin")

5 case	(_,	0):

6 				print("\(somePoint)	is	on	the	x-axis")

7 case	(0,	_):

8 				print("\(somePoint)	is	on	the	y-axis")

9 case	(-2...2,	-2...2):

10 				print("\(somePoint)	is	inside	the	box")

11 default:

12 				print("\(somePoint)	is	outside	of	the	box")

13 }

14 //	Prints	"(1,	1)	is	inside	the	box"

The	switch	statement	determines	whether	the	point	is	at	the	origin	(0,	0),	on	the
red	x-axis,	on	the	orange	y-axis,	inside	the	blue	4-by-4	box	centered	on	the
origin,	or	outside	of	the	box.

Unlike	C,	Swift	allows	multiple	switch	cases	to	consider	the	same	value	or
values.	In	fact,	the	point	(0,	0)	could	match	all	four	of	the	cases	in	this	example.
However,	if	multiple	matches	are	possible,	the	first	matching	case	is	always
used.	The	point	(0,	0)	would	match	case	(0,	0)	first,	and	so	all	other	matching
cases	would	be	ignored.

Value	Bindings

A	switch	case	can	name	the	value	or	values	it	matches	to	temporary	constants	or
variables,	for	use	in	the	body	of	the	case.	This	behavior	is	known	as	value
binding,	because	the	values	are	bound	to	temporary	constants	or	variables	within
the	case’s	body.

The	example	below	takes	an	(x,	y)	point,	expressed	as	a	tuple	of	type	(Int,
Int),	and	categorizes	it	on	the	graph	that	follows:

1 let	anotherPoint	=	(2,	0)

2 switch	anotherPoint	{

3 case	(let	x,	0):

4 				print("on	the	x-axis	with	an	x	value	of	\(x)")

5 case	(0,	let	y):

6 				print("on	the	y-axis	with	a	y	value	of	\(y)")

7 case	let	(x,	y):

8 				print("somewhere	else	at	(\(x),	\(y))")

9 }

10 //	Prints	"on	the	x-axis	with	an	x	value	of	2"

The	switch	statement	determines	whether	the	point	is	on	the	red	x-axis,	on	the
orange	y-axis,	or	elsewhere	(on	neither	axis).

The	three	switch	cases	declare	placeholder	constants	x	and	y,	which	temporarily
take	on	one	or	both	tuple	values	from	anotherPoint.	The	first	case,	case	(let	x,
0),	matches	any	point	with	a	y	value	of	0	and	assigns	the	point’s	x	value	to	the
temporary	constant	x.	Similarly,	the	second	case,	case	(0,	let	y),	matches	any
point	with	an	x	value	of	0	and	assigns	the	point’s	y	value	to	the	temporary
constant	y.

After	the	temporary	constants	are	declared,	they	can	be	used	within	the	case’s
code	block.	Here,	they	are	used	to	print	the	categorization	of	the	point.

This	switch	statement	does	not	have	a	default	case.	The	final	case,	case	let

(x,	y),	declares	a	tuple	of	two	placeholder	constants	that	can	match	any	value.
Because	anotherPoint	is	always	a	tuple	of	two	values,	this	case	matches	all
possible	remaining	values,	and	a	default	case	is	not	needed	to	make	the	switch
statement	exhaustive.

Where

A	switch	case	can	use	a	where	clause	to	check	for	additional	conditions.

The	example	below	categorizes	an	(x,	y)	point	on	the	following	graph:

1 let	yetAnotherPoint	=	(1,	-1)

2 switch	yetAnotherPoint	{

3 case	let	(x,	y)	where	x	==	y:

4 				print("(\(x),	\(y))	is	on	the	line	x	==	y")

5 case	let	(x,	y)	where	x	==	-y:

6 				print("(\(x),	\(y))	is	on	the	line	x	==	-y")

7 case	let	(x,	y):

8 				print("(\(x),	\(y))	is	just	some	arbitrary	point")

9 }

10 //	Prints	"(1,	-1)	is	on	the	line	x	==	-y"

The	switch	statement	determines	whether	the	point	is	on	the	green	diagonal	line
where	x	==	y,	on	the	purple	diagonal	line	where	x	==	-y,	or	neither.

The	three	switch	cases	declare	placeholder	constants	x	and	y,	which	temporarily
take	on	the	two	tuple	values	from	yetAnotherPoint.	These	constants	are	used	as
part	of	a	where	clause,	to	create	a	dynamic	filter.	The	switch	case	matches	the
current	value	of	point	only	if	the	where	clause’s	condition	evaluates	to	true	for
that	value.

As	in	the	previous	example,	the	final	case	matches	all	possible	remaining	values,
and	so	a	default	case	is	not	needed	to	make	the	switch	statement	exhaustive.

Compound	Cases

Multiple	switch	cases	that	share	the	same	body	can	be	combined	by	writing
several	patterns	after	case,	with	a	comma	between	each	of	the	patterns.	If	any	of
the	patterns	match,	then	the	case	is	considered	to	match.	The	patterns	can	be
written	over	multiple	lines	if	the	list	is	long.	For	example:

1 let	someCharacter:	Character	=	"e"

2 switch	someCharacter	{

3 case	"a",	"e",	"i",	"o",	"u":

4 				print("\(someCharacter)	is	a	vowel")

5 case	"b",	"c",	"d",	"f",	"g",	"h",	"j",	"k",	"l",	"m",

6 					"n",	"p",	"q",	"r",	"s",	"t",	"v",	"w",	"x",	"y",	"z":

7 				print("\(someCharacter)	is	a	consonant")

8 default:

9 				print("\(someCharacter)	is	not	a	vowel	or	a	consonant")

10 }

11 //	Prints	"e	is	a	vowel"

The	switch	statement’s	first	case	matches	all	five	lowercase	vowels	in	the
English	language.	Similarly,	its	second	case	matches	all	lowercase	English
consonants.	Finally,	the	default	case	matches	any	other	character.

Compound	cases	can	also	include	value	bindings.	All	of	the	patterns	of	a
compound	case	have	to	include	the	same	set	of	value	bindings,	and	each	binding
has	to	get	a	value	of	the	same	type	from	all	of	the	patterns	in	the	compound	case.
This	ensures	that,	no	matter	which	part	of	the	compound	case	matched,	the	code
in	the	body	of	the	case	can	always	access	a	value	for	the	bindings	and	that	the
value	always	has	the	same	type.

1 let	stillAnotherPoint	=	(9,	0)

2 switch	stillAnotherPoint	{

3 case	(let	distance,	0),	(0,	let	distance):

4 				print("On	an	axis,	\(distance)	from	the	origin")

5 default:

6 				print("Not	on	an	axis")

7 }

8 //	Prints	"On	an	axis,	9	from	the	origin"

The	case	above	has	two	patterns:	(let	distance,	0)	matches	points	on	the	x-
axis	and	(0,	let	distance)	matches	points	on	the	y-axis.	Both	patterns	include
a	binding	for	distance	and	distance	is	an	integer	in	both	patterns—which	means
that	the	code	in	the	body	of	the	case	can	always	access	a	value	for	distance.

Control	Transfer	Statements

Control	transfer	statements	change	the	order	in	which	your	code	is	executed,	by
transferring	control	from	one	piece	of	code	to	another.	Swift	has	five	control
transfer	statements:

continue

break

fallthrough

return

throw

The	continue,	break,	and	fallthrough	statements	are	described	below.	The
return	statement	is	described	in	Functions,	and	the	throw	statement	is	described
in	Propagating	Errors	Using	Throwing	Functions.

Continue
The	continue	statement	tells	a	loop	to	stop	what	it	is	doing	and	start	again	at	the
beginning	of	the	next	iteration	through	the	loop.	It	says	“I	am	done	with	the
current	loop	iteration”	without	leaving	the	loop	altogether.

The	following	example	removes	all	vowels	and	spaces	from	a	lowercase	string
to	create	a	cryptic	puzzle	phrase:

1 let	puzzleInput	=	"great	minds	think	alike"

2 var	puzzleOutput	=	""

3 let	charactersToRemove:	[Character]	=	["a",	"e",	"i",	"o",	"u",	

"	"]

4 for	character	in	puzzleInput	{

5 				if	charactersToRemove.contains(character)	{

6 								continue

7 				}

8 				puzzleOutput.append(character)

9 }

10 print(puzzleOutput)

11 //	Prints	"grtmndsthnklk"

The	code	above	calls	the	continue	keyword	whenever	it	matches	a	vowel	or	a
space,	causing	the	current	iteration	of	the	loop	to	end	immediately	and	to	jump
straight	to	the	start	of	the	next	iteration.

Break
The	break	statement	ends	execution	of	an	entire	control	flow	statement
immediately.	The	break	statement	can	be	used	inside	a	switch	or	loop	statement
when	you	want	to	terminate	the	execution	of	the	switch	or	loop	statement	earlier
than	would	otherwise	be	the	case.

Break	in	a	Loop	Statement

When	used	inside	a	loop	statement,	break	ends	the	loop’s	execution	immediately
and	transfers	control	to	the	code	after	the	loop’s	closing	brace	(}).	No	further
code	from	the	current	iteration	of	the	loop	is	executed,	and	no	further	iterations
of	the	loop	are	started.

Break	in	a	Switch	Statement

When	used	inside	a	switch	statement,	break	causes	the	switch	statement	to	end
its	execution	immediately	and	to	transfer	control	to	the	code	after	the	switch
statement’s	closing	brace	(}).

This	behavior	can	be	used	to	match	and	ignore	one	or	more	cases	in	a	switch
statement.	Because	Swift’s	switch	statement	is	exhaustive	and	does	not	allow
empty	cases,	it	is	sometimes	necessary	to	deliberately	match	and	ignore	a	case	in
order	to	make	your	intentions	explicit.	You	do	this	by	writing	the	break
statement	as	the	entire	body	of	the	case	you	want	to	ignore.	When	that	case	is
matched	by	the	switch	statement,	the	break	statement	inside	the	case	ends	the
switch	statement’s	execution	immediately.

NOTE

A	switch	case	that	contains	only	a	comment	is	reported	as	a	compile-time	error.	Comments	are	not
statements	and	do	not	cause	a	switch	case	to	be	ignored.	Always	use	a	break	statement	to	ignore
a	switch	case.

The	following	example	switches	on	a	Character	value	and	determines	whether	it
represents	a	number	symbol	in	one	of	four	languages.	For	brevity,	multiple
values	are	covered	in	a	single	switch	case.

1 let	numberSymbol:	Character	=	"" 		//	Chinese	symbol	for	the	

number	3

2 var	possibleIntegerValue:	Int?

3 switch	numberSymbol	{

4 case	"1",	"١",	"" ,	"�":

5 				possibleIntegerValue	=	1

6 case	"2",	"٢",	"" ,	"�":

7 				possibleIntegerValue	=	2

8 case	"3",	"٣",	"" ,	"�":

9 				possibleIntegerValue	=	3

10 case	"4",	"٤",	"" ,	"�":

11 				possibleIntegerValue	=	4

12 default:

13 				break

14 }

15 if	let	integerValue	=	possibleIntegerValue	{

16 				print("The	integer	value	of	\(numberSymbol)	is	\

(integerValue).")

17 }	else	{

18 				print("An	integer	value	could	not	be	found	for	\

(numberSymbol).")

19 }

20 //	Prints	"The	integer	value	of		is	3."

This	example	checks	numberSymbol	to	determine	whether	it	is	a	Latin,	Arabic,
Chinese,	or	Thai	symbol	for	the	numbers	1	to	4.	If	a	match	is	found,	one	of	the
switch	statement’s	cases	sets	an	optional	Int?	variable	called
possibleIntegerValue	to	an	appropriate	integer	value.

After	the	switch	statement	completes	its	execution,	the	example	uses	optional
binding	to	determine	whether	a	value	was	found.	The	possibleIntegerValue

variable	has	an	implicit	initial	value	of	nil	by	virtue	of	being	an	optional	type,
and	so	the	optional	binding	will	succeed	only	if	possibleIntegerValue	was	set	to
an	actual	value	by	one	of	the	switch	statement’s	first	four	cases.

Because	it’s	not	practical	to	list	every	possible	Character	value	in	the	example
above,	a	default	case	handles	any	characters	that	are	not	matched.	This	default
case	does	not	need	to	perform	any	action,	and	so	it	is	written	with	a	single	break
statement	as	its	body.	As	soon	as	the	default	case	is	matched,	the	break
statement	ends	the	switch	statement’s	execution,	and	code	execution	continues
from	the	if	let	statement.

Fallthrough
In	Swift,	switch	statements	don’t	fall	through	the	bottom	of	each	case	and	into
the	next	one.	That	is,	the	entire	switch	statement	completes	its	execution	as	soon
as	the	first	matching	case	is	completed.	By	contrast,	C	requires	you	to	insert	an
explicit	break	statement	at	the	end	of	every	switch	case	to	prevent	fallthrough.
Avoiding	default	fallthrough	means	that	Swift	switch	statements	are	much	more
concise	and	predictable	than	their	counterparts	in	C,	and	thus	they	avoid
executing	multiple	switch	cases	by	mistake.

If	you	need	C-style	fallthrough	behavior,	you	can	opt	in	to	this	behavior	on	a
case-by-case	basis	with	the	fallthrough	keyword.	The	example	below	uses
fallthrough	to	create	a	textual	description	of	a	number.

1 let	integerToDescribe	=	5

2 var	description	=	"The	number	\(integerToDescribe)	is"

3 switch	integerToDescribe	{

4 case	2,	3,	5,	7,	11,	13,	17,	19:

5 				description	+=	"	a	prime	number,	and	also"

6 				fallthrough

7 default:

8 				description	+=	"	an	integer."

9 }

10 print(description)

11 //	Prints	"The	number	5	is	a	prime	number,	and	also	an	

integer."

This	example	declares	a	new	String	variable	called	description	and	assigns	it
an	initial	value.	The	function	then	considers	the	value	of	integerToDescribe
using	a	switch	statement.	If	the	value	of	integerToDescribe	is	one	of	the	prime
numbers	in	the	list,	the	function	appends	text	to	the	end	of	description,	to	note
that	the	number	is	prime.	It	then	uses	the	fallthrough	keyword	to	“fall	into”	the
default	case	as	well.	The	default	case	adds	some	extra	text	to	the	end	of	the
description,	and	the	switch	statement	is	complete.

Unless	the	value	of	integerToDescribe	is	in	the	list	of	known	prime	numbers,	it
is	not	matched	by	the	first	switch	case	at	all.	Because	there	are	no	other	specific
cases,	integerToDescribe	is	matched	by	the	default	case.

After	the	switch	statement	has	finished	executing,	the	number’s	description	is
printed	using	the	print(_:separator:terminator:)	function.	In	this	example,	the
number	5	is	correctly	identified	as	a	prime	number.

NOTE

The	fallthrough	keyword	does	not	check	the	case	conditions	for	the	switch	case	that	it	causes
execution	to	fall	into.	The	fallthrough	keyword	simply	causes	code	execution	to	move	directly
to	the	statements	inside	the	next	case	(or	default	case)	block,	as	in	C’s	standard	switch
statement	behavior.

Labeled	Statements
In	Swift,	you	can	nest	loops	and	conditional	statements	inside	other	loops	and
conditional	statements	to	create	complex	control	flow	structures.	However,	loops
and	conditional	statements	can	both	use	the	break	statement	to	end	their
execution	prematurely.	Therefore,	it	is	sometimes	useful	to	be	explicit	about
which	loop	or	conditional	statement	you	want	a	break	statement	to	terminate.
Similarly,	if	you	have	multiple	nested	loops,	it	can	be	useful	to	be	explicit	about
which	loop	the	continue	statement	should	affect.

To	achieve	these	aims,	you	can	mark	a	loop	statement	or	conditional	statement
with	a	statement	label.	With	a	conditional	statement,	you	can	use	a	statement
label	with	the	break	statement	to	end	the	execution	of	the	labeled	statement.
With	a	loop	statement,	you	can	use	a	statement	label	with	the	break	or	continue
statement	to	end	or	continue	the	execution	of	the	labeled	statement.

A	labeled	statement	is	indicated	by	placing	a	label	on	the	same	line	as	the
statement’s	introducer	keyword,	followed	by	a	colon.	Here’s	an	example	of	this
syntax	for	a	while	loop,	although	the	principle	is	the	same	for	all	loops	and
switch	statements:

	 label	name :	while	 condition 	{

	 				 statements

	 }

The	following	example	uses	the	break	and	continue	statements	with	a	labeled
while	loop	for	an	adapted	version	of	the	Snakes	and	Ladders	game	that	you	saw
earlier	in	this	chapter.	This	time	around,	the	game	has	an	extra	rule:

To	win,	you	must	land	exactly	on	square	25.

If	a	particular	dice	roll	would	take	you	beyond	square	25,	you	must	roll	again
until	you	roll	the	exact	number	needed	to	land	on	square	25.

The	game	board	is	the	same	as	before.

The	values	of	finalSquare,	board,	square,	and	diceRoll	are	initialized	in	the
same	way	as	before:

1 let	finalSquare	=	25

2 var	board	=	[Int](repeating:	0,	count:	finalSquare	+	1)

3 board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	board[10]	=	

+02

4 board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	board[24]	=	

-08

5 var	square	=	0

6 var	diceRoll	=	0

This	version	of	the	game	uses	a	while	loop	and	a	switch	statement	to	implement
the	game’s	logic.	The	while	loop	has	a	statement	label	called	gameLoop	to
indicate	that	it	is	the	main	game	loop	for	the	Snakes	and	Ladders	game.

The	while	loop’s	condition	is	while	square	!=	finalSquare,	to	reflect	that	you
must	land	exactly	on	square	25.

1 gameLoop:	while	square	!=	finalSquare	{

2 				diceRoll	+=	1

3 				if	diceRoll	==	7	{	diceRoll	=	1	}

4 				switch	square	+	diceRoll	{

5 				case	finalSquare:

6 								//	diceRoll	will	move	us	to	the	final	square,	so	the	

game	is	over

7 								break	gameLoop

8 				case	let	newSquare	where	newSquare	>	finalSquare:

9 								//	diceRoll	will	move	us	beyond	the	final	square,	so	

roll	again

10 								continue	gameLoop

11 				default:

12 								//	this	is	a	valid	move,	so	find	out	its	effect

13 								square	+=	diceRoll

14 								square	+=	board[square]

15 				}

16 }

17 print("Game	over!")

The	dice	is	rolled	at	the	start	of	each	loop.	Rather	than	moving	the	player
immediately,	the	loop	uses	a	switch	statement	to	consider	the	result	of	the	move
and	to	determine	whether	the	move	is	allowed:

If	the	dice	roll	will	move	the	player	onto	the	final	square,	the	game	is	over.
The	break	gameLoop	statement	transfers	control	to	the	first	line	of	code
outside	of	the	while	loop,	which	ends	the	game.

If	the	dice	roll	will	move	the	player	beyond	the	final	square,	the	move	is
invalid	and	the	player	needs	to	roll	again.	The	continue	gameLoop	statement
ends	the	current	while	loop	iteration	and	begins	the	next	iteration	of	the
loop.

In	all	other	cases,	the	dice	roll	is	a	valid	move.	The	player	moves	forward
by	diceRoll	squares,	and	the	game	logic	checks	for	any	snakes	and	ladders.

The	loop	then	ends,	and	control	returns	to	the	while	condition	to	decide
whether	another	turn	is	required.

NOTE

If	the	break	statement	above	did	not	use	the	gameLoop	label,	it	would	break	out	of	the	switch
statement,	not	the	while	statement.	Using	the	gameLoop	label	makes	it	clear	which	control
statement	should	be	terminated.

It	is	not	strictly	necessary	to	use	the	gameLoop	label	when	calling	continue	gameLoop	to	jump
to	the	next	iteration	of	the	loop.	There	is	only	one	loop	in	the	game,	and	therefore	no	ambiguity	as	to
which	loop	the	continue	statement	will	affect.	However,	there	is	no	harm	in	using	the	gameLoop
label	with	the	continue	statement.	Doing	so	is	consistent	with	the	label’s	use	alongside	the	break
statement	and	helps	make	the	game’s	logic	clearer	to	read	and	understand.

Early	Exit

A	guard	statement,	like	an	if	statement,	executes	statements	depending	on	the
Boolean	value	of	an	expression.	You	use	a	guard	statement	to	require	that	a
condition	must	be	true	in	order	for	the	code	after	the	guard	statement	to	be
executed.	Unlike	an	if	statement,	a	guard	statement	always	has	an	else	clause—
the	code	inside	the	else	clause	is	executed	if	the	condition	is	not	true.

1 func	greet(person:	[String:	String])	{

2 				guard	let	name	=	person["name"]	else	{

3 								return

4 				}

5

6 				print("Hello	\(name)!")

7

8 				guard	let	location	=	person["location"]	else	{

9 								print("I	hope	the	weather	is	nice	near	you.")

10 								return

11 				}

12

13 				print("I	hope	the	weather	is	nice	in	\(location).")

14 }

15

16 greet(person:	["name":	"John"])

17 //	Prints	"Hello	John!"

18 //	Prints	"I	hope	the	weather	is	nice	near	you."

19 greet(person:	["name":	"Jane",	"location":	"Cupertino"])

20 //	Prints	"Hello	Jane!"

21 //	Prints	"I	hope	the	weather	is	nice	in	Cupertino."

If	the	guard	statement’s	condition	is	met,	code	execution	continues	after	the
guard	statement’s	closing	brace.	Any	variables	or	constants	that	were	assigned
values	using	an	optional	binding	as	part	of	the	condition	are	available	for	the	rest
of	the	code	block	that	the	guard	statement	appears	in.

If	that	condition	is	not	met,	the	code	inside	the	else	branch	is	executed.	That
branch	must	transfer	control	to	exit	the	code	block	in	which	the	guard	statement
appears.	It	can	do	this	with	a	control	transfer	statement	such	as	return,	break,
continue,	or	throw,	or	it	can	call	a	function	or	method	that	doesn’t	return,	such	as
fatalError(_:file:line:).

Using	a	guard	statement	for	requirements	improves	the	readability	of	your	code,
compared	to	doing	the	same	check	with	an	if	statement.	It	lets	you	write	the
code	that’s	typically	executed	without	wrapping	it	in	an	else	block,	and	it	lets
you	keep	the	code	that	handles	a	violated	requirement	next	to	the	requirement.

Checking	API	Availability

Swift	has	built-in	support	for	checking	API	availability,	which	ensures	that	you
don’t	accidentally	use	APIs	that	are	unavailable	on	a	given	deployment	target.

The	compiler	uses	availability	information	in	the	SDK	to	verify	that	all	of	the

APIs	used	in	your	code	are	available	on	the	deployment	target	specified	by	your
project.	Swift	reports	an	error	at	compile	time	if	you	try	to	use	an	API	that	isn’t
available.

You	use	an	availability	condition	in	an	if	or	guard	statement	to	conditionally
execute	a	block	of	code,	depending	on	whether	the	APIs	you	want	to	use	are
available	at	runtime.	The	compiler	uses	the	information	from	the	availability
condition	when	it	verifies	that	the	APIs	in	that	block	of	code	are	available.

1 if	#available(iOS	10,	macOS	10.12,	*)	{

2 				//	Use	iOS	10	APIs	on	iOS,	and	use	macOS	10.12	APIs	on	

macOS

3 }	else	{

4 				//	Fall	back	to	earlier	iOS	and	macOS	APIs

5 }

The	availability	condition	above	specifies	that	in	iOS,	the	body	of	the	if
statement	executes	only	in	iOS	10	and	later;	in	macOS,	only	in	macOS	10.12
and	later.	The	last	argument,	*,	is	required	and	specifies	that	on	any	other
platform,	the	body	of	the	if	executes	on	the	minimum	deployment	target
specified	by	your	target.

In	its	general	form,	the	availability	condition	takes	a	list	of	platform	names	and
versions.	You	use	platform	names	such	as	iOS,	macOS,	watchOS,	and	tvOS—for	the
full	list,	see	Declaration	Attributes.	In	addition	to	specifying	major	version
numbers	like	iOS	8	or	macOS	10.10,	you	can	specify	minor	versions	numbers
like	iOS	11.2.6	and	macOS	10.13.3.

	 if	#available(platform	name 	 version ,	 ... ,	*)	{

	 				 statements	to	execute	if	the	APIs	are	available

	 }	else	{

	 			

	 fallback	statements	to	execute	if	the	APIs	are	unavailable

	 }

Functions

Functions	are	self-contained	chunks	of	code	that	perform	a	specific	task.	You
give	a	function	a	name	that	identifies	what	it	does,	and	this	name	is	used	to
“call”	the	function	to	perform	its	task	when	needed.

Swift’s	unified	function	syntax	is	flexible	enough	to	express	anything	from	a
simple	C-style	function	with	no	parameter	names	to	a	complex	Objective-C-style
method	with	names	and	argument	labels	for	each	parameter.	Parameters	can
provide	default	values	to	simplify	function	calls	and	can	be	passed	as	in-out
parameters,	which	modify	a	passed	variable	once	the	function	has	completed	its
execution.

Every	function	in	Swift	has	a	type,	consisting	of	the	function’s	parameter	types
and	return	type.	You	can	use	this	type	like	any	other	type	in	Swift,	which	makes
it	easy	to	pass	functions	as	parameters	to	other	functions,	and	to	return	functions
from	functions.	Functions	can	also	be	written	within	other	functions	to
encapsulate	useful	functionality	within	a	nested	function	scope.

Defining	and	Calling	Functions

When	you	define	a	function,	you	can	optionally	define	one	or	more	named,
typed	values	that	the	function	takes	as	input,	known	as	parameters.	You	can	also
optionally	define	a	type	of	value	that	the	function	will	pass	back	as	output	when
it	is	done,	known	as	its	return	type.

Every	function	has	a	function	name,	which	describes	the	task	that	the	function
performs.	To	use	a	function,	you	“call”	that	function	with	its	name	and	pass	it
input	values	(known	as	arguments)	that	match	the	types	of	the	function’s
parameters.	A	function’s	arguments	must	always	be	provided	in	the	same	order
as	the	function’s	parameter	list.

The	function	in	the	example	below	is	called	greet(person:),	because	that’s	what
it	does—it	takes	a	person’s	name	as	input	and	returns	a	greeting	for	that	person.

To	accomplish	this,	you	define	one	input	parameter—a	String	value	called
person—and	a	return	type	of	String,	which	will	contain	a	greeting	for	that
person:

1 func	greet(person:	String)	->	String	{

2 				let	greeting	=	"Hello,	"	+	person	+	"!"

3 				return	greeting

4 }

All	of	this	information	is	rolled	up	into	the	function’s	definition,	which	is
prefixed	with	the	func	keyword.	You	indicate	the	function’s	return	type	with	the
return	arrow	->	(a	hyphen	followed	by	a	right	angle	bracket),	which	is	followed
by	the	name	of	the	type	to	return.

The	definition	describes	what	the	function	does,	what	it	expects	to	receive,	and
what	it	returns	when	it	is	done.	The	definition	makes	it	easy	for	the	function	to
be	called	unambiguously	from	elsewhere	in	your	code:

1 print(greet(person:	"Anna"))

2 //	Prints	"Hello,	Anna!"

3 print(greet(person:	"Brian"))

4 //	Prints	"Hello,	Brian!"

You	call	the	greet(person:)	function	by	passing	it	a	String	value	after	the
person	argument	label,	such	as	greet(person:	"Anna").	Because	the	function
returns	a	String	value,	greet(person:)	can	be	wrapped	in	a	call	to	the
print(_:separator:terminator:)	function	to	print	that	string	and	see	its	return
value,	as	shown	above.

NOTE

The	print(_:separator:terminator:)	function	doesn’t	have	a	label	for	its	first	argument,
and	its	other	arguments	are	optional	because	they	have	a	default	value.	These	variations	on	function
syntax	are	discussed	below	in	Function	Argument	Labels	and	Parameter	Names	and	Default
Parameter	Values.

The	body	of	the	greet(person:)	function	starts	by	defining	a	new	String
constant	called	greeting	and	setting	it	to	a	simple	greeting	message.	This
greeting	is	then	passed	back	out	of	the	function	using	the	return	keyword.	In	the
line	of	code	that	says	return	greeting,	the	function	finishes	its	execution	and
returns	the	current	value	of	greeting.

You	can	call	the	greet(person:)	function	multiple	times	with	different	input
values.	The	example	above	shows	what	happens	if	it	is	called	with	an	input
value	of	"Anna",	and	an	input	value	of	"Brian".	The	function	returns	a	tailored
greeting	in	each	case.

To	make	the	body	of	this	function	shorter,	you	can	combine	the	message	creation
and	the	return	statement	into	one	line:

1 func	greetAgain(person:	String)	->	String	{

2 				return	"Hello	again,	"	+	person	+	"!"

3 }

4 print(greetAgain(person:	"Anna"))

5 //	Prints	"Hello	again,	Anna!"

Function	Parameters	and	Return	Values

Function	parameters	and	return	values	are	extremely	flexible	in	Swift.	You	can
define	anything	from	a	simple	utility	function	with	a	single	unnamed	parameter
to	a	complex	function	with	expressive	parameter	names	and	different	parameter
options.

Functions	Without	Parameters
Functions	are	not	required	to	define	input	parameters.	Here’s	a	function	with	no
input	parameters,	which	always	returns	the	same	String	message	whenever	it	is
called:

1 func	sayHelloWorld()	->	String	{

2 				return	"hello,	world"

3 }

4 print(sayHelloWorld())

5 //	Prints	"hello,	world"

The	function	definition	still	needs	parentheses	after	the	function’s	name,	even
though	it	does	not	take	any	parameters.	The	function	name	is	also	followed	by
an	empty	pair	of	parentheses	when	the	function	is	called.

Functions	With	Multiple	Parameters
Functions	can	have	multiple	input	parameters,	which	are	written	within	the
function’s	parentheses,	separated	by	commas.

This	function	takes	a	person’s	name	and	whether	they	have	already	been	greeted
as	input,	and	returns	an	appropriate	greeting	for	that	person:

1 func	greet(person:	String,	alreadyGreeted:	Bool)	->	String	{

2 				if	alreadyGreeted	{

3 								return	greetAgain(person:	person)

4 				}	else	{

5 								return	greet(person:	person)

6 				}

7 }

8 print(greet(person:	"Tim",	alreadyGreeted:	true))

9 //	Prints	"Hello	again,	Tim!"

You	call	the	greet(person:alreadyGreeted:)	function	by	passing	it	both	a
String	argument	value	labeled	person	and	a	Bool	argument	value	labeled
alreadyGreeted	in	parentheses,	separated	by	commas.	Note	that	this	function	is
distinct	from	the	greet(person:)	function	shown	in	an	earlier	section.	Although
both	functions	have	names	that	begin	with	greet,	the

greet(person:alreadyGreeted:)	function	takes	two	arguments	but	the
greet(person:)	function	takes	only	one.

Functions	Without	Return	Values
Functions	are	not	required	to	define	a	return	type.	Here’s	a	version	of	the
greet(person:)	function,	which	prints	its	own	String	value	rather	than	returning
it:

1 func	greet(person:	String)	{

2 				print("Hello,	\(person)!")

3 }

4 greet(person:	"Dave")

5 //	Prints	"Hello,	Dave!"

Because	it	does	not	need	to	return	a	value,	the	function’s	definition	does	not
include	the	return	arrow	(->)	or	a	return	type.

NOTE

Strictly	speaking,	this	version	of	the	greet(person:)	function	does	still	return	a	value,	even
though	no	return	value	is	defined.	Functions	without	a	defined	return	type	return	a	special	value	of
type	Void.	This	is	simply	an	empty	tuple,	which	is	written	as	().

The	return	value	of	a	function	can	be	ignored	when	it	is	called:

1 func	printAndCount(string:	String)	->	Int	{

2 				print(string)

3 				return	string.count

4 }

5 func	printWithoutCounting(string:	String)	{

6 				let	_	=	printAndCount(string:	string)

7 }

8 printAndCount(string:	"hello,	world")

9 //	prints	"hello,	world"	and	returns	a	value	of	12

10 printWithoutCounting(string:	"hello,	world")

11 //	prints	"hello,	world"	but	does	not	return	a	value

The	first	function,	printAndCount(string:),	prints	a	string,	and	then	returns	its
character	count	as	an	Int.	The	second	function,	printWithoutCounting(string:),
calls	the	first	function,	but	ignores	its	return	value.	When	the	second	function	is
called,	the	message	is	still	printed	by	the	first	function,	but	the	returned	value	is
not	used.

NOTE

Return	values	can	be	ignored,	but	a	function	that	says	it	will	return	a	value	must	always	do	so.	A
function	with	a	defined	return	type	cannot	allow	control	to	fall	out	of	the	bottom	of	the	function
without	returning	a	value,	and	attempting	to	do	so	will	result	in	a	compile-time	error.

Functions	with	Multiple	Return	Values
You	can	use	a	tuple	type	as	the	return	type	for	a	function	to	return	multiple
values	as	part	of	one	compound	return	value.

The	example	below	defines	a	function	called	minMax(array:),	which	finds	the
smallest	and	largest	numbers	in	an	array	of	Int	values:

1 func	minMax(array:	[Int])	->	(min:	Int,	max:	Int)	{

2 				var	currentMin	=	array[0]

3 				var	currentMax	=	array[0]

4 				for	value	in	array[1..<array.count]	{

5 								if	value	<	currentMin	{

6 												currentMin	=	value

7 								}	else	if	value	>	currentMax	{

8 												currentMax	=	value

9 								}

10 				}

11 				return	(currentMin,	currentMax)

12 }

The	minMax(array:)	function	returns	a	tuple	containing	two	Int	values.	These
values	are	labeled	min	and	max	so	that	they	can	be	accessed	by	name	when
querying	the	function’s	return	value.

The	body	of	the	minMax(array:)	function	starts	by	setting	two	working	variables
called	currentMin	and	currentMax	to	the	value	of	the	first	integer	in	the	array.
The	function	then	iterates	over	the	remaining	values	in	the	array	and	checks	each
value	to	see	if	it	is	smaller	or	larger	than	the	values	of	currentMin	and
currentMax	respectively.	Finally,	the	overall	minimum	and	maximum	values	are
returned	as	a	tuple	of	two	Int	values.

Because	the	tuple’s	member	values	are	named	as	part	of	the	function’s	return
type,	they	can	be	accessed	with	dot	syntax	to	retrieve	the	minimum	and
maximum	found	values:

1 let	bounds	=	minMax(array:	[8,	-6,	2,	109,	3,	71])

2 print("min	is	\(bounds.min)	and	max	is	\(bounds.max)")

3 //	Prints	"min	is	-6	and	max	is	109"

Note	that	the	tuple’s	members	do	not	need	to	be	named	at	the	point	that	the	tuple
is	returned	from	the	function,	because	their	names	are	already	specified	as	part
of	the	function’s	return	type.

Optional	Tuple	Return	Types

If	the	tuple	type	to	be	returned	from	a	function	has	the	potential	to	have	“no
value”	for	the	entire	tuple,	you	can	use	an	optional	tuple	return	type	to	reflect	the
fact	that	the	entire	tuple	can	be	nil.	You	write	an	optional	tuple	return	type	by
placing	a	question	mark	after	the	tuple	type’s	closing	parenthesis,	such	as	(Int,
Int)?	or	(String,	Int,	Bool)?.

NOTE

An	optional	tuple	type	such	as	(Int,	Int)?	is	different	from	a	tuple	that	contains	optional	types

such	as	(Int?,	Int?).	With	an	optional	tuple	type,	the	entire	tuple	is	optional,	not	just	each
individual	value	within	the	tuple.

The	minMax(array:)	function	above	returns	a	tuple	containing	two	Int	values.
However,	the	function	does	not	perform	any	safety	checks	on	the	array	it	is
passed.	If	the	array	argument	contains	an	empty	array,	the	minMax(array:)
function,	as	defined	above,	will	trigger	a	runtime	error	when	attempting	to
access	array[0].

To	handle	an	empty	array	safely,	write	the	minMax(array:)	function	with	an
optional	tuple	return	type	and	return	a	value	of	nil	when	the	array	is	empty:

1 func	minMax(array:	[Int])	->	(min:	Int,	max:	Int)?	{

2 				if	array.isEmpty	{	return	nil	}

3 				var	currentMin	=	array[0]

4 				var	currentMax	=	array[0]

5 				for	value	in	array[1..<array.count]	{

6 								if	value	<	currentMin	{

7 												currentMin	=	value

8 								}	else	if	value	>	currentMax	{

9 												currentMax	=	value

10 								}

11 				}

12 				return	(currentMin,	currentMax)

13 }

You	can	use	optional	binding	to	check	whether	this	version	of	the
minMax(array:)	function	returns	an	actual	tuple	value	or	nil:

1 if	let	bounds	=	minMax(array:	[8,	-6,	2,	109,	3,	71])	{

2 				print("min	is	\(bounds.min)	and	max	is	\(bounds.max)")

3 }

4 //	Prints	"min	is	-6	and	max	is	109"

Functions	With	an	Implicit	Return
If	the	entire	body	of	the	function	is	a	single	expression,	the	function	implicitly
returns	that	expression.	For	example,	both	functions	below	have	the	same
behavior:

1 func	greeting(for	person:	String)	->	String	{

2 				"Hello,	"	+	person	+	"!"

3 }

4 print(greeting(for:	"Dave"))

5 //	Prints	"Hello,	Dave!"

6

7 func	anotherGreeting(for	person:	String)	->	String	{

8 				return	"Hello,	"	+	person	+	"!"

9 }

10 print(anotherGreeting(for:	"Dave"))

11 //	Prints	"Hello,	Dave!"

The	entire	definition	of	the	greeting(for:)	function	is	the	greeting	message	that
it	returns,	which	means	it	can	use	this	shorter	form.	The	anotherGreeting(for:)
function	returns	the	same	greeting	message,	using	the	return	keyword	like	a
longer	function.	Any	function	that	you	write	as	just	one	return	line	can	omit	the
return.

As	you’ll	see	in	Shorthand	Getter	Declaration,	property	getters	can	also	use	an
implicit	return.

Function	Argument	Labels	and	Parameter	Names

Each	function	parameter	has	both	an	argument	label	and	a	parameter	name.	The
argument	label	is	used	when	calling	the	function;	each	argument	is	written	in	the
function	call	with	its	argument	label	before	it.	The	parameter	name	is	used	in	the
implementation	of	the	function.	By	default,	parameters	use	their	parameter	name

as	their	argument	label.

1 func	someFunction(firstParameterName:	Int,	secondParameterName:	

Int)	{

2 				//	In	the	function	body,	firstParameterName	and	

secondParameterName

3 				//	refer	to	the	argument	values	for	the	first	and	second	

parameters.

4 }

5 someFunction(firstParameterName:	1,	secondParameterName:	2)

All	parameters	must	have	unique	names.	Although	it’s	possible	for	multiple
parameters	to	have	the	same	argument	label,	unique	argument	labels	help	make
your	code	more	readable.

Specifying	Argument	Labels
You	write	an	argument	label	before	the	parameter	name,	separated	by	a	space:

1 func	someFunction(argumentLabel	parameterName:	Int)	{

2 				//	In	the	function	body,	parameterName	refers	to	the	

argument	value

3 				//	for	that	parameter.

4 }

Here’s	a	variation	of	the	greet(person:)	function	that	takes	a	person’s	name	and
hometown	and	returns	a	greeting:

1 func	greet(person:	String,	from	hometown:	String)	->	String	{

2 				return	"Hello	\(person)!		Glad	you	could	visit	from	\

(hometown)."

3 }

4 print(greet(person:	"Bill",	from:	"Cupertino"))

5 //	Prints	"Hello	Bill!		Glad	you	could	visit	from	Cupertino."

The	use	of	argument	labels	can	allow	a	function	to	be	called	in	an	expressive,
sentence-like	manner,	while	still	providing	a	function	body	that	is	readable	and
clear	in	intent.

Omitting	Argument	Labels
If	you	don’t	want	an	argument	label	for	a	parameter,	write	an	underscore	(_)
instead	of	an	explicit	argument	label	for	that	parameter.

1 func	someFunction(_	firstParameterName:	Int,	

secondParameterName:	Int)	{

2 				//	In	the	function	body,	firstParameterName	and	

secondParameterName

3 				//	refer	to	the	argument	values	for	the	first	and	second	

parameters.

4 }

5 someFunction(1,	secondParameterName:	2)

If	a	parameter	has	an	argument	label,	the	argument	must	be	labeled	when	you
call	the	function.

Default	Parameter	Values
You	can	define	a	default	value	for	any	parameter	in	a	function	by	assigning	a
value	to	the	parameter	after	that	parameter’s	type.	If	a	default	value	is	defined,
you	can	omit	that	parameter	when	calling	the	function.

1 func	someFunction(parameterWithoutDefault:	Int,	

parameterWithDefault:	Int	=	12)	{

2 				//	If	you	omit	the	second	argument	when	calling	this	

function,	then

3 				//	the	value	of	parameterWithDefault	is	12	inside	the	

function	body.

4 }

5 someFunction(parameterWithoutDefault:	3,	parameterWithDefault:	

6)	//	parameterWithDefault	is	6

6 someFunction(parameterWithoutDefault:	4)	//	

parameterWithDefault	is	12

Place	parameters	that	don’t	have	default	values	at	the	beginning	of	a	function’s
parameter	list,	before	the	parameters	that	have	default	values.	Parameters	that
don’t	have	default	values	are	usually	more	important	to	the	function’s	meaning
—writing	them	first	makes	it	easier	to	recognize	that	the	same	function	is	being
called,	regardless	of	whether	any	default	parameters	are	omitted.

Variadic	Parameters
A	variadic	parameter	accepts	zero	or	more	values	of	a	specified	type.	You	use	a
variadic	parameter	to	specify	that	the	parameter	can	be	passed	a	varying	number
of	input	values	when	the	function	is	called.	Write	variadic	parameters	by
inserting	three	period	characters	(...)	after	the	parameter’s	type	name.

The	values	passed	to	a	variadic	parameter	are	made	available	within	the
function’s	body	as	an	array	of	the	appropriate	type.	For	example,	a	variadic
parameter	with	a	name	of	numbers	and	a	type	of	Double...	is	made	available
within	the	function’s	body	as	a	constant	array	called	numbers	of	type	[Double].

The	example	below	calculates	the	arithmetic	mean	(also	known	as	the	average)
for	a	list	of	numbers	of	any	length:

1 func	arithmeticMean(_	numbers:	Double...)	->	Double	{

2 				var	total:	Double	=	0

3 				for	number	in	numbers	{

4 								total	+=	number

5 				}

6 				return	total	/	Double(numbers.count)

7 }

8 arithmeticMean(1,	2,	3,	4,	5)

9 //	returns	3.0,	which	is	the	arithmetic	mean	of	these	five	

numbers

10 arithmeticMean(3,	8.25,	18.75)

11 //	returns	10.0,	which	is	the	arithmetic	mean	of	these	three	

numbers

NOTE

A	function	may	have	at	most	one	variadic	parameter.

In-Out	Parameters
Function	parameters	are	constants	by	default.	Trying	to	change	the	value	of	a
function	parameter	from	within	the	body	of	that	function	results	in	a	compile-
time	error.	This	means	that	you	can’t	change	the	value	of	a	parameter	by
mistake.	If	you	want	a	function	to	modify	a	parameter’s	value,	and	you	want
those	changes	to	persist	after	the	function	call	has	ended,	define	that	parameter
as	an	in-out	parameter	instead.

You	write	an	in-out	parameter	by	placing	the	inout	keyword	right	before	a
parameter’s	type.	An	in-out	parameter	has	a	value	that	is	passed	in	to	the
function,	is	modified	by	the	function,	and	is	passed	back	out	of	the	function	to
replace	the	original	value.	For	a	detailed	discussion	of	the	behavior	of	in-out
parameters	and	associated	compiler	optimizations,	see	In-Out	Parameters.

You	can	only	pass	a	variable	as	the	argument	for	an	in-out	parameter.	You	cannot
pass	a	constant	or	a	literal	value	as	the	argument,	because	constants	and	literals
cannot	be	modified.	You	place	an	ampersand	(&)	directly	before	a	variable’s

name	when	you	pass	it	as	an	argument	to	an	in-out	parameter,	to	indicate	that	it
can	be	modified	by	the	function.

NOTE

In-out	parameters	cannot	have	default	values,	and	variadic	parameters	cannot	be	marked	as	inout.

Here’s	an	example	of	a	function	called	swapTwoInts(_:_:),	which	has	two	in-out
integer	parameters	called	a	and	b:

1 func	swapTwoInts(_	a:	inout	Int,	_	b:	inout	Int)	{

2 				let	temporaryA	=	a

3 				a	=	b

4 				b	=	temporaryA

5 }

The	swapTwoInts(_:_:)	function	simply	swaps	the	value	of	b	into	a,	and	the
value	of	a	into	b.	The	function	performs	this	swap	by	storing	the	value	of	a	in	a
temporary	constant	called	temporaryA,	assigning	the	value	of	b	to	a,	and	then
assigning	temporaryA	to	b.

You	can	call	the	swapTwoInts(_:_:)	function	with	two	variables	of	type	Int	to
swap	their	values.	Note	that	the	names	of	someInt	and	anotherInt	are	prefixed
with	an	ampersand	when	they	are	passed	to	the	swapTwoInts(_:_:)	function:

1 var	someInt	=	3

2 var	anotherInt	=	107

3 swapTwoInts(&someInt,	&anotherInt)

4 print("someInt	is	now	\(someInt),	and	anotherInt	is	now	\

(anotherInt)")

5 //	Prints	"someInt	is	now	107,	and	anotherInt	is	now	3"

The	example	above	shows	that	the	original	values	of	someInt	and	anotherInt	are
modified	by	the	swapTwoInts(_:_:)	function,	even	though	they	were	originally
defined	outside	of	the	function.

NOTE

In-out	parameters	are	not	the	same	as	returning	a	value	from	a	function.	The	swapTwoInts
example	above	does	not	define	a	return	type	or	return	a	value,	but	it	still	modifies	the	values	of
someInt	and	anotherInt.	In-out	parameters	are	an	alternative	way	for	a	function	to	have	an
effect	outside	of	the	scope	of	its	function	body.

Function	Types

Every	function	has	a	specific	function	type,	made	up	of	the	parameter	types	and
the	return	type	of	the	function.

For	example:

1 func	addTwoInts(_	a:	Int,	_	b:	Int)	->	Int	{

2 				return	a	+	b

3 }

4 func	multiplyTwoInts(_	a:	Int,	_	b:	Int)	->	Int	{

5 				return	a	*	b

6 }

This	example	defines	two	simple	mathematical	functions	called	addTwoInts	and
multiplyTwoInts.	These	functions	each	take	two	Int	values,	and	return	an	Int
value,	which	is	the	result	of	performing	an	appropriate	mathematical	operation.

The	type	of	both	of	these	functions	is	(Int,	Int)	->	Int.	This	can	be	read	as:

“A	function	that	has	two	parameters,	both	of	type	Int,	and	that	returns	a	value	of
type	Int.”

Here’s	another	example,	for	a	function	with	no	parameters	or	return	value:

1 func	printHelloWorld()	{

2 				print("hello,	world")

3 }

The	type	of	this	function	is	()	->	Void,	or	“a	function	that	has	no	parameters,
and	returns	Void.”

Using	Function	Types
You	use	function	types	just	like	any	other	types	in	Swift.	For	example,	you	can
define	a	constant	or	variable	to	be	of	a	function	type	and	assign	an	appropriate
function	to	that	variable:

	 var	mathFunction:	(Int,	Int)	->	Int	=	addTwoInts

This	can	be	read	as:

“Define	a	variable	called	mathFunction,	which	has	a	type	of	‘a	function	that
takes	two	Int	values,	and	returns	an	Int	value.’	Set	this	new	variable	to	refer	to
the	function	called	addTwoInts.”

The	addTwoInts(_:_:)	function	has	the	same	type	as	the	mathFunction	variable,
and	so	this	assignment	is	allowed	by	Swift’s	type-checker.

You	can	now	call	the	assigned	function	with	the	name	mathFunction:

1 print("Result:	\(mathFunction(2,	3))")

2 //	Prints	"Result:	5"

A	different	function	with	the	same	matching	type	can	be	assigned	to	the	same
variable,	in	the	same	way	as	for	nonfunction	types:

1 mathFunction	=	multiplyTwoInts

2 print("Result:	\(mathFunction(2,	3))")

3 //	Prints	"Result:	6"

As	with	any	other	type,	you	can	leave	it	to	Swift	to	infer	the	function	type	when

you	assign	a	function	to	a	constant	or	variable:

1 let	anotherMathFunction	=	addTwoInts

2 //	anotherMathFunction	is	inferred	to	be	of	type	(Int,	Int)	->	

Int

Function	Types	as	Parameter	Types
You	can	use	a	function	type	such	as	(Int,	Int)	->	Int	as	a	parameter	type	for
another	function.	This	enables	you	to	leave	some	aspects	of	a	function’s
implementation	for	the	function’s	caller	to	provide	when	the	function	is	called.

Here’s	an	example	to	print	the	results	of	the	math	functions	from	above:

1 func	printMathResult(_	mathFunction:	(Int,	Int)	->	Int,	_	a:	

Int,	_	b:	Int)	{

2 				print("Result:	\(mathFunction(a,	b))")

3 }

4 printMathResult(addTwoInts,	3,	5)

5 //	Prints	"Result:	8"

This	example	defines	a	function	called	printMathResult(_:_:_:),	which	has
three	parameters.	The	first	parameter	is	called	mathFunction,	and	is	of	type	(Int,
Int)	->	Int.	You	can	pass	any	function	of	that	type	as	the	argument	for	this	first
parameter.	The	second	and	third	parameters	are	called	a	and	b,	and	are	both	of
type	Int.	These	are	used	as	the	two	input	values	for	the	provided	math	function.

When	printMathResult(_:_:_:)	is	called,	it	is	passed	the	addTwoInts(_:_:)
function,	and	the	integer	values	3	and	5.	It	calls	the	provided	function	with	the
values	3	and	5,	and	prints	the	result	of	8.

The	role	of	printMathResult(_:_:_:)	is	to	print	the	result	of	a	call	to	a	math
function	of	an	appropriate	type.	It	doesn’t	matter	what	that	function’s
implementation	actually	does—it	matters	only	that	the	function	is	of	the	correct

type.	This	enables	printMathResult(_:_:_:)	to	hand	off	some	of	its	functionality
to	the	caller	of	the	function	in	a	type-safe	way.

Function	Types	as	Return	Types
You	can	use	a	function	type	as	the	return	type	of	another	function.	You	do	this	by
writing	a	complete	function	type	immediately	after	the	return	arrow	(->)	of	the
returning	function.

The	next	example	defines	two	simple	functions	called	stepForward(_:)	and
stepBackward(_:).	The	stepForward(_:)	function	returns	a	value	one	more	than
its	input	value,	and	the	stepBackward(_:)	function	returns	a	value	one	less	than
its	input	value.	Both	functions	have	a	type	of	(Int)	->	Int:

1 func	stepForward(_	input:	Int)	->	Int	{

2 				return	input	+	1

3 }

4 func	stepBackward(_	input:	Int)	->	Int	{

5 				return	input	-	1

6 }

Here’s	a	function	called	chooseStepFunction(backward:),	whose	return	type	is
(Int)	->	Int.	The	chooseStepFunction(backward:)	function	returns	the
stepForward(_:)	function	or	the	stepBackward(_:)	function	based	on	a	Boolean
parameter	called	backward:

1 func	chooseStepFunction(backward:	Bool)	->	(Int)	->	Int	{

2 				return	backward	?	stepBackward	:	stepForward

3 }

You	can	now	use	chooseStepFunction(backward:)	to	obtain	a	function	that	will
step	in	one	direction	or	the	other:

1 var	currentValue	=	3

2 let	moveNearerToZero	=	chooseStepFunction(backward:	

currentValue	>	0)

3 //	moveNearerToZero	now	refers	to	the	stepBackward()	function

The	example	above	determines	whether	a	positive	or	negative	step	is	needed	to
move	a	variable	called	currentValue	progressively	closer	to	zero.	currentValue
has	an	initial	value	of	3,	which	means	that	currentValue	>	0	returns	true,
causing	chooseStepFunction(backward:)	to	return	the	stepBackward(_:)
function.	A	reference	to	the	returned	function	is	stored	in	a	constant	called
moveNearerToZero.

Now	that	moveNearerToZero	refers	to	the	correct	function,	it	can	be	used	to	count
to	zero:

1 print("Counting	to	zero:")

2 //	Counting	to	zero:

3 while	currentValue	!=	0	{

4 				print("\(currentValue)...	")

5 				currentValue	=	moveNearerToZero(currentValue)

6 }

7 print("zero!")

8 //	3...

9 //	2...

10 //	1...

11 //	zero!

Nested	Functions

All	of	the	functions	you	have	encountered	so	far	in	this	chapter	have	been
examples	of	global	functions,	which	are	defined	at	a	global	scope.	You	can	also
define	functions	inside	the	bodies	of	other	functions,	known	as	nested	functions.

Nested	functions	are	hidden	from	the	outside	world	by	default,	but	can	still	be
called	and	used	by	their	enclosing	function.	An	enclosing	function	can	also
return	one	of	its	nested	functions	to	allow	the	nested	function	to	be	used	in
another	scope.

You	can	rewrite	the	chooseStepFunction(backward:)	example	above	to	use	and
return	nested	functions:

1 func	chooseStepFunction(backward:	Bool)	->	(Int)	->	Int	{

2 				func	stepForward(input:	Int)	->	Int	{	return	input	+	1	}

3 				func	stepBackward(input:	Int)	->	Int	{	return	input	-	1	}

4 				return	backward	?	stepBackward	:	stepForward

5 }

6 var	currentValue	=	-4

7 let	moveNearerToZero	=	chooseStepFunction(backward:	

currentValue	>	0)

8 //	moveNearerToZero	now	refers	to	the	nested	stepForward()	

function

9 while	currentValue	!=	0	{

10 				print("\(currentValue)...	")

11 				currentValue	=	moveNearerToZero(currentValue)

12 }

13 print("zero!")

14 //	-4...

15 //	-3...

16 //	-2...

17 //	-1...

18 //	zero!

Closures

Closures	are	self-contained	blocks	of	functionality	that	can	be	passed	around	and
used	in	your	code.	Closures	in	Swift	are	similar	to	blocks	in	C	and	Objective-C
and	to	lambdas	in	other	programming	languages.

Closures	can	capture	and	store	references	to	any	constants	and	variables	from	the
context	in	which	they	are	defined.	This	is	known	as	closing	over	those	constants
and	variables.	Swift	handles	all	of	the	memory	management	of	capturing	for
you.

NOTE

Don’t	worry	if	you	are	not	familiar	with	the	concept	of	capturing.	It	is	explained	in	detail	below	in
Capturing	Values.

Global	and	nested	functions,	as	introduced	in	Functions,	are	actually	special
cases	of	closures.	Closures	take	one	of	three	forms:

Global	functions	are	closures	that	have	a	name	and	do	not	capture	any
values.

Nested	functions	are	closures	that	have	a	name	and	can	capture	values	from
their	enclosing	function.

Closure	expressions	are	unnamed	closures	written	in	a	lightweight	syntax
that	can	capture	values	from	their	surrounding	context.

Swift’s	closure	expressions	have	a	clean,	clear	style,	with	optimizations	that
encourage	brief,	clutter-free	syntax	in	common	scenarios.	These	optimizations
include:

Inferring	parameter	and	return	value	types	from	context

Implicit	returns	from	single-expression	closures

Shorthand	argument	names

Trailing	closure	syntax

Closure	Expressions

Nested	functions,	as	introduced	in	Nested	Functions,	are	a	convenient	means	of
naming	and	defining	self-contained	blocks	of	code	as	part	of	a	larger	function.
However,	it	is	sometimes	useful	to	write	shorter	versions	of	function-like
constructs	without	a	full	declaration	and	name.	This	is	particularly	true	when
you	work	with	functions	or	methods	that	take	functions	as	one	or	more	of	their
arguments.

Closure	expressions	are	a	way	to	write	inline	closures	in	a	brief,	focused	syntax.
Closure	expressions	provide	several	syntax	optimizations	for	writing	closures	in
a	shortened	form	without	loss	of	clarity	or	intent.	The	closure	expression
examples	below	illustrate	these	optimizations	by	refining	a	single	example	of	the
sorted(by:)	method	over	several	iterations,	each	of	which	expresses	the	same
functionality	in	a	more	succinct	way.

The	Sorted	Method
Swift’s	standard	library	provides	a	method	called	sorted(by:),	which	sorts	an
array	of	values	of	a	known	type,	based	on	the	output	of	a	sorting	closure	that	you
provide.	Once	it	completes	the	sorting	process,	the	sorted(by:)	method	returns	a
new	array	of	the	same	type	and	size	as	the	old	one,	with	its	elements	in	the
correct	sorted	order.	The	original	array	is	not	modified	by	the	sorted(by:)
method.

The	closure	expression	examples	below	use	the	sorted(by:)	method	to	sort	an
array	of	String	values	in	reverse	alphabetical	order.	Here’s	the	initial	array	to	be
sorted:

	 let	names	=	["Chris",	"Alex",	"Ewa",	"Barry",	"Daniella"]

The	sorted(by:)	method	accepts	a	closure	that	takes	two	arguments	of	the	same

type	as	the	array’s	contents,	and	returns	a	Bool	value	to	say	whether	the	first
value	should	appear	before	or	after	the	second	value	once	the	values	are	sorted.
The	sorting	closure	needs	to	return	true	if	the	first	value	should	appear	before
the	second	value,	and	false	otherwise.

This	example	is	sorting	an	array	of	String	values,	and	so	the	sorting	closure
needs	to	be	a	function	of	type	(String,	String)	->	Bool.

One	way	to	provide	the	sorting	closure	is	to	write	a	normal	function	of	the
correct	type,	and	to	pass	it	in	as	an	argument	to	the	sorted(by:)	method:

1 func	backward(_	s1:	String,	_	s2:	String)	->	Bool	{

2 				return	s1	>	s2

3 }

4 var	reversedNames	=	names.sorted(by:	backward)

5 //	reversedNames	is	equal	to	["Ewa",	"Daniella",	"Chris",	

"Barry",	"Alex"]

If	the	first	string	(s1)	is	greater	than	the	second	string	(s2),	the	backward(_:_:)
function	will	return	true,	indicating	that	s1	should	appear	before	s2	in	the	sorted
array.	For	characters	in	strings,	“greater	than”	means	“appears	later	in	the
alphabet	than”.	This	means	that	the	letter	"B"	is	“greater	than”	the	letter	"A",	and
the	string	"Tom"	is	greater	than	the	string	"Tim".	This	gives	a	reverse	alphabetical
sort,	with	"Barry"	being	placed	before	"Alex",	and	so	on.

However,	this	is	a	rather	long-winded	way	to	write	what	is	essentially	a	single-
expression	function	(a	>	b).	In	this	example,	it	would	be	preferable	to	write	the
sorting	closure	inline,	using	closure	expression	syntax.

Closure	Expression	Syntax
Closure	expression	syntax	has	the	following	general	form:

	 {	(parameters)	->	 return	type 	in

	 				 statements

	 }

The	parameters	in	closure	expression	syntax	can	be	in-out	parameters,	but	they
can’t	have	a	default	value.	Variadic	parameters	can	be	used	if	you	name	the
variadic	parameter.	Tuples	can	also	be	used	as	parameter	types	and	return	types.

The	example	below	shows	a	closure	expression	version	of	the	backward(_:_:)
function	from	above:

1 reversedNames	=	names.sorted(by:	{	(s1:	String,	s2:	String)	->	

Bool	in

2 				return	s1	>	s2

3 })

Note	that	the	declaration	of	parameters	and	return	type	for	this	inline	closure	is
identical	to	the	declaration	from	the	backward(_:_:)	function.	In	both	cases,	it	is
written	as	(s1:	String,	s2:	String)	->	Bool.	However,	for	the	inline	closure
expression,	the	parameters	and	return	type	are	written	inside	the	curly	braces,	not
outside	of	them.

The	start	of	the	closure’s	body	is	introduced	by	the	in	keyword.	This	keyword
indicates	that	the	definition	of	the	closure’s	parameters	and	return	type	has
finished,	and	the	body	of	the	closure	is	about	to	begin.

Because	the	body	of	the	closure	is	so	short,	it	can	even	be	written	on	a	single
line:

	 reversedNames	=	names.sorted(by:	{	(s1:	String,	s2:	String)	->	

Bool	in	return	s1	>	s2	})

This	illustrates	that	the	overall	call	to	the	sorted(by:)	method	has	remained	the
same.	A	pair	of	parentheses	still	wrap	the	entire	argument	for	the	method.
However,	that	argument	is	now	an	inline	closure.

Inferring	Type	From	Context
Because	the	sorting	closure	is	passed	as	an	argument	to	a	method,	Swift	can	infer
the	types	of	its	parameters	and	the	type	of	the	value	it	returns.	The	sorted(by:)
method	is	being	called	on	an	array	of	strings,	so	its	argument	must	be	a	function
of	type	(String,	String)	->	Bool.	This	means	that	the	(String,	String)	and
Bool	types	do	not	need	to	be	written	as	part	of	the	closure	expression’s
definition.	Because	all	of	the	types	can	be	inferred,	the	return	arrow	(->)	and	the
parentheses	around	the	names	of	the	parameters	can	also	be	omitted:

	 reversedNames	=	names.sorted(by:	{	s1,	s2	in	return	s1	>	s2	})

It	is	always	possible	to	infer	the	parameter	types	and	return	type	when	passing	a
closure	to	a	function	or	method	as	an	inline	closure	expression.	As	a	result,	you
never	need	to	write	an	inline	closure	in	its	fullest	form	when	the	closure	is	used
as	a	function	or	method	argument.

Nonetheless,	you	can	still	make	the	types	explicit	if	you	wish,	and	doing	so	is
encouraged	if	it	avoids	ambiguity	for	readers	of	your	code.	In	the	case	of	the
sorted(by:)	method,	the	purpose	of	the	closure	is	clear	from	the	fact	that	sorting
is	taking	place,	and	it	is	safe	for	a	reader	to	assume	that	the	closure	is	likely	to	be
working	with	String	values,	because	it	is	assisting	with	the	sorting	of	an	array	of
strings.

Implicit	Returns	from	Single-Expression	Closures
Single-expression	closures	can	implicitly	return	the	result	of	their	single
expression	by	omitting	the	return	keyword	from	their	declaration,	as	in	this
version	of	the	previous	example:

	 reversedNames	=	names.sorted(by:	{	s1,	s2	in	s1	>	s2	})

Here,	the	function	type	of	the	sorted(by:)	method’s	argument	makes	it	clear	that
a	Bool	value	must	be	returned	by	the	closure.	Because	the	closure’s	body
contains	a	single	expression	(s1	>	s2)	that	returns	a	Bool	value,	there	is	no
ambiguity,	and	the	return	keyword	can	be	omitted.

Shorthand	Argument	Names
Swift	automatically	provides	shorthand	argument	names	to	inline	closures,
which	can	be	used	to	refer	to	the	values	of	the	closure’s	arguments	by	the	names
$0,	$1,	$2,	and	so	on.

If	you	use	these	shorthand	argument	names	within	your	closure	expression,	you
can	omit	the	closure’s	argument	list	from	its	definition,	and	the	number	and	type
of	the	shorthand	argument	names	will	be	inferred	from	the	expected	function
type.	The	in	keyword	can	also	be	omitted,	because	the	closure	expression	is
made	up	entirely	of	its	body:

	 reversedNames	=	names.sorted(by:	{	$0	>	$1	})

Here,	$0	and	$1	refer	to	the	closure’s	first	and	second	String	arguments.

Operator	Methods
There’s	actually	an	even	shorter	way	to	write	the	closure	expression	above.
Swift’s	String	type	defines	its	string-specific	implementation	of	the	greater-than
operator	(>)	as	a	method	that	has	two	parameters	of	type	String,	and	returns	a
value	of	type	Bool.	This	exactly	matches	the	method	type	needed	by	the
sorted(by:)	method.	Therefore,	you	can	simply	pass	in	the	greater-than
operator,	and	Swift	will	infer	that	you	want	to	use	its	string-specific
implementation:

	 reversedNames	=	names.sorted(by:	>)

For	more	about	operator	method,	see	Operator	Methods.

Trailing	Closures

If	you	need	to	pass	a	closure	expression	to	a	function	as	the	function’s	final
argument	and	the	closure	expression	is	long,	it	can	be	useful	to	write	it	as	a

trailing	closure	instead.	A	trailing	closure	is	written	after	the	function	call’s
parentheses,	even	though	it	is	still	an	argument	to	the	function.	When	you	use
the	trailing	closure	syntax,	you	don’t	write	the	argument	label	for	the	closure	as
part	of	the	function	call.

1 func	someFunctionThatTakesAClosure(closure:	()	->	Void)	{

2 				//	function	body	goes	here

3 }

4

5 //	Here's	how	you	call	this	function	without	using	a	trailing	

closure:

6

7 someFunctionThatTakesAClosure(closure:	{

8 				//	closure's	body	goes	here

9 })

10

11 //	Here's	how	you	call	this	function	with	a	trailing	closure	

instead:

12

13 someFunctionThatTakesAClosure()	{

14 				//	trailing	closure's	body	goes	here

15 }

The	string-sorting	closure	from	the	Closure	Expression	Syntax	section	above	can
be	written	outside	of	the	sorted(by:)	method’s	parentheses	as	a	trailing	closure:

	 reversedNames	=	names.sorted()	{	$0	>	$1	}

If	a	closure	expression	is	provided	as	the	function	or	method’s	only	argument
and	you	provide	that	expression	as	a	trailing	closure,	you	do	not	need	to	write	a
pair	of	parentheses	()	after	the	function	or	method’s	name	when	you	call	the
function:

	 reversedNames	=	names.sorted	{	$0	>	$1	}

Trailing	closures	are	most	useful	when	the	closure	is	sufficiently	long	that	it	is
not	possible	to	write	it	inline	on	a	single	line.	As	an	example,	Swift’s	Array	type
has	a	map(_:)	method	which	takes	a	closure	expression	as	its	single	argument.
The	closure	is	called	once	for	each	item	in	the	array,	and	returns	an	alternative
mapped	value	(possibly	of	some	other	type)	for	that	item.	The	nature	of	the
mapping	and	the	type	of	the	returned	value	is	left	up	to	the	closure	to	specify.

After	applying	the	provided	closure	to	each	array	element,	the	map(_:)	method
returns	a	new	array	containing	all	of	the	new	mapped	values,	in	the	same	order
as	their	corresponding	values	in	the	original	array.

Here’s	how	you	can	use	the	map(_:)	method	with	a	trailing	closure	to	convert	an
array	of	Int	values	into	an	array	of	String	values.	The	array	[16,	58,	510]	is
used	to	create	the	new	array	["OneSix",	"FiveEight",	"FiveOneZero"]:

1 let	digitNames	=	[

2 				0:	"Zero",	1:	"One",	2:	"Two",			3:	"Three",	4:	"Four",

3 				5:	"Five",	6:	"Six",	7:	"Seven",	8:	"Eight",	9:	"Nine"

4]

5 let	numbers	=	[16,	58,	510]

The	code	above	creates	a	dictionary	of	mappings	between	the	integer	digits	and
English-language	versions	of	their	names.	It	also	defines	an	array	of	integers,
ready	to	be	converted	into	strings.

You	can	now	use	the	numbers	array	to	create	an	array	of	String	values,	by
passing	a	closure	expression	to	the	array’s	map(_:)	method	as	a	trailing	closure:

1 let	strings	=	numbers.map	{	(number)	->	String	in

2 				var	number	=	number

3 				var	output	=	""

4 				repeat	{

5 								output	=	digitNames[number	%	10]!	+	output

6 								number	/=	10

7 				}	while	number	>	0

8 				return	output

9 }

10 //	strings	is	inferred	to	be	of	type	[String]

11 //	its	value	is	["OneSix",	"FiveEight",	"FiveOneZero"]

The	map(_:)	method	calls	the	closure	expression	once	for	each	item	in	the	array.
You	do	not	need	to	specify	the	type	of	the	closure’s	input	parameter,	number,
because	the	type	can	be	inferred	from	the	values	in	the	array	to	be	mapped.

In	this	example,	the	variable	number	is	initialized	with	the	value	of	the	closure’s
number	parameter,	so	that	the	value	can	be	modified	within	the	closure	body.
(The	parameters	to	functions	and	closures	are	always	constants.)	The	closure
expression	also	specifies	a	return	type	of	String,	to	indicate	the	type	that	will	be
stored	in	the	mapped	output	array.

The	closure	expression	builds	a	string	called	output	each	time	it	is	called.	It
calculates	the	last	digit	of	number	by	using	the	remainder	operator	(number	%	10),
and	uses	this	digit	to	look	up	an	appropriate	string	in	the	digitNames	dictionary.
The	closure	can	be	used	to	create	a	string	representation	of	any	integer	greater
than	zero.

NOTE

The	call	to	the	digitNames	dictionary’s	subscript	is	followed	by	an	exclamation	mark	(!),	because
dictionary	subscripts	return	an	optional	value	to	indicate	that	the	dictionary	lookup	can	fail	if	the	key
does	not	exist.	In	the	example	above,	it	is	guaranteed	that	number	%	10	will	always	be	a	valid
subscript	key	for	the	digitNames	dictionary,	and	so	an	exclamation	mark	is	used	to	force-unwrap
the	String	value	stored	in	the	subscript’s	optional	return	value.

The	string	retrieved	from	the	digitNames	dictionary	is	added	to	the	front	of
output,	effectively	building	a	string	version	of	the	number	in	reverse.	(The
expression	number	%	10	gives	a	value	of	6	for	16,	8	for	58,	and	0	for	510.)

The	number	variable	is	then	divided	by	10.	Because	it	is	an	integer,	it	is	rounded
down	during	the	division,	so	16	becomes	1,	58	becomes	5,	and	510	becomes	51.

The	process	is	repeated	until	number	is	equal	to	0,	at	which	point	the	output
string	is	returned	by	the	closure,	and	is	added	to	the	output	array	by	the	map(_:)
method.

The	use	of	trailing	closure	syntax	in	the	example	above	neatly	encapsulates	the
closure’s	functionality	immediately	after	the	function	that	closure	supports,
without	needing	to	wrap	the	entire	closure	within	the	map(_:)	method’s	outer
parentheses.

Capturing	Values

A	closure	can	capture	constants	and	variables	from	the	surrounding	context	in
which	it	is	defined.	The	closure	can	then	refer	to	and	modify	the	values	of	those
constants	and	variables	from	within	its	body,	even	if	the	original	scope	that
defined	the	constants	and	variables	no	longer	exists.

In	Swift,	the	simplest	form	of	a	closure	that	can	capture	values	is	a	nested
function,	written	within	the	body	of	another	function.	A	nested	function	can
capture	any	of	its	outer	function’s	arguments	and	can	also	capture	any	constants
and	variables	defined	within	the	outer	function.

Here’s	an	example	of	a	function	called	makeIncrementer,	which	contains	a	nested
function	called	incrementer.	The	nested	incrementer()	function	captures	two
values,	runningTotal	and	amount,	from	its	surrounding	context.	After	capturing
these	values,	incrementer	is	returned	by	makeIncrementer	as	a	closure	that
increments	runningTotal	by	amount	each	time	it	is	called.

1 func	makeIncrementer(forIncrement	amount:	Int)	->	()	->	Int	{

2 				var	runningTotal	=	0

3 				func	incrementer()	->	Int	{

4 								runningTotal	+=	amount

5 								return	runningTotal

6 				}

7 				return	incrementer

8 }

The	return	type	of	makeIncrementer	is	()	->	Int.	This	means	that	it	returns	a
function,	rather	than	a	simple	value.	The	function	it	returns	has	no	parameters,
and	returns	an	Int	value	each	time	it	is	called.	To	learn	how	functions	can	return
other	functions,	see	Function	Types	as	Return	Types.

The	makeIncrementer(forIncrement:)	function	defines	an	integer	variable	called
runningTotal,	to	store	the	current	running	total	of	the	incrementer	that	will	be
returned.	This	variable	is	initialized	with	a	value	of	0.

The	makeIncrementer(forIncrement:)	function	has	a	single	Int	parameter	with
an	argument	label	of	forIncrement,	and	a	parameter	name	of	amount.	The
argument	value	passed	to	this	parameter	specifies	how	much	runningTotal
should	be	incremented	by	each	time	the	returned	incrementer	function	is	called.
The	makeIncrementer	function	defines	a	nested	function	called	incrementer,
which	performs	the	actual	incrementing.	This	function	simply	adds	amount	to
runningTotal,	and	returns	the	result.

When	considered	in	isolation,	the	nested	incrementer()	function	might	seem
unusual:

1 func	incrementer()	->	Int	{

2 				runningTotal	+=	amount

3 				return	runningTotal

4 }

The	incrementer()	function	doesn’t	have	any	parameters,	and	yet	it	refers	to
runningTotal	and	amount	from	within	its	function	body.	It	does	this	by	capturing
a	reference	to	runningTotal	and	amount	from	the	surrounding	function	and	using
them	within	its	own	function	body.	Capturing	by	reference	ensures	that
runningTotal	and	amount	do	not	disappear	when	the	call	to	makeIncrementer
ends,	and	also	ensures	that	runningTotal	is	available	the	next	time	the
incrementer	function	is	called.

NOTE

As	an	optimization,	Swift	may	instead	capture	and	store	a	copy	of	a	value	if	that	value	is	not	mutated
by	a	closure,	and	if	the	value	is	not	mutated	after	the	closure	is	created.

Swift	also	handles	all	memory	management	involved	in	disposing	of	variables	when	they	are	no
longer	needed.

Here’s	an	example	of	makeIncrementer	in	action:

	 let	incrementByTen	=	makeIncrementer(forIncrement:	10)

This	example	sets	a	constant	called	incrementByTen	to	refer	to	an	incrementer
function	that	adds	10	to	its	runningTotal	variable	each	time	it	is	called.	Calling
the	function	multiple	times	shows	this	behavior	in	action:

1 incrementByTen()

2 //	returns	a	value	of	10

3 incrementByTen()

4 //	returns	a	value	of	20

5 incrementByTen()

6 //	returns	a	value	of	30

If	you	create	a	second	incrementer,	it	will	have	its	own	stored	reference	to	a	new,
separate	runningTotal	variable:

1 let	incrementBySeven	=	makeIncrementer(forIncrement:	7)

2 incrementBySeven()

3 //	returns	a	value	of	7

Calling	the	original	incrementer	(incrementByTen)	again	continues	to	increment
its	own	runningTotal	variable,	and	does	not	affect	the	variable	captured	by
incrementBySeven:

1 incrementByTen()

2 //	returns	a	value	of	40

NOTE

If	you	assign	a	closure	to	a	property	of	a	class	instance,	and	the	closure	captures	that	instance	by
referring	to	the	instance	or	its	members,	you	will	create	a	strong	reference	cycle	between	the	closure
and	the	instance.	Swift	uses	capture	lists	to	break	these	strong	reference	cycles.	For	more
information,	see	Strong	Reference	Cycles	for	Closures.

Closures	Are	Reference	Types

In	the	example	above,	incrementBySeven	and	incrementByTen	are	constants,	but
the	closures	these	constants	refer	to	are	still	able	to	increment	the	runningTotal
variables	that	they	have	captured.	This	is	because	functions	and	closures	are
reference	types.

Whenever	you	assign	a	function	or	a	closure	to	a	constant	or	a	variable,	you	are
actually	setting	that	constant	or	variable	to	be	a	reference	to	the	function	or
closure.	In	the	example	above,	it	is	the	choice	of	closure	that	incrementByTen
refers	to	that	is	constant,	and	not	the	contents	of	the	closure	itself.

This	also	means	that	if	you	assign	a	closure	to	two	different	constants	or
variables,	both	of	those	constants	or	variables	refer	to	the	same	closure.

1 let	alsoIncrementByTen	=	incrementByTen

2 alsoIncrementByTen()

3 //	returns	a	value	of	50

4

5 incrementByTen()

6 //	returns	a	value	of	60

The	example	above	shows	that	calling	alsoIncrementByTen	is	the	same	as	calling
incrementByTen.	Because	both	of	them	refer	to	the	same	closure,	they	both
increment	and	return	the	same	running	total.

Escaping	Closures

A	closure	is	said	to	escape	a	function	when	the	closure	is	passed	as	an	argument
to	the	function,	but	is	called	after	the	function	returns.	When	you	declare	a
function	that	takes	a	closure	as	one	of	its	parameters,	you	can	write	@escaping
before	the	parameter’s	type	to	indicate	that	the	closure	is	allowed	to	escape.

One	way	that	a	closure	can	escape	is	by	being	stored	in	a	variable	that	is	defined
outside	the	function.	As	an	example,	many	functions	that	start	an	asynchronous
operation	take	a	closure	argument	as	a	completion	handler.	The	function	returns
after	it	starts	the	operation,	but	the	closure	isn’t	called	until	the	operation	is
completed—the	closure	needs	to	escape,	to	be	called	later.	For	example:

1 var	completionHandlers:	[()	->	Void]	=	[]

2 func	someFunctionWithEscapingClosure(completionHandler:	

@escaping	()	->	Void)	{

3 				completionHandlers.append(completionHandler)

4 }

The	someFunctionWithEscapingClosure(_:)	function	takes	a	closure	as	its
argument	and	adds	it	to	an	array	that’s	declared	outside	the	function.	If	you
didn’t	mark	the	parameter	of	this	function	with	@escaping,	you	would	get	a
compile-time	error.

Marking	a	closure	with	@escaping	means	you	have	to	refer	to	self	explicitly
within	the	closure.	For	example,	in	the	code	below,	the	closure	passed	to
someFunctionWithEscapingClosure(_:)	is	an	escaping	closure,	which	means	it
needs	to	refer	to	self	explicitly.	In	contrast,	the	closure	passed	to
someFunctionWithNonescapingClosure(_:)	is	a	nonescaping	closure,	which
means	it	can	refer	to	self	implicitly.

1 func	someFunctionWithNonescapingClosure(closure:	()	->	Void)	{

2 				closure()

3 }

4

5 class	SomeClass	{

6 				var	x	=	10

7 				func	doSomething()	{

8 								someFunctionWithEscapingClosure	{	self.x	=	100	}

9 								someFunctionWithNonescapingClosure	{	x	=	200	}

10 				}

11 }

12

13 let	instance	=	SomeClass()

14 instance.doSomething()

15 print(instance.x)

16 //	Prints	"200"

17

18 completionHandlers.first?()

19 print(instance.x)

20 //	Prints	"100"

Autoclosures

An	autoclosure	is	a	closure	that	is	automatically	created	to	wrap	an	expression
that’s	being	passed	as	an	argument	to	a	function.	It	doesn’t	take	any	arguments,
and	when	it’s	called,	it	returns	the	value	of	the	expression	that’s	wrapped	inside
of	it.	This	syntactic	convenience	lets	you	omit	braces	around	a	function’s
parameter	by	writing	a	normal	expression	instead	of	an	explicit	closure.

It’s	common	to	call	functions	that	take	autoclosures,	but	it’s	not	common	to
implement	that	kind	of	function.	For	example,	the
assert(condition:message:file:line:)	function	takes	an	autoclosure	for	its
condition	and	message	parameters;	its	condition	parameter	is	evaluated	only	in
debug	builds	and	its	message	parameter	is	evaluated	only	if	condition	is	false.

An	autoclosure	lets	you	delay	evaluation,	because	the	code	inside	isn’t	run	until
you	call	the	closure.	Delaying	evaluation	is	useful	for	code	that	has	side	effects
or	is	computationally	expensive,	because	it	lets	you	control	when	that	code	is
evaluated.	The	code	below	shows	how	a	closure	delays	evaluation.

1 var	customersInLine	=	["Chris",	"Alex",	"Ewa",	"Barry",	

"Daniella"]

2 print(customersInLine.count)

3 //	Prints	"5"

4

5 let	customerProvider	=	{	customersInLine.remove(at:	0)	}

6 print(customersInLine.count)

7 //	Prints	"5"

8

9 print("Now	serving	\(customerProvider())!")

10 //	Prints	"Now	serving	Chris!"

11 print(customersInLine.count)

12 //	Prints	"4"

Even	though	the	first	element	of	the	customersInLine	array	is	removed	by	the
code	inside	the	closure,	the	array	element	isn’t	removed	until	the	closure	is
actually	called.	If	the	closure	is	never	called,	the	expression	inside	the	closure	is
never	evaluated,	which	means	the	array	element	is	never	removed.	Note	that	the
type	of	customerProvider	is	not	String	but	()	->	String—a	function	with	no
parameters	that	returns	a	string.

You	get	the	same	behavior	of	delayed	evaluation	when	you	pass	a	closure	as	an
argument	to	a	function.

1 //	customersInLine	is	["Alex",	"Ewa",	"Barry",	"Daniella"]

2 func	serve(customer	customerProvider:	()	->	String)	{

3 				print("Now	serving	\(customerProvider())!")

4 }

5 serve(customer:	{	customersInLine.remove(at:	0)	})

6 //	Prints	"Now	serving	Alex!"

The	serve(customer:)	function	in	the	listing	above	takes	an	explicit	closure	that
returns	a	customer’s	name.	The	version	of	serve(customer:)	below	performs	the
same	operation	but,	instead	of	taking	an	explicit	closure,	it	takes	an	autoclosure
by	marking	its	parameter’s	type	with	the	@autoclosure	attribute.	Now	you	can
call	the	function	as	if	it	took	a	String	argument	instead	of	a	closure.	The
argument	is	automatically	converted	to	a	closure,	because	the	customerProvider
parameter’s	type	is	marked	with	the	@autoclosure	attribute.

1 //	customersInLine	is	["Ewa",	"Barry",	"Daniella"]

2 func	serve(customer	customerProvider:	@autoclosure	()	->	

String)	{

3 				print("Now	serving	\(customerProvider())!")

4 }

5 serve(customer:	customersInLine.remove(at:	0))

6 //	Prints	"Now	serving	Ewa!"

NOTE

Overusing	autoclosures	can	make	your	code	hard	to	understand.	The	context	and	function	name
should	make	it	clear	that	evaluation	is	being	deferred.

If	you	want	an	autoclosure	that	is	allowed	to	escape,	use	both	the	@autoclosure
and	@escaping	attributes.	The	@escaping	attribute	is	described	above	in	Escaping
Closures.

1 //	customersInLine	is	["Barry",	"Daniella"]

2 var	customerProviders:	[()	->	String]	=	[]

3 func	collectCustomerProviders(_	customerProvider:	@autoclosure	

@escaping	()	->	String)	{

4 				customerProviders.append(customerProvider)

5 }

6 collectCustomerProviders(customersInLine.remove(at:	0))

7 collectCustomerProviders(customersInLine.remove(at:	0))

8

9 print("Collected	\(customerProviders.count)	closures.")

10 //	Prints	"Collected	2	closures."

11 for	customerProvider	in	customerProviders	{

12 				print("Now	serving	\(customerProvider())!")

13 }

14 //	Prints	"Now	serving	Barry!"

15 //	Prints	"Now	serving	Daniella!"

In	the	code	above,	instead	of	calling	the	closure	passed	to	it	as	its
customerProvider	argument,	the	collectCustomerProviders(_:)	function
appends	the	closure	to	the	customerProviders	array.	The	array	is	declared
outside	the	scope	of	the	function,	which	means	the	closures	in	the	array	can	be
executed	after	the	function	returns.	As	a	result,	the	value	of	the
customerProvider	argument	must	be	allowed	to	escape	the	function’s	scope.

Enumerations

An	enumeration	defines	a	common	type	for	a	group	of	related	values	and
enables	you	to	work	with	those	values	in	a	type-safe	way	within	your	code.

If	you	are	familiar	with	C,	you	will	know	that	C	enumerations	assign	related
names	to	a	set	of	integer	values.	Enumerations	in	Swift	are	much	more	flexible,
and	don’t	have	to	provide	a	value	for	each	case	of	the	enumeration.	If	a	value
(known	as	a	raw	value)	is	provided	for	each	enumeration	case,	the	value	can	be	a
string,	a	character,	or	a	value	of	any	integer	or	floating-point	type.

Alternatively,	enumeration	cases	can	specify	associated	values	of	any	type	to	be
stored	along	with	each	different	case	value,	much	as	unions	or	variants	do	in
other	languages.	You	can	define	a	common	set	of	related	cases	as	part	of	one
enumeration,	each	of	which	has	a	different	set	of	values	of	appropriate	types
associated	with	it.

Enumerations	in	Swift	are	first-class	types	in	their	own	right.	They	adopt	many
features	traditionally	supported	only	by	classes,	such	as	computed	properties	to
provide	additional	information	about	the	enumeration’s	current	value,	and
instance	methods	to	provide	functionality	related	to	the	values	the	enumeration
represents.	Enumerations	can	also	define	initializers	to	provide	an	initial	case
value;	can	be	extended	to	expand	their	functionality	beyond	their	original
implementation;	and	can	conform	to	protocols	to	provide	standard	functionality.

For	more	about	these	capabilities,	see	Properties,	Methods,	Initialization,
Extensions,	and	Protocols.

Enumeration	Syntax

You	introduce	enumerations	with	the	enum	keyword	and	place	their	entire
definition	within	a	pair	of	braces:

1 enum	SomeEnumeration	{

2 				//	enumeration	definition	goes	here

3 }

Here’s	an	example	for	the	four	main	points	of	a	compass:

1 enum	CompassPoint	{

2 				case	north

3 				case	south

4 				case	east

5 				case	west

6 }

The	values	defined	in	an	enumeration	(such	as	north,	south,	east,	and	west)	are
its	enumeration	cases.	You	use	the	case	keyword	to	introduce	new	enumeration
cases.

NOTE

Swift	enumeration	cases	don’t	have	an	integer	value	set	by	default,	unlike	languages	like	C	and
Objective-C.	In	the	CompassPoint	example	above,	north,	south,	east	and	west	don’t
implicitly	equal	0,	1,	2	and	3.	Instead,	the	different	enumeration	cases	are	values	in	their	own	right,
with	an	explicitly	defined	type	of	CompassPoint.

Multiple	cases	can	appear	on	a	single	line,	separated	by	commas:

1 enum	Planet	{

2 				case	mercury,	venus,	earth,	mars,	jupiter,	saturn,	uranus,	

neptune

3 }

Each	enumeration	definition	defines	a	new	type.	Like	other	types	in	Swift,	their
names	(such	as	CompassPoint	and	Planet)	start	with	a	capital	letter.	Give
enumeration	types	singular	rather	than	plural	names,	so	that	they	read	as	self-
evident:

	 var	directionToHead	=	CompassPoint.west

The	type	of	directionToHead	is	inferred	when	it’s	initialized	with	one	of	the
possible	values	of	CompassPoint.	Once	directionToHead	is	declared	as	a
CompassPoint,	you	can	set	it	to	a	different	CompassPoint	value	using	a	shorter	dot
syntax:

	 directionToHead	=	.east

The	type	of	directionToHead	is	already	known,	and	so	you	can	drop	the	type
when	setting	its	value.	This	makes	for	highly	readable	code	when	working	with
explicitly	typed	enumeration	values.

Matching	Enumeration	Values	with	a	Switch	Statement

You	can	match	individual	enumeration	values	with	a	switch	statement:

1 directionToHead	=	.south

2 switch	directionToHead	{

3 case	.north:

4 				print("Lots	of	planets	have	a	north")

5 case	.south:

6 				print("Watch	out	for	penguins")

7 case	.east:

8 				print("Where	the	sun	rises")

9 case	.west:

10 				print("Where	the	skies	are	blue")

11 }

12 //	Prints	"Watch	out	for	penguins"

You	can	read	this	code	as:

“Consider	the	value	of	directionToHead.	In	the	case	where	it	equals	.north,	print
"Lots	of	planets	have	a	north".	In	the	case	where	it	equals	.south,	print
"Watch	out	for	penguins".”

…and	so	on.

As	described	in	Control	Flow,	a	switch	statement	must	be	exhaustive	when
considering	an	enumeration’s	cases.	If	the	case	for	.west	is	omitted,	this	code
doesn’t	compile,	because	it	doesn’t	consider	the	complete	list	of	CompassPoint
cases.	Requiring	exhaustiveness	ensures	that	enumeration	cases	aren’t
accidentally	omitted.

When	it	isn’t	appropriate	to	provide	a	case	for	every	enumeration	case,	you	can
provide	a	default	case	to	cover	any	cases	that	aren’t	addressed	explicitly:

1 let	somePlanet	=	Planet.earth

2 switch	somePlanet	{

3 case	.earth:

4 				print("Mostly	harmless")

5 default:

6 				print("Not	a	safe	place	for	humans")

7 }

8 //	Prints	"Mostly	harmless"

Iterating	over	Enumeration	Cases

For	some	enumerations,	it’s	useful	to	have	a	collection	of	all	of	that
enumeration’s	cases.	You	enable	this	by	writing	:	CaseIterable	after	the
enumeration’s	name.	Swift	exposes	a	collection	of	all	the	cases	as	an	allCases
property	of	the	enumeration	type.	Here’s	an	example:

1 enum	Beverage:	CaseIterable	{

2 				case	coffee,	tea,	juice

3 }

4 let	numberOfChoices	=	Beverage.allCases.count

5 print("\(numberOfChoices)	beverages	available")

6 //	Prints	"3	beverages	available"

In	the	example	above,	you	write	Beverage.allCases	to	access	a	collection	that
contains	all	of	the	cases	of	the	Beverage	enumeration.	You	can	use	allCases	like
any	other	collection—the	collection’s	elements	are	instances	of	the	enumeration
type,	so	in	this	case	they’re	Beverage	values.	The	example	above	counts	how
many	cases	there	are,	and	the	example	below	uses	a	for	loop	to	iterate	over	all
the	cases.

1 for	beverage	in	Beverage.allCases	{

2 				print(beverage)

3 }

4 //	coffee

5 //	tea

6 //	juice

The	syntax	used	in	the	examples	above	marks	the	enumeration	as	conforming	to
the	CaseIterable	protocol.	For	information	about	protocols,	see	Protocols.

Associated	Values

The	examples	in	the	previous	section	show	how	the	cases	of	an	enumeration	are
a	defined	(and	typed)	value	in	their	own	right.	You	can	set	a	constant	or	variable
to	Planet.earth,	and	check	for	this	value	later.	However,	it’s	sometimes	useful
to	be	able	to	store	values	of	other	types	alongside	these	case	values.	This
additional	information	is	called	an	associated	value,	and	it	varies	each	time	you
use	that	case	as	a	value	in	your	code.

You	can	define	Swift	enumerations	to	store	associated	values	of	any	given	type,

https://developer.apple.com/documentation/swift/caseiterable

and	the	value	types	can	be	different	for	each	case	of	the	enumeration	if	needed.
Enumerations	similar	to	these	are	known	as	discriminated	unions,	tagged	unions,
or	variants	in	other	programming	languages.

For	example,	suppose	an	inventory	tracking	system	needs	to	track	products	by
two	different	types	of	barcode.	Some	products	are	labeled	with	1D	barcodes	in
UPC	format,	which	uses	the	numbers	0	to	9.	Each	barcode	has	a	number	system
digit,	followed	by	five	manufacturer	code	digits	and	five	product	code	digits.
These	are	followed	by	a	check	digit	to	verify	that	the	code	has	been	scanned
correctly:

Other	products	are	labeled	with	2D	barcodes	in	QR	code	format,	which	can	use
any	ISO	8859-1	character	and	can	encode	a	string	up	to	2,953	characters	long:

It’s	convenient	for	an	inventory	tracking	system	to	store	UPC	barcodes	as	a	tuple
of	four	integers,	and	QR	code	barcodes	as	a	string	of	any	length.

In	Swift,	an	enumeration	to	define	product	barcodes	of	either	type	might	look
like	this:

1 enum	Barcode	{

2 				case	upc(Int,	Int,	Int,	Int)

3 				case	qrCode(String)

4 }

This	can	be	read	as:

“Define	an	enumeration	type	called	Barcode,	which	can	take	either	a	value	of	upc
with	an	associated	value	of	type	(Int,	Int,	Int,	Int),	or	a	value	of	qrCode	with	an
associated	value	of	type	String.”

This	definition	doesn’t	provide	any	actual	Int	or	String	values—it	just	defines
the	type	of	associated	values	that	Barcode	constants	and	variables	can	store	when
they	are	equal	to	Barcode.upc	or	Barcode.qrCode.

You	can	then	create	new	barcodes	using	either	type:

	 var	productBarcode	=	Barcode.upc(8,	85909,	51226,	3)

This	example	creates	a	new	variable	called	productBarcode	and	assigns	it	a	value
of	Barcode.upc	with	an	associated	tuple	value	of	(8,	85909,	51226,	3).

You	can	assign	the	same	product	a	different	type	of	barcode:

	 productBarcode	=	.qrCode("ABCDEFGHIJKLMNOP")

At	this	point,	the	original	Barcode.upc	and	its	integer	values	are	replaced	by	the
new	Barcode.qrCode	and	its	string	value.	Constants	and	variables	of	type	Barcode
can	store	either	a	.upc	or	a	.qrCode	(together	with	their	associated	values),	but
they	can	store	only	one	of	them	at	any	given	time.

You	can	check	the	different	barcode	types	using	a	switch	statement,	similar	to
the	example	in	Matching	Enumeration	Values	with	a	Switch	Statement.	This
time,	however,	the	associated	values	are	extracted	as	part	of	the	switch
statement.	You	extract	each	associated	value	as	a	constant	(with	the	let	prefix)
or	a	variable	(with	the	var	prefix)	for	use	within	the	switch	case’s	body:

1 switch	productBarcode	{

2 case	.upc(let	numberSystem,	let	manufacturer,	let	product,	let	

check):

3 				print("UPC:	\(numberSystem),	\(manufacturer),	\(product),	\

(check).")

4 case	.qrCode(let	productCode):

5 				print("QR	code:	\(productCode).")

6 }

7 //	Prints	"QR	code:	ABCDEFGHIJKLMNOP."

If	all	of	the	associated	values	for	an	enumeration	case	are	extracted	as	constants,
or	if	all	are	extracted	as	variables,	you	can	place	a	single	var	or	let	annotation
before	the	case	name,	for	brevity:

1 switch	productBarcode	{

2 case	let	.upc(numberSystem,	manufacturer,	product,	check):

3 				print("UPC	:	\(numberSystem),	\(manufacturer),	\(product),	

\(check).")

4 case	let	.qrCode(productCode):

5 				print("QR	code:	\(productCode).")

6 }

7 //	Prints	"QR	code:	ABCDEFGHIJKLMNOP."

Raw	Values

The	barcode	example	in	Associated	Values	shows	how	cases	of	an	enumeration
can	declare	that	they	store	associated	values	of	different	types.	As	an	alternative
to	associated	values,	enumeration	cases	can	come	prepopulated	with	default
values	(called	raw	values),	which	are	all	of	the	same	type.

Here’s	an	example	that	stores	raw	ASCII	values	alongside	named	enumeration
cases:

1 enum	ASCIIControlCharacter:	Character	{

2 				case	tab	=	"\t"

3 				case	lineFeed	=	"\n"

4 				case	carriageReturn	=	"\r"

5 }

Here,	the	raw	values	for	an	enumeration	called	ASCIIControlCharacter	are
defined	to	be	of	type	Character,	and	are	set	to	some	of	the	more	common	ASCII
control	characters.	Character	values	are	described	in	Strings	and	Characters.

Raw	values	can	be	strings,	characters,	or	any	of	the	integer	or	floating-point
number	types.	Each	raw	value	must	be	unique	within	its	enumeration
declaration.

NOTE

Raw	values	are	not	the	same	as	associated	values.	Raw	values	are	set	to	prepopulated	values	when
you	first	define	the	enumeration	in	your	code,	like	the	three	ASCII	codes	above.	The	raw	value	for	a
particular	enumeration	case	is	always	the	same.	Associated	values	are	set	when	you	create	a	new
constant	or	variable	based	on	one	of	the	enumeration’s	cases,	and	can	be	different	each	time	you	do
so.

Implicitly	Assigned	Raw	Values
When	you’re	working	with	enumerations	that	store	integer	or	string	raw	values,
you	don’t	have	to	explicitly	assign	a	raw	value	for	each	case.	When	you	don’t,
Swift	automatically	assigns	the	values	for	you.

For	example,	when	integers	are	used	for	raw	values,	the	implicit	value	for	each
case	is	one	more	than	the	previous	case.	If	the	first	case	doesn’t	have	a	value	set,
its	value	is	0.

The	enumeration	below	is	a	refinement	of	the	earlier	Planet	enumeration,	with
integer	raw	values	to	represent	each	planet’s	order	from	the	sun:

1 enum	Planet:	Int	{

2 				case	mercury	=	1,	venus,	earth,	mars,	jupiter,	saturn,	

uranus,	neptune

3 }

In	the	example	above,	Planet.mercury	has	an	explicit	raw	value	of	1,
Planet.venus	has	an	implicit	raw	value	of	2,	and	so	on.

When	strings	are	used	for	raw	values,	the	implicit	value	for	each	case	is	the	text
of	that	case’s	name.

The	enumeration	below	is	a	refinement	of	the	earlier	CompassPoint	enumeration,
with	string	raw	values	to	represent	each	direction’s	name:

1 enum	CompassPoint:	String	{

2 				case	north,	south,	east,	west

3 }

In	the	example	above,	CompassPoint.south	has	an	implicit	raw	value	of	"south",
and	so	on.

You	access	the	raw	value	of	an	enumeration	case	with	its	rawValue	property:

1 let	earthsOrder	=	Planet.earth.rawValue

2 //	earthsOrder	is	3

3

4 let	sunsetDirection	=	CompassPoint.west.rawValue

5 //	sunsetDirection	is	"west"

Initializing	from	a	Raw	Value
If	you	define	an	enumeration	with	a	raw-value	type,	the	enumeration
automatically	receives	an	initializer	that	takes	a	value	of	the	raw	value’s	type	(as
a	parameter	called	rawValue)	and	returns	either	an	enumeration	case	or	nil.	You
can	use	this	initializer	to	try	to	create	a	new	instance	of	the	enumeration.

This	example	identifies	Uranus	from	its	raw	value	of	7:

1 let	possiblePlanet	=	Planet(rawValue:	7)

2 //	possiblePlanet	is	of	type	Planet?	and	equals	Planet.uranus

Not	all	possible	Int	values	will	find	a	matching	planet,	however.	Because	of	this,
the	raw	value	initializer	always	returns	an	optional	enumeration	case.	In	the
example	above,	possiblePlanet	is	of	type	Planet?,	or	“optional	Planet.”

NOTE

The	raw	value	initializer	is	a	failable	initializer,	because	not	every	raw	value	will	return	an
enumeration	case.	For	more	information,	see	Failable	Initializers.

If	you	try	to	find	a	planet	with	a	position	of	11,	the	optional	Planet	value
returned	by	the	raw	value	initializer	will	be	nil:

1 let	positionToFind	=	11

2 if	let	somePlanet	=	Planet(rawValue:	positionToFind)	{

3 				switch	somePlanet	{

4 				case	.earth:

5 								print("Mostly	harmless")

6 				default:

7 								print("Not	a	safe	place	for	humans")

8 				}

9 }	else	{

10 				print("There	isn't	a	planet	at	position	\

(positionToFind)")

11 }

12 //	Prints	"There	isn't	a	planet	at	position	11"

This	example	uses	optional	binding	to	try	to	access	a	planet	with	a	raw	value	of
11.	The	statement	if	let	somePlanet	=	Planet(rawValue:	11)	creates	an
optional	Planet,	and	sets	somePlanet	to	the	value	of	that	optional	Planet	if	it	can

be	retrieved.	In	this	case,	it	isn’t	possible	to	retrieve	a	planet	with	a	position	of
11,	and	so	the	else	branch	is	executed	instead.

Recursive	Enumerations

A	recursive	enumeration	is	an	enumeration	that	has	another	instance	of	the
enumeration	as	the	associated	value	for	one	or	more	of	the	enumeration	cases.
You	indicate	that	an	enumeration	case	is	recursive	by	writing	indirect	before	it,
which	tells	the	compiler	to	insert	the	necessary	layer	of	indirection.

For	example,	here	is	an	enumeration	that	stores	simple	arithmetic	expressions:

1 enum	ArithmeticExpression	{

2 				case	number(Int)

3 				indirect	case	addition(ArithmeticExpression,	

ArithmeticExpression)

4 				indirect	case	multiplication(ArithmeticExpression,	

ArithmeticExpression)

5 }

You	can	also	write	indirect	before	the	beginning	of	the	enumeration	to	enable
indirection	for	all	of	the	enumeration’s	cases	that	have	an	associated	value:

1 indirect	enum	ArithmeticExpression	{

2 				case	number(Int)

3 				case	addition(ArithmeticExpression,	ArithmeticExpression)

4 				case	multiplication(ArithmeticExpression,	

ArithmeticExpression)

5 }

This	enumeration	can	store	three	kinds	of	arithmetic	expressions:	a	plain
number,	the	addition	of	two	expressions,	and	the	multiplication	of	two

expressions.	The	addition	and	multiplication	cases	have	associated	values	that
are	also	arithmetic	expressions—these	associated	values	make	it	possible	to	nest
expressions.	For	example,	the	expression	(5	+	4)	*	2	has	a	number	on	the	right-
hand	side	of	the	multiplication	and	another	expression	on	the	left-hand	side	of
the	multiplication.	Because	the	data	is	nested,	the	enumeration	used	to	store	the
data	also	needs	to	support	nesting—this	means	the	enumeration	needs	to	be
recursive.	The	code	below	shows	the	ArithmeticExpression	recursive
enumeration	being	created	for	(5	+	4)	*	2:

1 let	five	=	ArithmeticExpression.number(5)

2 let	four	=	ArithmeticExpression.number(4)

3 let	sum	=	ArithmeticExpression.addition(five,	four)

4 let	product	=	ArithmeticExpression.multiplication(sum,	

ArithmeticExpression.number(2))

A	recursive	function	is	a	straightforward	way	to	work	with	data	that	has	a
recursive	structure.	For	example,	here’s	a	function	that	evaluates	an	arithmetic
expression:

1 func	evaluate(_	expression:	ArithmeticExpression)	->	Int	{

2 				switch	expression	{

3 				case	let	.number(value):

4 								return	value

5 				case	let	.addition(left,	right):

6 								return	evaluate(left)	+	evaluate(right)

7 				case	let	.multiplication(left,	right):

8 								return	evaluate(left)	*	evaluate(right)

9 				}

10 }

11

12 print(evaluate(product))

13 //	Prints	"18"

This	function	evaluates	a	plain	number	by	simply	returning	the	associated	value.
It	evaluates	an	addition	or	multiplication	by	evaluating	the	expression	on	the
left-hand	side,	evaluating	the	expression	on	the	right-hand	side,	and	then	adding
them	or	multiplying	them.

Structures	and	Classes

Structures	and	classes	are	general-purpose,	flexible	constructs	that	become	the
building	blocks	of	your	program’s	code.	You	define	properties	and	methods	to
add	functionality	to	your	structures	and	classes	using	the	same	syntax	you	use	to
define	constants,	variables,	and	functions.

Unlike	other	programming	languages,	Swift	doesn’t	require	you	to	create
separate	interface	and	implementation	files	for	custom	structures	and	classes.	In
Swift,	you	define	a	structure	or	class	in	a	single	file,	and	the	external	interface	to
that	class	or	structure	is	automatically	made	available	for	other	code	to	use.

NOTE

An	instance	of	a	class	is	traditionally	known	as	an	object.	However,	Swift	structures	and	classes	are
much	closer	in	functionality	than	in	other	languages,	and	much	of	this	chapter	describes	functionality
that	applies	to	instances	of	either	a	class	or	a	structure	type.	Because	of	this,	the	more	general	term
instance	is	used.

Comparing	Structures	and	Classes

Structures	and	classes	in	Swift	have	many	things	in	common.	Both	can:

Define	properties	to	store	values

Define	methods	to	provide	functionality

Define	subscripts	to	provide	access	to	their	values	using	subscript	syntax

Define	initializers	to	set	up	their	initial	state

Be	extended	to	expand	their	functionality	beyond	a	default	implementation

Conform	to	protocols	to	provide	standard	functionality	of	a	certain	kind

For	more	information,	see	Properties,	Methods,	Subscripts,	Initialization,
Extensions,	and	Protocols.

Classes	have	additional	capabilities	that	structures	don’t	have:

Inheritance	enables	one	class	to	inherit	the	characteristics	of	another.

Type	casting	enables	you	to	check	and	interpret	the	type	of	a	class	instance
at	runtime.

Deinitializers	enable	an	instance	of	a	class	to	free	up	any	resources	it	has
assigned.

Reference	counting	allows	more	than	one	reference	to	a	class	instance.

For	more	information,	see	Inheritance,	Type	Casting,	Deinitialization,	and
Automatic	Reference	Counting.

The	additional	capabilities	that	classes	support	come	at	the	cost	of	increased
complexity.	As	a	general	guideline,	prefer	structures	because	they’re	easier	to
reason	about,	and	use	classes	when	they’re	appropriate	or	necessary.	In	practice,
this	means	most	of	the	custom	data	types	you	define	will	be	structures	and
enumerations.	For	a	more	detailed	comparison,	see	Choosing	Between
Structures	and	Classes.

Definition	Syntax
Structures	and	classes	have	a	similar	definition	syntax.	You	introduce	structures
with	the	struct	keyword	and	classes	with	the	class	keyword.	Both	place	their
entire	definition	within	a	pair	of	braces:

1 struct	SomeStructure	{

2 				//	structure	definition	goes	here

3 }

4 class	SomeClass	{

5 				//	class	definition	goes	here

https://developer.apple.com/documentation/swift/choosing_between_structures_and_classes

6 }

NOTE

Whenever	you	define	a	new	structure	or	class,	you	define	a	new	Swift	type.	Give	types
UpperCamelCase	names	(such	as	SomeStructure	and	SomeClass	here)	to	match	the
capitalization	of	standard	Swift	types	(such	as	String,	Int,	and	Bool).	Give	properties	and
methods	lowerCamelCase	names	(such	as	frameRate	and	incrementCount)	to
differentiate	them	from	type	names.

Here’s	an	example	of	a	structure	definition	and	a	class	definition:

1 struct	Resolution	{

2 				var	width	=	0

3 				var	height	=	0

4 }

5 class	VideoMode	{

6 				var	resolution	=	Resolution()

7 				var	interlaced	=	false

8 				var	frameRate	=	0.0

9 				var	name:	String?

10 }

The	example	above	defines	a	new	structure	called	Resolution,	to	describe	a
pixel-based	display	resolution.	This	structure	has	two	stored	properties	called
width	and	height.	Stored	properties	are	constants	or	variables	that	are	bundled
up	and	stored	as	part	of	the	structure	or	class.	These	two	properties	are	inferred
to	be	of	type	Int	by	setting	them	to	an	initial	integer	value	of	0.

The	example	above	also	defines	a	new	class	called	VideoMode,	to	describe	a
specific	video	mode	for	video	display.	This	class	has	four	variable	stored
properties.	The	first,	resolution,	is	initialized	with	a	new	Resolution	structure
instance,	which	infers	a	property	type	of	Resolution.	For	the	other	three
properties,	new	VideoMode	instances	will	be	initialized	with	an	interlaced
setting	of	false	(meaning	“noninterlaced	video”),	a	playback	frame	rate	of	0.0,
and	an	optional	String	value	called	name.	The	name	property	is	automatically

given	a	default	value	of	nil,	or	“no	name	value”,	because	it’s	of	an	optional	type.

Structure	and	Class	Instances
The	Resolution	structure	definition	and	the	VideoMode	class	definition	only
describe	what	a	Resolution	or	VideoMode	will	look	like.	They	themselves	don’t
describe	a	specific	resolution	or	video	mode.	To	do	that,	you	need	to	create	an
instance	of	the	structure	or	class.

The	syntax	for	creating	instances	is	very	similar	for	both	structures	and	classes:

1 let	someResolution	=	Resolution()

2 let	someVideoMode	=	VideoMode()

Structures	and	classes	both	use	initializer	syntax	for	new	instances.	The	simplest
form	of	initializer	syntax	uses	the	type	name	of	the	class	or	structure	followed	by
empty	parentheses,	such	as	Resolution()	or	VideoMode().	This	creates	a	new
instance	of	the	class	or	structure,	with	any	properties	initialized	to	their	default
values.	Class	and	structure	initialization	is	described	in	more	detail	in
Initialization.

Accessing	Properties
You	can	access	the	properties	of	an	instance	using	dot	syntax.	In	dot	syntax,	you
write	the	property	name	immediately	after	the	instance	name,	separated	by	a
period	(.),	without	any	spaces:

1 print("The	width	of	someResolution	is	\(someResolution.width)")

2 //	Prints	"The	width	of	someResolution	is	0"

In	this	example,	someResolution.width	refers	to	the	width	property	of
someResolution,	and	returns	its	default	initial	value	of	0.

You	can	drill	down	into	subproperties,	such	as	the	width	property	in	the
resolution	property	of	a	VideoMode:

1 print("The	width	of	someVideoMode	is	\

(someVideoMode.resolution.width)")

2 //	Prints	"The	width	of	someVideoMode	is	0"

You	can	also	use	dot	syntax	to	assign	a	new	value	to	a	variable	property:

1 someVideoMode.resolution.width	=	1280

2 print("The	width	of	someVideoMode	is	now	\

(someVideoMode.resolution.width)")

3 //	Prints	"The	width	of	someVideoMode	is	now	1280"

Memberwise	Initializers	for	Structure	Types
All	structures	have	an	automatically	generated	memberwise	initializer,	which
you	can	use	to	initialize	the	member	properties	of	new	structure	instances.	Initial
values	for	the	properties	of	the	new	instance	can	be	passed	to	the	memberwise
initializer	by	name:

	 let	vga	=	Resolution(width:	640,	height:	480)

Unlike	structures,	class	instances	don’t	receive	a	default	memberwise	initializer.
Initializers	are	described	in	more	detail	in	Initialization.

Structures	and	Enumerations	Are	Value	Types

A	value	type	is	a	type	whose	value	is	copied	when	it’s	assigned	to	a	variable	or
constant,	or	when	it’s	passed	to	a	function.

You’ve	actually	been	using	value	types	extensively	throughout	the	previous
chapters.	In	fact,	all	of	the	basic	types	in	Swift—integers,	floating-point
numbers,	Booleans,	strings,	arrays	and	dictionaries—are	value	types,	and	are
implemented	as	structures	behind	the	scenes.

All	structures	and	enumerations	are	value	types	in	Swift.	This	means	that	any
structure	and	enumeration	instances	you	create—and	any	value	types	they	have
as	properties—are	always	copied	when	they	are	passed	around	in	your	code.

NOTE

Collections	defined	by	the	standard	library	like	arrays,	dictionaries,	and	strings	use	an	optimization	to
reduce	the	performance	cost	of	copying.	Instead	of	making	a	copy	immediately,	these	collections
share	the	memory	where	the	elements	are	stored	between	the	original	instance	and	any	copies.	If	one
of	the	copies	of	the	collection	is	modified,	the	elements	are	copied	just	before	the	modification.	The
behavior	you	see	in	your	code	is	always	as	if	a	copy	took	place	immediately.

Consider	this	example,	which	uses	the	Resolution	structure	from	the	previous
example:

1 let	hd	=	Resolution(width:	1920,	height:	1080)

2 var	cinema	=	hd

This	example	declares	a	constant	called	hd	and	sets	it	to	a	Resolution	instance
initialized	with	the	width	and	height	of	full	HD	video	(1920	pixels	wide	by	1080
pixels	high).

It	then	declares	a	variable	called	cinema	and	sets	it	to	the	current	value	of	hd.
Because	Resolution	is	a	structure,	a	copy	of	the	existing	instance	is	made,	and
this	new	copy	is	assigned	to	cinema.	Even	though	hd	and	cinema	now	have	the
same	width	and	height,	they	are	two	completely	different	instances	behind	the
scenes.

Next,	the	width	property	of	cinema	is	amended	to	be	the	width	of	the	slightly
wider	2K	standard	used	for	digital	cinema	projection	(2048	pixels	wide	and	1080
pixels	high):

	 cinema.width	=	2048

Checking	the	width	property	of	cinema	shows	that	it	has	indeed	changed	to	be
2048:

1 print("cinema	is	now	\(cinema.width)	pixels	wide")

2 //	Prints	"cinema	is	now	2048	pixels	wide"

However,	the	width	property	of	the	original	hd	instance	still	has	the	old	value	of
1920:

1 print("hd	is	still	\(hd.width)	pixels	wide")

2 //	Prints	"hd	is	still	1920	pixels	wide"

When	cinema	was	given	the	current	value	of	hd,	the	values	stored	in	hd	were
copied	into	the	new	cinema	instance.	The	end	result	was	two	completely	separate
instances	that	contained	the	same	numeric	values.	However,	because	they	are
separate	instances,	setting	the	width	of	cinema	to	2048	doesn’t	affect	the	width
stored	in	hd,	as	shown	in	the	figure	below:

The	same	behavior	applies	to	enumerations:

1 enum	CompassPoint	{

2 				case	north,	south,	east,	west

3 				mutating	func	turnNorth()	{

4 								self	=	.north

5 				}

6 }

7 var	currentDirection	=	CompassPoint.west

8 let	rememberedDirection	=	currentDirection

9 currentDirection.turnNorth()

10

11 print("The	current	direction	is	\(currentDirection)")

12 print("The	remembered	direction	is	\(rememberedDirection)")

13 //	Prints	"The	current	direction	is	north"

14 //	Prints	"The	remembered	direction	is	west"

When	rememberedDirection	is	assigned	the	value	of	currentDirection,	it’s
actually	set	to	a	copy	of	that	value.	Changing	the	value	of	currentDirection
thereafter	doesn’t	affect	the	copy	of	the	original	value	that	was	stored	in
rememberedDirection.

Classes	Are	Reference	Types

Unlike	value	types,	reference	types	are	not	copied	when	they	are	assigned	to	a
variable	or	constant,	or	when	they	are	passed	to	a	function.	Rather	than	a	copy,	a
reference	to	the	same	existing	instance	is	used.

Here’s	an	example,	using	the	VideoMode	class	defined	above:

1 let	tenEighty	=	VideoMode()

2 tenEighty.resolution	=	hd

3 tenEighty.interlaced	=	true

4 tenEighty.name	=	"1080i"

5 tenEighty.frameRate	=	25.0

This	example	declares	a	new	constant	called	tenEighty	and	sets	it	to	refer	to	a
new	instance	of	the	VideoMode	class.	The	video	mode	is	assigned	a	copy	of	the
HD	resolution	of	1920	by	1080	from	before.	It’s	set	to	be	interlaced,	its	name	is
set	to	"1080i",	and	its	frame	rate	is	set	to	25.0	frames	per	second.

Next,	tenEighty	is	assigned	to	a	new	constant,	called	alsoTenEighty,	and	the
frame	rate	of	alsoTenEighty	is	modified:

1 let	alsoTenEighty	=	tenEighty

2 alsoTenEighty.frameRate	=	30.0

Because	classes	are	reference	types,	tenEighty	and	alsoTenEighty	actually	both
refer	to	the	same	VideoMode	instance.	Effectively,	they	are	just	two	different
names	for	the	same	single	instance,	as	shown	in	the	figure	below:

Checking	the	frameRate	property	of	tenEighty	shows	that	it	correctly	reports	the
new	frame	rate	of	30.0	from	the	underlying	VideoMode	instance:

1 print("The	frameRate	property	of	tenEighty	is	now	\

(tenEighty.frameRate)")

2 //	Prints	"The	frameRate	property	of	tenEighty	is	now	30.0"

This	example	also	shows	how	reference	types	can	be	harder	to	reason	about.	If
tenEighty	and	alsoTenEighty	were	far	apart	in	your	program’s	code,	it	could	be
difficult	to	find	all	the	ways	that	the	video	mode	is	changed.	Wherever	you	use
tenEighty,	you	also	have	to	think	about	the	code	that	uses	alsoTenEighty,	and
vice	versa.	In	contrast,	value	types	are	easier	to	reason	about	because	all	of	the
code	that	interacts	with	the	same	value	is	close	together	in	your	source	files.

Note	that	tenEighty	and	alsoTenEighty	are	declared	as	constants,	rather	than
variables.	However,	you	can	still	change	tenEighty.frameRate	and
alsoTenEighty.frameRate	because	the	values	of	the	tenEighty	and
alsoTenEighty	constants	themselves	don’t	actually	change.	tenEighty	and
alsoTenEighty	themselves	don’t	“store”	the	VideoMode	instance—instead,	they
both	refer	to	a	VideoMode	instance	behind	the	scenes.	It’s	the	frameRate	property
of	the	underlying	VideoMode	that	is	changed,	not	the	values	of	the	constant
references	to	that	VideoMode.

Identity	Operators
Because	classes	are	reference	types,	it’s	possible	for	multiple	constants	and
variables	to	refer	to	the	same	single	instance	of	a	class	behind	the	scenes.	(The
same	isn’t	true	for	structures	and	enumerations,	because	they	are	always	copied
when	they	are	assigned	to	a	constant	or	variable,	or	passed	to	a	function.)

It	can	sometimes	be	useful	to	find	out	whether	two	constants	or	variables	refer	to
exactly	the	same	instance	of	a	class.	To	enable	this,	Swift	provides	two	identity
operators:

Identical	to	(===)

Not	identical	to	(!==)

Use	these	operators	to	check	whether	two	constants	or	variables	refer	to	the
same	single	instance:

1 if	tenEighty	===	alsoTenEighty	{

2 				print("tenEighty	and	alsoTenEighty	refer	to	the	same	

VideoMode	instance.")

3 }

4 //	Prints	"tenEighty	and	alsoTenEighty	refer	to	the	same	

VideoMode	instance."

Note	that	identical	to	(represented	by	three	equals	signs,	or	===)	doesn’t	mean
the	same	thing	as	equal	to	(represented	by	two	equals	signs,	or	==).	Identical	to
means	that	two	constants	or	variables	of	class	type	refer	to	exactly	the	same	class
instance.	Equal	to	means	that	two	instances	are	considered	equal	or	equivalent	in
value,	for	some	appropriate	meaning	of	equal,	as	defined	by	the	type’s	designer.

When	you	define	your	own	custom	structures	and	classes,	it’s	your	responsibility
to	decide	what	qualifies	as	two	instances	being	equal.	The	process	of	defining
your	own	implementations	of	the	==	and	!=	operators	is	described	in	Equivalence
Operators.

Pointers
If	you	have	experience	with	C,	C++,	or	Objective-C,	you	may	know	that	these
languages	use	pointers	to	refer	to	addresses	in	memory.	A	Swift	constant	or
variable	that	refers	to	an	instance	of	some	reference	type	is	similar	to	a	pointer	in
C,	but	isn’t	a	direct	pointer	to	an	address	in	memory,	and	doesn’t	require	you	to
write	an	asterisk	(*)	to	indicate	that	you	are	creating	a	reference.	Instead,	these
references	are	defined	like	any	other	constant	or	variable	in	Swift.	The	standard
library	provides	pointer	and	buffer	types	that	you	can	use	if	you	need	to	interact
with	pointers	directly—see	Manual	Memory	Management.

https://developer.apple.com/documentation/swift/swift_standard_library/manual_memory_management

Properties

Properties	associate	values	with	a	particular	class,	structure,	or	enumeration.
Stored	properties	store	constant	and	variable	values	as	part	of	an	instance,
whereas	computed	properties	calculate	(rather	than	store)	a	value.	Computed
properties	are	provided	by	classes,	structures,	and	enumerations.	Stored
properties	are	provided	only	by	classes	and	structures.

Stored	and	computed	properties	are	usually	associated	with	instances	of	a
particular	type.	However,	properties	can	also	be	associated	with	the	type	itself.
Such	properties	are	known	as	type	properties.

In	addition,	you	can	define	property	observers	to	monitor	changes	in	a	property’s
value,	which	you	can	respond	to	with	custom	actions.	Property	observers	can	be
added	to	stored	properties	you	define	yourself,	and	also	to	properties	that	a
subclass	inherits	from	its	superclass.

You	can	also	use	a	property	wrapper	to	reuse	code	in	the	getter	and	setter	of
multiple	properties.

Stored	Properties

In	its	simplest	form,	a	stored	property	is	a	constant	or	variable	that	is	stored	as
part	of	an	instance	of	a	particular	class	or	structure.	Stored	properties	can	be
either	variable	stored	properties	(introduced	by	the	var	keyword)	or	constant
stored	properties	(introduced	by	the	let	keyword).

You	can	provide	a	default	value	for	a	stored	property	as	part	of	its	definition,	as
described	in	Default	Property	Values.	You	can	also	set	and	modify	the	initial
value	for	a	stored	property	during	initialization.	This	is	true	even	for	constant
stored	properties,	as	described	in	Assigning	Constant	Properties	During
Initialization.

The	example	below	defines	a	structure	called	FixedLengthRange,	which	describes

a	range	of	integers	whose	range	length	cannot	be	changed	after	it	is	created:

1 struct	FixedLengthRange	{

2 				var	firstValue:	Int

3 				let	length:	Int

4 }

5 var	rangeOfThreeItems	=	FixedLengthRange(firstValue:	0,	length:	

3)

6 //	the	range	represents	integer	values	0,	1,	and	2

7 rangeOfThreeItems.firstValue	=	6

8 //	the	range	now	represents	integer	values	6,	7,	and	8

Instances	of	FixedLengthRange	have	a	variable	stored	property	called	firstValue
and	a	constant	stored	property	called	length.	In	the	example	above,	length	is
initialized	when	the	new	range	is	created	and	cannot	be	changed	thereafter,
because	it	is	a	constant	property.

Stored	Properties	of	Constant	Structure	Instances
If	you	create	an	instance	of	a	structure	and	assign	that	instance	to	a	constant,	you
cannot	modify	the	instance’s	properties,	even	if	they	were	declared	as	variable
properties:

1 let	rangeOfFourItems	=	FixedLengthRange(firstValue:	0,	length:	

4)

2 //	this	range	represents	integer	values	0,	1,	2,	and	3

3 rangeOfFourItems.firstValue	=	6

4 //	this	will	report	an	error,	even	though	firstValue	is	a	

variable	property

Because	rangeOfFourItems	is	declared	as	a	constant	(with	the	let	keyword),	it	is
not	possible	to	change	its	firstValue	property,	even	though	firstValue	is	a

variable	property.

This	behavior	is	due	to	structures	being	value	types.	When	an	instance	of	a	value
type	is	marked	as	a	constant,	so	are	all	of	its	properties.

The	same	is	not	true	for	classes,	which	are	reference	types.	If	you	assign	an
instance	of	a	reference	type	to	a	constant,	you	can	still	change	that	instance’s
variable	properties.

Lazy	Stored	Properties
A	lazy	stored	property	is	a	property	whose	initial	value	is	not	calculated	until	the
first	time	it	is	used.	You	indicate	a	lazy	stored	property	by	writing	the	lazy
modifier	before	its	declaration.

NOTE

You	must	always	declare	a	lazy	property	as	a	variable	(with	the	var	keyword),	because	its	initial
value	might	not	be	retrieved	until	after	instance	initialization	completes.	Constant	properties	must
always	have	a	value	before	initialization	completes,	and	therefore	cannot	be	declared	as	lazy.

Lazy	properties	are	useful	when	the	initial	value	for	a	property	is	dependent	on
outside	factors	whose	values	are	not	known	until	after	an	instance’s	initialization
is	complete.	Lazy	properties	are	also	useful	when	the	initial	value	for	a	property
requires	complex	or	computationally	expensive	setup	that	should	not	be
performed	unless	or	until	it	is	needed.

The	example	below	uses	a	lazy	stored	property	to	avoid	unnecessary
initialization	of	a	complex	class.	This	example	defines	two	classes	called
DataImporter	and	DataManager,	neither	of	which	is	shown	in	full:

1 class	DataImporter	{

2 				/*

3 				DataImporter	is	a	class	to	import	data	from	an	external	

file.

4 				The	class	is	assumed	to	take	a	nontrivial	amount	of	time	to	

initialize.

5 				*/

6 				var	filename	=	"data.txt"

7 				//	the	DataImporter	class	would	provide	data	importing	

functionality	here

8 }

9

10 class	DataManager	{

11 				lazy	var	importer	=	DataImporter()

12 				var	data	=	[String]()

13 				//	the	DataManager	class	would	provide	data	management	

functionality	here

14 }

15

16 let	manager	=	DataManager()

17 manager.data.append("Some	data")

18 manager.data.append("Some	more	data")

19 //	the	DataImporter	instance	for	the	importer	property	has	not	

yet	been	created

The	DataManager	class	has	a	stored	property	called	data,	which	is	initialized	with
a	new,	empty	array	of	String	values.	Although	the	rest	of	its	functionality	is	not
shown,	the	purpose	of	this	DataManager	class	is	to	manage	and	provide	access	to
this	array	of	String	data.

Part	of	the	functionality	of	the	DataManager	class	is	the	ability	to	import	data
from	a	file.	This	functionality	is	provided	by	the	DataImporter	class,	which	is
assumed	to	take	a	nontrivial	amount	of	time	to	initialize.	This	might	be	because
a	DataImporter	instance	needs	to	open	a	file	and	read	its	contents	into	memory
when	the	DataImporter	instance	is	initialized.

It	is	possible	for	a	DataManager	instance	to	manage	its	data	without	ever
importing	data	from	a	file,	so	there	is	no	need	to	create	a	new	DataImporter

instance	when	the	DataManager	itself	is	created.	Instead,	it	makes	more	sense	to
create	the	DataImporter	instance	if	and	when	it	is	first	used.

Because	it	is	marked	with	the	lazy	modifier,	the	DataImporter	instance	for	the
importer	property	is	only	created	when	the	importer	property	is	first	accessed,
such	as	when	its	filename	property	is	queried:

1 print(manager.importer.filename)

2 //	the	DataImporter	instance	for	the	importer	property	has	now	

been	created

3 //	Prints	"data.txt"

NOTE

If	a	property	marked	with	the	lazy	modifier	is	accessed	by	multiple	threads	simultaneously	and	the
property	has	not	yet	been	initialized,	there	is	no	guarantee	that	the	property	will	be	initialized	only
once.

Stored	Properties	and	Instance	Variables
If	you	have	experience	with	Objective-C,	you	may	know	that	it	provides	two
ways	to	store	values	and	references	as	part	of	a	class	instance.	In	addition	to
properties,	you	can	use	instance	variables	as	a	backing	store	for	the	values	stored
in	a	property.

Swift	unifies	these	concepts	into	a	single	property	declaration.	A	Swift	property
does	not	have	a	corresponding	instance	variable,	and	the	backing	store	for	a
property	is	not	accessed	directly.	This	approach	avoids	confusion	about	how	the
value	is	accessed	in	different	contexts	and	simplifies	the	property’s	declaration
into	a	single,	definitive	statement.	All	information	about	the	property—including
its	name,	type,	and	memory	management	characteristics—is	defined	in	a	single
location	as	part	of	the	type’s	definition.

Computed	Properties

In	addition	to	stored	properties,	classes,	structures,	and	enumerations	can	define
computed	properties,	which	do	not	actually	store	a	value.	Instead,	they	provide	a
getter	and	an	optional	setter	to	retrieve	and	set	other	properties	and	values
indirectly.

1 struct	Point	{

2 				var	x	=	0.0,	y	=	0.0

3 }

4 struct	Size	{

5 				var	width	=	0.0,	height	=	0.0

6 }

7 struct	Rect	{

8 				var	origin	=	Point()

9 				var	size	=	Size()

10 				var	center:	Point	{

11 								get	{

12 												let	centerX	=	origin.x	+	(size.width	/	2)

13 												let	centerY	=	origin.y	+	(size.height	/	2)

14 												return	Point(x:	centerX,	y:	centerY)

15 								}

16 								set(newCenter)	{

17 												origin.x	=	newCenter.x	-	(size.width	/	2)

18 												origin.y	=	newCenter.y	-	(size.height	/	2)

19 								}

20 				}

21 }

22 var	square	=	Rect(origin:	Point(x:	0.0,	y:	0.0),

23 																		size:	Size(width:	10.0,	height:	10.0))

24 let	initialSquareCenter	=	square.center

25 square.center	=	Point(x:	15.0,	y:	15.0)

26 print("square.origin	is	now	at	(\(square.origin.x),	\

(square.origin.y))")

27 //	Prints	"square.origin	is	now	at	(10.0,	10.0)"

This	example	defines	three	structures	for	working	with	geometric	shapes:

Point	encapsulates	the	x-	and	y-coordinate	of	a	point.

Size	encapsulates	a	width	and	a	height.

Rect	defines	a	rectangle	by	an	origin	point	and	a	size.

The	Rect	structure	also	provides	a	computed	property	called	center.	The	current
center	position	of	a	Rect	can	always	be	determined	from	its	origin	and	size,	and
so	you	don’t	need	to	store	the	center	point	as	an	explicit	Point	value.	Instead,
Rect	defines	a	custom	getter	and	setter	for	a	computed	variable	called	center,	to
enable	you	to	work	with	the	rectangle’s	center	as	if	it	were	a	real	stored
property.

The	example	above	creates	a	new	Rect	variable	called	square.	The	square
variable	is	initialized	with	an	origin	point	of	(0,	0),	and	a	width	and	height	of
10.	This	square	is	represented	by	the	blue	square	in	the	diagram	below.

The	square	variable’s	center	property	is	then	accessed	through	dot	syntax
(square.center),	which	causes	the	getter	for	center	to	be	called,	to	retrieve	the
current	property	value.	Rather	than	returning	an	existing	value,	the	getter
actually	calculates	and	returns	a	new	Point	to	represent	the	center	of	the	square.
As	can	be	seen	above,	the	getter	correctly	returns	a	center	point	of	(5,	5).

The	center	property	is	then	set	to	a	new	value	of	(15,	15),	which	moves	the
square	up	and	to	the	right,	to	the	new	position	shown	by	the	orange	square	in	the
diagram	below.	Setting	the	center	property	calls	the	setter	for	center,	which
modifies	the	x	and	y	values	of	the	stored	origin	property,	and	moves	the	square
to	its	new	position.

Shorthand	Setter	Declaration
If	a	computed	property’s	setter	doesn’t	define	a	name	for	the	new	value	to	be	set,
a	default	name	of	newValue	is	used.	Here’s	an	alternative	version	of	the	Rect
structure	that	takes	advantage	of	this	shorthand	notation:

1 struct	AlternativeRect	{

2 				var	origin	=	Point()

3 				var	size	=	Size()

4 				var	center:	Point	{

5 								get	{

6 												let	centerX	=	origin.x	+	(size.width	/	2)

7 												let	centerY	=	origin.y	+	(size.height	/	2)

8 												return	Point(x:	centerX,	y:	centerY)

9 								}

10 								set	{

11 												origin.x	=	newValue.x	-	(size.width	/	2)

12 												origin.y	=	newValue.y	-	(size.height	/	2)

13 								}

14 				}

15 }

Shorthand	Getter	Declaration
If	the	entire	body	of	a	getter	is	a	single	expression,	the	getter	implicitly	returns
that	expression.	Here’s	an	another	version	of	the	Rect	structure	that	takes
advantage	of	this	shorthand	notation	and	the	shorthand	notation	for	setters:

1 struct	CompactRect	{

2 				var	origin	=	Point()

3 				var	size	=	Size()

4 				var	center:	Point	{

5 								get	{

6 												Point(x:	origin.x	+	(size.width	/	2),

7 																		y:	origin.y	+	(size.height	/	2))

8 								}

9 								set	{

10 												origin.x	=	newValue.x	-	(size.width	/	2)

11 												origin.y	=	newValue.y	-	(size.height	/	2)

12 								}

13 				}

14 }

Omitting	the	return	from	a	getter	follows	the	same	rules	as	omitting	return
from	a	function,	as	described	in	Functions	With	an	Implicit	Return.

Read-Only	Computed	Properties
A	computed	property	with	a	getter	but	no	setter	is	known	as	a	read-only
computed	property.	A	read-only	computed	property	always	returns	a	value,	and
can	be	accessed	through	dot	syntax,	but	cannot	be	set	to	a	different	value.

NOTE

You	must	declare	computed	properties—including	read-only	computed	properties—as	variable
properties	with	the	var	keyword,	because	their	value	is	not	fixed.	The	let	keyword	is	only	used	for
constant	properties,	to	indicate	that	their	values	cannot	be	changed	once	they	are	set	as	part	of
instance	initialization.

You	can	simplify	the	declaration	of	a	read-only	computed	property	by	removing
the	get	keyword	and	its	braces:

1 struct	Cuboid	{

2 				var	width	=	0.0,	height	=	0.0,	depth	=	0.0

3 				var	volume:	Double	{

4 								return	width	*	height	*	depth

5 				}

6 }

7 let	fourByFiveByTwo	=	Cuboid(width:	4.0,	height:	5.0,	depth:	

2.0)

8 print("the	volume	of	fourByFiveByTwo	is	\

(fourByFiveByTwo.volume)")

9 //	Prints	"the	volume	of	fourByFiveByTwo	is	40.0"

This	example	defines	a	new	structure	called	Cuboid,	which	represents	a	3D
rectangular	box	with	width,	height,	and	depth	properties.	This	structure	also	has
a	read-only	computed	property	called	volume,	which	calculates	and	returns	the
current	volume	of	the	cuboid.	It	doesn’t	make	sense	for	volume	to	be	settable,
because	it	would	be	ambiguous	as	to	which	values	of	width,	height,	and	depth
should	be	used	for	a	particular	volume	value.	Nonetheless,	it	is	useful	for	a
Cuboid	to	provide	a	read-only	computed	property	to	enable	external	users	to
discover	its	current	calculated	volume.

Property	Observers

Property	observers	observe	and	respond	to	changes	in	a	property’s	value.
Property	observers	are	called	every	time	a	property’s	value	is	set,	even	if	the	new
value	is	the	same	as	the	property’s	current	value.

You	can	add	property	observers	to	any	stored	properties	you	define,	except	for
lazy	stored	properties.	You	can	also	add	property	observers	to	any	inherited
property	(whether	stored	or	computed)	by	overriding	the	property	within	a
subclass.	You	don’t	need	to	define	property	observers	for	nonoverridden
computed	properties,	because	you	can	observe	and	respond	to	changes	to	their
value	in	the	computed	property’s	setter.	Property	overriding	is	described	in
Overriding.

You	have	the	option	to	define	either	or	both	of	these	observers	on	a	property:

willSet	is	called	just	before	the	value	is	stored.

didSet	is	called	immediately	after	the	new	value	is	stored.

If	you	implement	a	willSet	observer,	it’s	passed	the	new	property	value	as	a
constant	parameter.	You	can	specify	a	name	for	this	parameter	as	part	of	your
willSet	implementation.	If	you	don’t	write	the	parameter	name	and	parentheses
within	your	implementation,	the	parameter	is	made	available	with	a	default
parameter	name	of	newValue.

Similarly,	if	you	implement	a	didSet	observer,	it’s	passed	a	constant	parameter
containing	the	old	property	value.	You	can	name	the	parameter	or	use	the	default
parameter	name	of	oldValue.	If	you	assign	a	value	to	a	property	within	its	own
didSet	observer,	the	new	value	that	you	assign	replaces	the	one	that	was	just	set.

NOTE

The	willSet	and	didSet	observers	of	superclass	properties	are	called	when	a	property	is	set	in	a
subclass	initializer,	after	the	superclass	initializer	has	been	called.	They	are	not	called	while	a	class	is
setting	its	own	properties,	before	the	superclass	initializer	has	been	called.

For	more	information	about	initializer	delegation,	see	Initializer	Delegation	for	Value	Types	and
Initializer	Delegation	for	Class	Types.

Here’s	an	example	of	willSet	and	didSet	in	action.	The	example	below	defines	a
new	class	called	StepCounter,	which	tracks	the	total	number	of	steps	that	a
person	takes	while	walking.	This	class	might	be	used	with	input	data	from	a
pedometer	or	other	step	counter	to	keep	track	of	a	person’s	exercise	during	their
daily	routine.

1 class	StepCounter	{

2 				var	totalSteps:	Int	=	0	{

3 								willSet(newTotalSteps)	{

4 												print("About	to	set	totalSteps	to	\

(newTotalSteps)")

5 								}

6 								didSet	{

7 												if	totalSteps	>	oldValue		{

8 																print("Added	\(totalSteps	-	oldValue)	steps")

9 												}

10 								}

11 				}

12 }

13 let	stepCounter	=	StepCounter()

14 stepCounter.totalSteps	=	200

15 //	About	to	set	totalSteps	to	200

16 //	Added	200	steps

17 stepCounter.totalSteps	=	360

18 //	About	to	set	totalSteps	to	360

19 //	Added	160	steps

20 stepCounter.totalSteps	=	896

21 //	About	to	set	totalSteps	to	896

22 //	Added	536	steps

The	StepCounter	class	declares	a	totalSteps	property	of	type	Int.	This	is	a

stored	property	with	willSet	and	didSet	observers.

The	willSet	and	didSet	observers	for	totalSteps	are	called	whenever	the
property	is	assigned	a	new	value.	This	is	true	even	if	the	new	value	is	the	same
as	the	current	value.

This	example’s	willSet	observer	uses	a	custom	parameter	name	of
newTotalSteps	for	the	upcoming	new	value.	In	this	example,	it	simply	prints	out
the	value	that	is	about	to	be	set.

The	didSet	observer	is	called	after	the	value	of	totalSteps	is	updated.	It
compares	the	new	value	of	totalSteps	against	the	old	value.	If	the	total	number
of	steps	has	increased,	a	message	is	printed	to	indicate	how	many	new	steps	have
been	taken.	The	didSet	observer	does	not	provide	a	custom	parameter	name	for
the	old	value,	and	the	default	name	of	oldValue	is	used	instead.

NOTE

If	you	pass	a	property	that	has	observers	to	a	function	as	an	in-out	parameter,	the	willSet	and
didSet	observers	are	always	called.	This	is	because	of	the	copy-in	copy-out	memory	model	for	in-
out	parameters:	The	value	is	always	written	back	to	the	property	at	the	end	of	the	function.	For	a
detailed	discussion	of	the	behavior	of	in-out	parameters,	see	In-Out	Parameters.

Property	Wrappers

A	property	wrapper	adds	a	layer	of	separation	between	code	that	manages	how	a
property	is	stored	and	the	code	that	defines	a	property.	For	example,	if	you	have
properties	that	provide	thread-safety	checks	or	store	their	underlying	data	in	a
database,	you	have	to	write	that	code	on	every	property.	When	you	use	a
property	wrapper,	you	write	the	management	code	once	when	you	define	the
wrapper,	and	then	reuse	that	management	code	by	applying	it	to	multiple
properties.

To	define	a	property	wrapper,	you	make	a	structure,	enumeration,	or	class	that
defines	a	wrappedValue	property.	In	the	code	below,	the	TwelveOrLess	structure
ensures	that	the	value	it	wraps	always	contains	a	number	less	than	or	equal	to	12.

If	you	ask	it	to	store	a	larger	number,	it	stores	12	instead.

1 @propertyWrapper

2 struct	TwelveOrLess	{

3 				private	var	number	=	0

4 				var	wrappedValue:	Int	{

5 								get	{	return	number	}

6 								set	{	number	=	min(newValue,	12)	}

7 				}

8 }

The	setter	ensures	that	new	values	are	less	than	12,	and	the	getter	returns	the
stored	value.

NOTE

The	declaration	for	number	in	the	example	above	marks	the	variable	as	private,	which	ensures
number	is	used	only	in	the	implementation	of	TwelveOrLess.	Code	that’s	written	anywhere	else
accesses	the	value	using	the	getter	and	setter	for	wrappedValue,	and	can’t	use	number	directly.
For	information	about	private,	see	Access	Control.

You	apply	a	wrapper	to	a	property	by	writing	the	wrapper’s	name	before	the
property	as	an	attribute.	Here’s	a	structure	that	stores	a	small	rectangle,	using	the
same	(rather	arbitrary)	definition	of	“small”	that’s	implemented	by	the
TwelveOrLess	property	wrapper:

1 struct	SmallRectangle	{

2 				@TwelveOrLess	var	height:	Int

3 				@TwelveOrLess	var	width:	Int

4 }

5

6 var	rectangle	=	SmallRectangle()

7 print(rectangle.height)

8 //	Prints	"0"

9

10 rectangle.height	=	10

11 print(rectangle.height)

12 //	Prints	"10"

13

14 rectangle.height	=	24

15 print(rectangle.height)

16 //	Prints	"12"

The	height	and	width	properties	get	their	initial	values	from	the	definition	of
TwelveOrLess,	which	sets	TwelveOrLess.number	to	zero.	Storing	the	number	10
into	rectangle.height	succeeds	because	it’s	a	small	number.	Trying	to	store	24
actually	stores	a	value	of	12	instead,	because	24	is	too	large	for	the	property
setter’s	rule.

When	you	apply	a	wrapper	to	a	property,	the	compiler	synthesizes	code	that
provides	storage	for	the	wrapper	and	code	that	provides	access	to	the	property
through	the	wrapper.	(The	property	wrapper	is	responsible	for	storing	the
wrapped	value,	so	there’s	no	synthesized	code	for	that.)	You	could	write	code
that	uses	the	behavior	of	a	property	wrapper,	without	taking	advantage	of	the
special	attribute	syntax.	For	example,	here’s	a	version	of	SmallRectangle	from
the	previous	code	listing	that	wraps	its	properties	in	the	TwelveOrLess	structure
explicitly,	instead	of	writing	@TwelveOrLess	as	an	attribute:

1 struct	SmallRectangle	{

2 				private	var	_height	=	TwelveOrLess()

3 				private	var	_width	=	TwelveOrLess()

4 				var	height:	Int	{

5 								get	{	return	_height.wrappedValue	}

6 								set	{	_height.wrappedValue	=	newValue	}

7 				}

8 				var	width:	Int	{

9 								get	{	return	_width.wrappedValue	}

10 								set	{	_width.wrappedValue	=	newValue	}

11 				}

12 }

The	_height	and	_width	properties	store	an	instance	of	the	property	wrapper,
TwelveOrLess.	The	getter	and	setter	for	height	and	width	wrap	access	to	the
wrappedValue	property.

Setting	Initial	Values	for	Wrapped	Properties
The	code	in	the	examples	above	sets	the	initial	value	for	the	wrapped	property
by	giving	number	an	initial	value	in	the	definition	of	TwelveOrLess.	Code	that
uses	this	property	wrapper,	can’t	specify	a	different	initial	value	for	a	property
that’s	wrapped	by	TwelveOrLess—for	example,	the	definition	of	SmallRectangle
can’t	give	height	or	width	initial	values.	To	support	setting	an	initial	value	or
other	customization,	the	property	wrapper	needs	to	add	an	initializer.	Here’s	an
expanded	version	of	TwelveOrLess	called	SmallNumber	that	defines	initializers
that	set	the	wrapped	and	maximum	value:

1 @propertyWrapper

2 struct	SmallNumber	{

3 				private	var	maximum:	Int

4 				private	var	number:	Int

5

6 				var	wrappedValue:	Int	{

7 								get	{	return	number	}

8 								set	{	number	=	min(newValue,	maximum)	}

9 				}

10

11 				init()	{

12 								maximum	=	12

13 								number	=	0

14 				}

15 				init(wrappedValue:	Int)	{

16 								maximum	=	12

17 								number	=	min(wrappedValue,	maximum)

18 				}

19 				init(wrappedValue:	Int,	maximum:	Int)	{

20 								self.maximum	=	maximum

21 								number	=	min(wrappedValue,	maximum)

22 				}

23 }

The	definition	of	SmallNumber	includes	three	initializers—init(),
init(wrappedValue:),	and	init(wrappedValue:maximum:)—which	the	examples
below	use	to	set	the	wrapped	value	and	the	maximum	value.	For	information
about	initialization	and	initializer	syntax,	see	Initialization.

When	you	apply	a	wrapper	to	a	property	and	you	don’t	specify	an	initial	value,
Swift	uses	the	init()	initializer	to	set	up	the	wrapper.	For	example:

1 struct	ZeroRectangle	{

2 				@SmallNumber	var	height:	Int

3 				@SmallNumber	var	width:	Int

4 }

5

6 var	zeroRectangle	=	ZeroRectangle()

7 print(zeroRectangle.height,	zeroRectangle.width)

8 //	Prints	"0	0"

The	instances	of	SmallNumber	that	wrap	height	and	width	are	created	by	calling
SmallNumber().	The	code	inside	that	initializer	sets	the	initial	wrapped	value	and
the	initial	maximum	value,	using	the	default	values	of	zero	and	12.	The	property
wrapper	still	provides	all	of	the	initial	values,	like	the	earlier	example	that	used
TwelveOrLess	in	SmallRectangle.	Unlike	that	example,	SmallNumber	also

supports	writing	those	initial	values	as	part	of	declaring	the	property.

When	you	specify	an	initial	value	for	the	property,	Swift	uses	the
init(wrappedValue:)	initializer	to	set	up	the	wrapper.	For	example:

1 struct	UnitRectangle	{

2 				@SmallNumber	var	height:	Int	=	1

3 				@SmallNumber	var	width:	Int	=	1

4 }

5

6 var	unitRectangle	=	UnitRectangle()

7 print(unitRectangle.height,	unitRectangle.width)

8 //	Prints	"1	1"

When	you	write	=	1	on	a	property	with	a	wrapper,	that’s	translated	into	a	call	to
the	init(wrappedValue:)	initializer.	The	instances	of	SmallNumber	that	wrap
height	and	width	are	created	by	calling	SmallNumber(wrappedValue:	1).	The
initializer	uses	the	wrapped	value	that’s	specified	here,	and	it	uses	the	default
maximum	value	of	12.

When	you	write	arguments	in	parentheses	after	the	custom	attribute,	Swift	uses
the	initializer	that	accepts	those	arguments	to	set	up	the	wrapper.	For	example,	if
you	provide	an	initial	value	and	a	maximum	value,	Swift	uses	the
init(wrappedValue:maximum:)	initializer:

1 struct	NarrowRectangle	{

2 				@SmallNumber(wrappedValue:	2,	maximum:	5)	var	height:	Int

3 				@SmallNumber(wrappedValue:	3,	maximum:	4)	var	width:	Int

4 }

5

6 var	narrowRectangle	=	NarrowRectangle()

7 print(narrowRectangle.height,	narrowRectangle.width)

8 //	Prints	"2	3"

9

10 narrowRectangle.height	=	100

11 narrowRectangle.width	=	100

12 print(narrowRectangle.height,	narrowRectangle.width)

13 //	Prints	"5	4"

The	instance	of	SmallNumber	that	wraps	height	is	created	by	calling
SmallNumber(wrappedValue:	2,	maximum:	5),	and	the	instance	that	wraps	width
is	created	by	calling	SmallNumber(wrappedValue:	3,	maximum:	4).

By	including	arguments	to	the	property	wrapper,	you	can	set	up	the	initial	state
in	the	wrapper	or	pass	other	options	to	the	wrapper	when	it’s	created.	This
syntax	is	the	most	general	way	to	use	a	property	wrapper.	You	can	provide
whatever	arguments	you	need	to	the	attribute,	and	they’re	passed	to	the
initializer.

When	you	include	property	wrapper	arguments,	you	can	also	specify	an	initial
value	using	assignment.	Swift	treats	the	assignment	like	a	wrappedValue
argument	and	uses	the	initializer	that	accepts	the	arguments	you	include.	For
example:

1 struct	MixedRectangle	{

2 				@SmallNumber	var	height:	Int	=	1

3 				@SmallNumber(maximum:	9)	var	width:	Int	=	2

4 }

5

6 var	mixedRectangle	=	MixedRectangle()

7 print(mixedRectangle.height)

8 //	Prints	"1"

9

10 mixedRectangle.height	=	20

11 print(mixedRectangle.height)

12 //	Prints	"12"

The	instance	of	SmallNumber	that	wraps	height	is	created	by	calling
SmallNumber(wrappedValue:	1),	which	uses	the	default	maximum	value	of	12.
The	instance	that	wraps	width	is	created	by	calling	SmallNumber(wrappedValue:
2,	maximum:	9).

Projecting	a	Value	From	a	Property	Wrapper
In	addition	to	the	wrapped	value,	a	property	wrapper	can	expose	additional
functionality	by	defining	a	projected	value—for	example,	a	property	wrapper
that	manages	access	to	a	database	can	expose	a	flushDatabaseConnection()
method	on	its	projected	value.	The	name	of	the	projected	value	is	the	same	as	the
wrapped	value,	except	it	begins	with	a	dollar	sign	($).	Because	your	code	can’t
define	properties	that	start	with	$	the	projected	value	never	interferes	with
properties	you	define.

In	the	SmallNumber	example	above,	if	you	try	to	set	the	property	to	a	number
that’s	too	large,	the	property	wrapper	adjusts	the	number	before	storing	it.	The
code	below	adds	a	projectedValue	property	to	the	SmallNumber	structure	to	keep
track	of	whether	the	property	wrapper	adjusted	the	new	value	for	the	property
before	storing	that	new	value.

1 @propertyWrapper

2 struct	SmallNumber	{

3 				private	var	number	=	0

4 				var	projectedValue	=	false

5 				var	wrappedValue:	Int	{

6 								get	{	return	number	}

7 								set	{

8 												if	newValue	>	12	{

9 																number	=	12

10 																projectedValue	=	true

11 												}	else	{

12 																number	=	newValue

13 																projectedValue	=	false

14 												}

15 								}

16 				}

17 }

18 struct	SomeStructure	{

19 				@SmallNumber	var	someNumber:	Int

20 }

21 var	someStructure	=	SomeStructure()

22

23 someStructure.someNumber	=	4

24 print(someStructure.$someNumber)

25 //	Prints	"false"

26

27 someStructure.someNumber	=	55

28 print(someStructure.$someNumber)

29 //	Prints	"true"

Writing	s.$someNumber	accesses	the	wrapper’s	projected	value.	After	storing	a
small	number	like	four,	the	value	of	s.$someNumber	is	false.	However,	the
projected	value	is	true	after	trying	to	store	a	number	that’s	too	large,	like	55.

A	property	wrapper	can	return	a	value	of	any	type	as	its	projected	value.	In	this
example,	the	property	wrapper	exposes	only	one	piece	of	information—whether
the	number	was	adjusted—so	it	exposes	that	Boolean	value	as	its	projected
value.	A	wrapper	that	needs	to	expose	more	information	can	return	an	instance
of	some	other	data	type,	or	it	can	return	self	to	expose	the	instance	of	the
wrapper	as	its	projected	value.

When	you	access	a	projected	value	from	code	that’s	part	of	the	type,	like	a
property	getter	or	an	instance	method,	you	can	omit	self.	before	the	property
name,	just	like	accessing	other	properties.	The	code	in	the	following	example
refers	to	the	projected	value	of	the	wrapper	around	height	and	width	as	$height

and	$width:

1 enum	Size	{

2 				case	small,	large

3 }

4

5 struct	SizedRectangle	{

6 				@SmallNumber	var	height:	Int

7 				@SmallNumber	var	width:	Int

8

9 				mutating	func	resize(to	size:	Size)	->	Bool	{

10 								switch	size	{

11 								case	.small:

12 												height	=	10

13 												width	=	20

14 								case	.large:

15 												height	=	100

16 												width	=	100

17 								}

18 								return	$height	||	$width

19 				}

20 }

Because	property	wrapper	syntax	is	just	syntactic	sugar	for	a	property	with	a
getter	and	a	setter,	accessing	height	and	width	behaves	the	same	as	accessing
any	other	property.	For	example,	the	code	in	resize(to:)	accesses	height	and
width	using	their	property	wrapper.	If	you	call	resize(to:	.large),	the	switch
case	for	.large	sets	the	rectangle’s	height	and	width	to	100.	The	wrapper
prevents	the	value	of	those	properties	from	being	larger	than	12,	and	it	sets	the
projected	value	to	true,	to	record	the	fact	that	it	adjusted	their	values.	At	the	end
of	resize(to:),	the	return	statement	checks	$height	and	$width	to	determine
whether	the	property	wrapper	adjusted	either	height	or	width.

Global	and	Local	Variables

The	capabilities	described	above	for	computing	and	observing	properties	are	also
available	to	global	variables	and	local	variables.	Global	variables	are	variables
that	are	defined	outside	of	any	function,	method,	closure,	or	type	context.	Local
variables	are	variables	that	are	defined	within	a	function,	method,	or	closure
context.

The	global	and	local	variables	you	have	encountered	in	previous	chapters	have
all	been	stored	variables.	Stored	variables,	like	stored	properties,	provide	storage
for	a	value	of	a	certain	type	and	allow	that	value	to	be	set	and	retrieved.

However,	you	can	also	define	computed	variables	and	define	observers	for
stored	variables,	in	either	a	global	or	local	scope.	Computed	variables	calculate
their	value,	rather	than	storing	it,	and	they	are	written	in	the	same	way	as
computed	properties.

NOTE

Global	constants	and	variables	are	always	computed	lazily,	in	a	similar	manner	to	Lazy	Stored
Properties.	Unlike	lazy	stored	properties,	global	constants	and	variables	do	not	need	to	be	marked
with	the	lazy	modifier.

Local	constants	and	variables	are	never	computed	lazily.

Type	Properties

Instance	properties	are	properties	that	belong	to	an	instance	of	a	particular	type.
Every	time	you	create	a	new	instance	of	that	type,	it	has	its	own	set	of	property
values,	separate	from	any	other	instance.

You	can	also	define	properties	that	belong	to	the	type	itself,	not	to	any	one
instance	of	that	type.	There	will	only	ever	be	one	copy	of	these	properties,	no
matter	how	many	instances	of	that	type	you	create.	These	kinds	of	properties	are
called	type	properties.

Type	properties	are	useful	for	defining	values	that	are	universal	to	all	instances

of	a	particular	type,	such	as	a	constant	property	that	all	instances	can	use	(like	a
static	constant	in	C),	or	a	variable	property	that	stores	a	value	that	is	global	to	all
instances	of	that	type	(like	a	static	variable	in	C).

Stored	type	properties	can	be	variables	or	constants.	Computed	type	properties
are	always	declared	as	variable	properties,	in	the	same	way	as	computed	instance
properties.

NOTE

Unlike	stored	instance	properties,	you	must	always	give	stored	type	properties	a	default	value.	This	is
because	the	type	itself	does	not	have	an	initializer	that	can	assign	a	value	to	a	stored	type	property	at
initialization	time.

Stored	type	properties	are	lazily	initialized	on	their	first	access.	They	are	guaranteed	to	be	initialized
only	once,	even	when	accessed	by	multiple	threads	simultaneously,	and	they	do	not	need	to	be
marked	with	the	lazy	modifier.

Type	Property	Syntax
In	C	and	Objective-C,	you	define	static	constants	and	variables	associated	with	a
type	as	global	static	variables.	In	Swift,	however,	type	properties	are	written	as
part	of	the	type’s	definition,	within	the	type’s	outer	curly	braces,	and	each	type
property	is	explicitly	scoped	to	the	type	it	supports.

You	define	type	properties	with	the	static	keyword.	For	computed	type
properties	for	class	types,	you	can	use	the	class	keyword	instead	to	allow
subclasses	to	override	the	superclass’s	implementation.	The	example	below
shows	the	syntax	for	stored	and	computed	type	properties:

1 struct	SomeStructure	{

2 				static	var	storedTypeProperty	=	"Some	value."

3 				static	var	computedTypeProperty:	Int	{

4 								return	1

5 				}

6 }

7 enum	SomeEnumeration	{

8 				static	var	storedTypeProperty	=	"Some	value."

9 				static	var	computedTypeProperty:	Int	{

10 								return	6

11 				}

12 }

13 class	SomeClass	{

14 				static	var	storedTypeProperty	=	"Some	value."

15 				static	var	computedTypeProperty:	Int	{

16 								return	27

17 				}

18 				class	var	overrideableComputedTypeProperty:	Int	{

19 								return	107

20 				}

21 }

NOTE

The	computed	type	property	examples	above	are	for	read-only	computed	type	properties,	but	you	can
also	define	read-write	computed	type	properties	with	the	same	syntax	as	for	computed	instance
properties.

Querying	and	Setting	Type	Properties
Type	properties	are	queried	and	set	with	dot	syntax,	just	like	instance	properties.
However,	type	properties	are	queried	and	set	on	the	type,	not	on	an	instance	of
that	type.	For	example:

1 print(SomeStructure.storedTypeProperty)

2 //	Prints	"Some	value."

3 SomeStructure.storedTypeProperty	=	"Another	value."

4 print(SomeStructure.storedTypeProperty)

5 //	Prints	"Another	value."

6 print(SomeEnumeration.computedTypeProperty)

7 //	Prints	"6"

8 print(SomeClass.computedTypeProperty)

9 //	Prints	"27"

The	examples	that	follow	use	two	stored	type	properties	as	part	of	a	structure
that	models	an	audio	level	meter	for	a	number	of	audio	channels.	Each	channel
has	an	integer	audio	level	between	0	and	10	inclusive.

The	figure	below	illustrates	how	two	of	these	audio	channels	can	be	combined	to
model	a	stereo	audio	level	meter.	When	a	channel’s	audio	level	is	0,	none	of	the
lights	for	that	channel	are	lit.	When	the	audio	level	is	10,	all	of	the	lights	for	that
channel	are	lit.	In	this	figure,	the	left	channel	has	a	current	level	of	9,	and	the
right	channel	has	a	current	level	of	7:

The	audio	channels	described	above	are	represented	by	instances	of	the
AudioChannel	structure:

1 struct	AudioChannel	{

2 				static	let	thresholdLevel	=	10

3 				static	var	maxInputLevelForAllChannels	=	0

4 				var	currentLevel:	Int	=	0	{

5 								didSet	{

6 												if	currentLevel	>	AudioChannel.thresholdLevel	{

7 																//	cap	the	new	audio	level	to	the	threshold	

level

8 																currentLevel	=	AudioChannel.thresholdLevel

9 												}

10 												if	currentLevel	>	

AudioChannel.maxInputLevelForAllChannels	{

11 																//	store	this	as	the	new	overall	maximum	input	

level

12 																AudioChannel.maxInputLevelForAllChannels	=	

currentLevel

13 												}

14 								}

15 				}

16 }

The	AudioChannel	structure	defines	two	stored	type	properties	to	support	its
functionality.	The	first,	thresholdLevel,	defines	the	maximum	threshold	value	an
audio	level	can	take.	This	is	a	constant	value	of	10	for	all	AudioChannel
instances.	If	an	audio	signal	comes	in	with	a	higher	value	than	10,	it	will	be
capped	to	this	threshold	value	(as	described	below).

The	second	type	property	is	a	variable	stored	property	called
maxInputLevelForAllChannels.	This	keeps	track	of	the	maximum	input	value
that	has	been	received	by	any	AudioChannel	instance.	It	starts	with	an	initial
value	of	0.

The	AudioChannel	structure	also	defines	a	stored	instance	property	called
currentLevel,	which	represents	the	channel’s	current	audio	level	on	a	scale	of	0
to	10.

The	currentLevel	property	has	a	didSet	property	observer	to	check	the	value	of
currentLevel	whenever	it	is	set.	This	observer	performs	two	checks:

If	the	new	value	of	currentLevel	is	greater	than	the	allowed
thresholdLevel,	the	property	observer	caps	currentLevel	to
thresholdLevel.

If	the	new	value	of	currentLevel	(after	any	capping)	is	higher	than	any
value	previously	received	by	any	AudioChannel	instance,	the	property
observer	stores	the	new	currentLevel	value	in	the
maxInputLevelForAllChannels	type	property.

NOTE

In	the	first	of	these	two	checks,	the	didSet	observer	sets	currentLevel	to	a	different	value.
This	does	not,	however,	cause	the	observer	to	be	called	again.

You	can	use	the	AudioChannel	structure	to	create	two	new	audio	channels	called
leftChannel	and	rightChannel,	to	represent	the	audio	levels	of	a	stereo	sound
system:

1 var	leftChannel	=	AudioChannel()

2 var	rightChannel	=	AudioChannel()

If	you	set	the	currentLevel	of	the	left	channel	to	7,	you	can	see	that	the
maxInputLevelForAllChannels	type	property	is	updated	to	equal	7:

1 leftChannel.currentLevel	=	7

2 print(leftChannel.currentLevel)

3 //	Prints	"7"

4 print(AudioChannel.maxInputLevelForAllChannels)

5 //	Prints	"7"

If	you	try	to	set	the	currentLevel	of	the	right	channel	to	11,	you	can	see	that	the
right	channel’s	currentLevel	property	is	capped	to	the	maximum	value	of	10,
and	the	maxInputLevelForAllChannels	type	property	is	updated	to	equal	10:

1 rightChannel.currentLevel	=	11

2 print(rightChannel.currentLevel)

3 //	Prints	"10"

4 print(AudioChannel.maxInputLevelForAllChannels)

5 //	Prints	"10"

Methods

Methods	are	functions	that	are	associated	with	a	particular	type.	Classes,
structures,	and	enumerations	can	all	define	instance	methods,	which	encapsulate
specific	tasks	and	functionality	for	working	with	an	instance	of	a	given	type.
Classes,	structures,	and	enumerations	can	also	define	type	methods,	which	are
associated	with	the	type	itself.	Type	methods	are	similar	to	class	methods	in
Objective-C.

The	fact	that	structures	and	enumerations	can	define	methods	in	Swift	is	a	major
difference	from	C	and	Objective-C.	In	Objective-C,	classes	are	the	only	types
that	can	define	methods.	In	Swift,	you	can	choose	whether	to	define	a	class,
structure,	or	enumeration,	and	still	have	the	flexibility	to	define	methods	on	the
type	you	create.

Instance	Methods

Instance	methods	are	functions	that	belong	to	instances	of	a	particular	class,
structure,	or	enumeration.	They	support	the	functionality	of	those	instances,
either	by	providing	ways	to	access	and	modify	instance	properties,	or	by
providing	functionality	related	to	the	instance’s	purpose.	Instance	methods	have
exactly	the	same	syntax	as	functions,	as	described	in	Functions.

You	write	an	instance	method	within	the	opening	and	closing	braces	of	the	type
it	belongs	to.	An	instance	method	has	implicit	access	to	all	other	instance
methods	and	properties	of	that	type.	An	instance	method	can	be	called	only	on	a
specific	instance	of	the	type	it	belongs	to.	It	cannot	be	called	in	isolation	without
an	existing	instance.

Here’s	an	example	that	defines	a	simple	Counter	class,	which	can	be	used	to
count	the	number	of	times	an	action	occurs:

1 class	Counter	{

2 				var	count	=	0

3 				func	increment()	{

4 								count	+=	1

5 				}

6 				func	increment(by	amount:	Int)	{

7 								count	+=	amount

8 				}

9 				func	reset()	{

10 								count	=	0

11 				}

12 }

The	Counter	class	defines	three	instance	methods:

increment()	increments	the	counter	by	1.

increment(by:	Int)	increments	the	counter	by	a	specified	integer	amount.

reset()	resets	the	counter	to	zero.

The	Counter	class	also	declares	a	variable	property,	count,	to	keep	track	of	the
current	counter	value.

You	call	instance	methods	with	the	same	dot	syntax	as	properties:

1 let	counter	=	Counter()

2 //	the	initial	counter	value	is	0

3 counter.increment()

4 //	the	counter's	value	is	now	1

5 counter.increment(by:	5)

6 //	the	counter's	value	is	now	6

7 counter.reset()

8 //	the	counter's	value	is	now	0

Function	parameters	can	have	both	a	name	(for	use	within	the	function’s	body)
and	an	argument	label	(for	use	when	calling	the	function),	as	described	in
Function	Argument	Labels	and	Parameter	Names.	The	same	is	true	for	method
parameters,	because	methods	are	just	functions	that	are	associated	with	a	type.

The	self	Property
Every	instance	of	a	type	has	an	implicit	property	called	self,	which	is	exactly
equivalent	to	the	instance	itself.	You	use	the	self	property	to	refer	to	the	current
instance	within	its	own	instance	methods.

The	increment()	method	in	the	example	above	could	have	been	written	like	this:

1 func	increment()	{

2 				self.count	+=	1

3 }

In	practice,	you	don’t	need	to	write	self	in	your	code	very	often.	If	you	don’t
explicitly	write	self,	Swift	assumes	that	you	are	referring	to	a	property	or
method	of	the	current	instance	whenever	you	use	a	known	property	or	method
name	within	a	method.	This	assumption	is	demonstrated	by	the	use	of	count
(rather	than	self.count)	inside	the	three	instance	methods	for	Counter.

The	main	exception	to	this	rule	occurs	when	a	parameter	name	for	an	instance
method	has	the	same	name	as	a	property	of	that	instance.	In	this	situation,	the
parameter	name	takes	precedence,	and	it	becomes	necessary	to	refer	to	the
property	in	a	more	qualified	way.	You	use	the	self	property	to	distinguish
between	the	parameter	name	and	the	property	name.

Here,	self	disambiguates	between	a	method	parameter	called	x	and	an	instance
property	that	is	also	called	x:

1 struct	Point	{

2 				var	x	=	0.0,	y	=	0.0

3 				func	isToTheRightOf(x:	Double)	->	Bool	{

4 								return	self.x	>	x

5 				}

6 }

7 let	somePoint	=	Point(x:	4.0,	y:	5.0)

8 if	somePoint.isToTheRightOf(x:	1.0)	{

9 				print("This	point	is	to	the	right	of	the	line	where	x	==	

1.0")

10 }

11 //	Prints	"This	point	is	to	the	right	of	the	line	where	x	==	

1.0"

Without	the	self	prefix,	Swift	would	assume	that	both	uses	of	x	referred	to	the
method	parameter	called	x.

Modifying	Value	Types	from	Within	Instance	Methods
Structures	and	enumerations	are	value	types.	By	default,	the	properties	of	a	value
type	cannot	be	modified	from	within	its	instance	methods.

However,	if	you	need	to	modify	the	properties	of	your	structure	or	enumeration
within	a	particular	method,	you	can	opt	in	to	mutating	behavior	for	that	method.
The	method	can	then	mutate	(that	is,	change)	its	properties	from	within	the
method,	and	any	changes	that	it	makes	are	written	back	to	the	original	structure
when	the	method	ends.	The	method	can	also	assign	a	completely	new	instance	to
its	implicit	self	property,	and	this	new	instance	will	replace	the	existing	one
when	the	method	ends.

You	can	opt	in	to	this	behavior	by	placing	the	mutating	keyword	before	the	func
keyword	for	that	method:

1 struct	Point	{

2 				var	x	=	0.0,	y	=	0.0

3 				mutating	func	moveBy(x	deltaX:	Double,	y	deltaY:	Double)	{

4 								x	+=	deltaX

5 								y	+=	deltaY

6 				}

7 }

8 var	somePoint	=	Point(x:	1.0,	y:	1.0)

9 somePoint.moveBy(x:	2.0,	y:	3.0)

10 print("The	point	is	now	at	(\(somePoint.x),	\(somePoint.y))")

11 //	Prints	"The	point	is	now	at	(3.0,	4.0)"

The	Point	structure	above	defines	a	mutating	moveBy(x:y:)	method,	which
moves	a	Point	instance	by	a	certain	amount.	Instead	of	returning	a	new	point,
this	method	actually	modifies	the	point	on	which	it	is	called.	The	mutating
keyword	is	added	to	its	definition	to	enable	it	to	modify	its	properties.

Note	that	you	cannot	call	a	mutating	method	on	a	constant	of	structure	type,
because	its	properties	cannot	be	changed,	even	if	they	are	variable	properties,	as
described	in	Stored	Properties	of	Constant	Structure	Instances:

1 let	fixedPoint	=	Point(x:	3.0,	y:	3.0)

2 fixedPoint.moveBy(x:	2.0,	y:	3.0)

3 //	this	will	report	an	error

Assigning	to	self	Within	a	Mutating	Method
Mutating	methods	can	assign	an	entirely	new	instance	to	the	implicit	self
property.	The	Point	example	shown	above	could	have	been	written	in	the
following	way	instead:

1 struct	Point	{

2 				var	x	=	0.0,	y	=	0.0

3 				mutating	func	moveBy(x	deltaX:	Double,	y	deltaY:	Double)	{

4 								self	=	Point(x:	x	+	deltaX,	y:	y	+	deltaY)

5 				}

6 }

This	version	of	the	mutating	moveBy(x:y:)	method	creates	a	new	structure	whose
x	and	y	values	are	set	to	the	target	location.	The	end	result	of	calling	this
alternative	version	of	the	method	will	be	exactly	the	same	as	for	calling	the
earlier	version.

Mutating	methods	for	enumerations	can	set	the	implicit	self	parameter	to	be	a
different	case	from	the	same	enumeration:

1 enum	TriStateSwitch	{

2 				case	off,	low,	high

3 				mutating	func	next()	{

4 								switch	self	{

5 								case	.off:

6 												self	=	.low

7 								case	.low:

8 												self	=	.high

9 								case	.high:

10 												self	=	.off

11 								}

12 				}

13 }

14 var	ovenLight	=	TriStateSwitch.low

15 ovenLight.next()

16 //	ovenLight	is	now	equal	to	.high

17 ovenLight.next()

18 //	ovenLight	is	now	equal	to	.off

This	example	defines	an	enumeration	for	a	three-state	switch.	The	switch	cycles
between	three	different	power	states	(off,	low	and	high)	every	time	its	next()

method	is	called.

Type	Methods

Instance	methods,	as	described	above,	are	methods	that	you	call	on	an	instance
of	a	particular	type.	You	can	also	define	methods	that	are	called	on	the	type
itself.	These	kinds	of	methods	are	called	type	methods.	You	indicate	type
methods	by	writing	the	static	keyword	before	the	method’s	func	keyword.
Classes	can	use	the	class	keyword	instead,	to	allow	subclasses	to	override	the
superclass’s	implementation	of	that	method.

NOTE

In	Objective-C,	you	can	define	type-level	methods	only	for	Objective-C	classes.	In	Swift,	you	can
define	type-level	methods	for	all	classes,	structures,	and	enumerations.	Each	type	method	is	explicitly
scoped	to	the	type	it	supports.

Type	methods	are	called	with	dot	syntax,	like	instance	methods.	However,	you
call	type	methods	on	the	type,	not	on	an	instance	of	that	type.	Here’s	how	you
call	a	type	method	on	a	class	called	SomeClass:

1 class	SomeClass	{

2 				class	func	someTypeMethod()	{

3 								//	type	method	implementation	goes	here

4 				}

5 }

6 SomeClass.someTypeMethod()

Within	the	body	of	a	type	method,	the	implicit	self	property	refers	to	the	type
itself,	rather	than	an	instance	of	that	type.	This	means	that	you	can	use	self	to
disambiguate	between	type	properties	and	type	method	parameters,	just	as	you
do	for	instance	properties	and	instance	method	parameters.

More	generally,	any	unqualified	method	and	property	names	that	you	use	within

the	body	of	a	type	method	will	refer	to	other	type-level	methods	and	properties.
A	type	method	can	call	another	type	method	with	the	other	method’s	name,
without	needing	to	prefix	it	with	the	type	name.	Similarly,	type	methods	on
structures	and	enumerations	can	access	type	properties	by	using	the	type
property’s	name	without	a	type	name	prefix.

The	example	below	defines	a	structure	called	LevelTracker,	which	tracks	a
player’s	progress	through	the	different	levels	or	stages	of	a	game.	It	is	a	single-
player	game,	but	can	store	information	for	multiple	players	on	a	single	device.

All	of	the	game’s	levels	(apart	from	level	one)	are	locked	when	the	game	is	first
played.	Every	time	a	player	finishes	a	level,	that	level	is	unlocked	for	all	players
on	the	device.	The	LevelTracker	structure	uses	type	properties	and	methods	to
keep	track	of	which	levels	of	the	game	have	been	unlocked.	It	also	tracks	the
current	level	for	an	individual	player.

1 struct	LevelTracker	{

2 				static	var	highestUnlockedLevel	=	1

3 				var	currentLevel	=	1

4

5 				static	func	unlock(_	level:	Int)	{

6 								if	level	>	highestUnlockedLevel	{	highestUnlockedLevel	

=	level	}

7 				}

8

9 				static	func	isUnlocked(_	level:	Int)	->	Bool	{

10 								return	level	<=	highestUnlockedLevel

11 				}

12

13 				@discardableResult

14 				mutating	func	advance(to	level:	Int)	->	Bool	{

15 								if	LevelTracker.isUnlocked(level)	{

16 												currentLevel	=	level

17 												return	true

18 								}	else	{

19 												return	false

20 								}

21 				}

22 }

The	LevelTracker	structure	keeps	track	of	the	highest	level	that	any	player	has
unlocked.	This	value	is	stored	in	a	type	property	called	highestUnlockedLevel.

LevelTracker	also	defines	two	type	functions	to	work	with	the
highestUnlockedLevel	property.	The	first	is	a	type	function	called	unlock(_:),
which	updates	the	value	of	highestUnlockedLevel	whenever	a	new	level	is
unlocked.	The	second	is	a	convenience	type	function	called	isUnlocked(_:),
which	returns	true	if	a	particular	level	number	is	already	unlocked.	(Note	that
these	type	methods	can	access	the	highestUnlockedLevel	type	property	without
your	needing	to	write	it	as	LevelTracker.highestUnlockedLevel.)

In	addition	to	its	type	property	and	type	methods,	LevelTracker	tracks	an
individual	player’s	progress	through	the	game.	It	uses	an	instance	property	called
currentLevel	to	track	the	level	that	a	player	is	currently	playing.

To	help	manage	the	currentLevel	property,	LevelTracker	defines	an	instance
method	called	advance(to:).	Before	updating	currentLevel,	this	method	checks
whether	the	requested	new	level	is	already	unlocked.	The	advance(to:)	method
returns	a	Boolean	value	to	indicate	whether	or	not	it	was	actually	able	to	set
currentLevel.	Because	it’s	not	necessarily	a	mistake	for	code	that	calls	the
advance(to:)	method	to	ignore	the	return	value,	this	function	is	marked	with	the
@discardableResult	attribute.	For	more	information	about	this	attribute,	see
Attributes.

The	LevelTracker	structure	is	used	with	the	Player	class,	shown	below,	to	track
and	update	the	progress	of	an	individual	player:

1 class	Player	{

2 				var	tracker	=	LevelTracker()

3 				let	playerName:	String

4 				func	complete(level:	Int)	{

5 								LevelTracker.unlock(level	+	1)

6 								tracker.advance(to:	level	+	1)

7 				}

8 				init(name:	String)	{

9 								playerName	=	name

10 				}

11 }

The	Player	class	creates	a	new	instance	of	LevelTracker	to	track	that	player’s
progress.	It	also	provides	a	method	called	complete(level:),	which	is	called
whenever	a	player	completes	a	particular	level.	This	method	unlocks	the	next
level	for	all	players	and	updates	the	player’s	progress	to	move	them	to	the	next
level.	(The	Boolean	return	value	of	advance(to:)	is	ignored,	because	the	level	is
known	to	have	been	unlocked	by	the	call	to	LevelTracker.unlock(_:)	on	the
previous	line.)

You	can	create	an	instance	of	the	Player	class	for	a	new	player,	and	see	what
happens	when	the	player	completes	level	one:

1 var	player	=	Player(name:	"Argyrios")

2 player.complete(level:	1)

3 print("highest	unlocked	level	is	now	\

(LevelTracker.highestUnlockedLevel)")

4 //	Prints	"highest	unlocked	level	is	now	2"

If	you	create	a	second	player,	whom	you	try	to	move	to	a	level	that	is	not	yet
unlocked	by	any	player	in	the	game,	the	attempt	to	set	the	player’s	current	level
fails:

1 player	=	Player(name:	"Beto")

2 if	player.tracker.advance(to:	6)	{

3 				print("player	is	now	on	level	6")

4 }	else	{

5 				print("level	6	has	not	yet	been	unlocked")

6 }

7 //	Prints	"level	6	has	not	yet	been	unlocked"

Subscripts

Classes,	structures,	and	enumerations	can	define	subscripts,	which	are	shortcuts
for	accessing	the	member	elements	of	a	collection,	list,	or	sequence.	You	use
subscripts	to	set	and	retrieve	values	by	index	without	needing	separate	methods
for	setting	and	retrieval.	For	example,	you	access	elements	in	an	Array	instance
as	someArray[index]	and	elements	in	a	Dictionary	instance	as
someDictionary[key].

You	can	define	multiple	subscripts	for	a	single	type,	and	the	appropriate
subscript	overload	to	use	is	selected	based	on	the	type	of	index	value	you	pass	to
the	subscript.	Subscripts	are	not	limited	to	a	single	dimension,	and	you	can
define	subscripts	with	multiple	input	parameters	to	suit	your	custom	type’s
needs.

Subscript	Syntax

Subscripts	enable	you	to	query	instances	of	a	type	by	writing	one	or	more	values
in	square	brackets	after	the	instance	name.	Their	syntax	is	similar	to	both
instance	method	syntax	and	computed	property	syntax.	You	write	subscript
definitions	with	the	subscript	keyword,	and	specify	one	or	more	input
parameters	and	a	return	type,	in	the	same	way	as	instance	methods.	Unlike
instance	methods,	subscripts	can	be	read-write	or	read-only.	This	behavior	is
communicated	by	a	getter	and	setter	in	the	same	way	as	for	computed	properties:

1 subscript(index:	Int)	->	Int	{

2 				get	{

3 								//	Return	an	appropriate	subscript	value	here.

4 				}

5 				set(newValue)	{

6 								//	Perform	a	suitable	setting	action	here.

7 				}

8 }

The	type	of	newValue	is	the	same	as	the	return	value	of	the	subscript.	As	with
computed	properties,	you	can	choose	not	to	specify	the	setter’s	(newValue)
parameter.	A	default	parameter	called	newValue	is	provided	to	your	setter	if	you
do	not	provide	one	yourself.

As	with	read-only	computed	properties,	you	can	simplify	the	declaration	of	a
read-only	subscript	by	removing	the	get	keyword	and	its	braces:

1 subscript(index:	Int)	->	Int	{

2 				//	Return	an	appropriate	subscript	value	here.

3 }

Here’s	an	example	of	a	read-only	subscript	implementation,	which	defines	a
TimesTable	structure	to	represent	an	n-times-table	of	integers:

1 struct	TimesTable	{

2 				let	multiplier:	Int

3 				subscript(index:	Int)	->	Int	{

4 								return	multiplier	*	index

5 				}

6 }

7 let	threeTimesTable	=	TimesTable(multiplier:	3)

8 print("six	times	three	is	\(threeTimesTable[6])")

9 //	Prints	"six	times	three	is	18"

In	this	example,	a	new	instance	of	TimesTable	is	created	to	represent	the	three-
times-table.	This	is	indicated	by	passing	a	value	of	3	to	the	structure’s
initializer	as	the	value	to	use	for	the	instance’s	multiplier	parameter.

You	can	query	the	threeTimesTable	instance	by	calling	its	subscript,	as	shown	in
the	call	to	threeTimesTable[6].	This	requests	the	sixth	entry	in	the	three-times-

table,	which	returns	a	value	of	18,	or	3	times	6.

NOTE

An	n-times-table	is	based	on	a	fixed	mathematical	rule.	It	is	not	appropriate	to	set
threeTimesTable[someIndex]	to	a	new	value,	and	so	the	subscript	for	TimesTable	is
defined	as	a	read-only	subscript.

Subscript	Usage

The	exact	meaning	of	“subscript”	depends	on	the	context	in	which	it	is	used.
Subscripts	are	typically	used	as	a	shortcut	for	accessing	the	member	elements	in
a	collection,	list,	or	sequence.	You	are	free	to	implement	subscripts	in	the	most
appropriate	way	for	your	particular	class	or	structure’s	functionality.

For	example,	Swift’s	Dictionary	type	implements	a	subscript	to	set	and	retrieve
the	values	stored	in	a	Dictionary	instance.	You	can	set	a	value	in	a	dictionary	by
providing	a	key	of	the	dictionary’s	key	type	within	subscript	brackets,	and
assigning	a	value	of	the	dictionary’s	value	type	to	the	subscript:

1 var	numberOfLegs	=	["spider":	8,	"ant":	6,	"cat":	4]

2 numberOfLegs["bird"]	=	2

The	example	above	defines	a	variable	called	numberOfLegs	and	initializes	it	with
a	dictionary	literal	containing	three	key-value	pairs.	The	type	of	the
numberOfLegs	dictionary	is	inferred	to	be	[String:	Int].	After	creating	the
dictionary,	this	example	uses	subscript	assignment	to	add	a	String	key	of	"bird"
and	an	Int	value	of	2	to	the	dictionary.

For	more	information	about	Dictionary	subscripting,	see	Accessing	and
Modifying	a	Dictionary.

NOTE

Swift’s	Dictionary	type	implements	its	key-value	subscripting	as	a	subscript	that	takes	and
returns	an	optional	type.	For	the	numberOfLegs	dictionary	above,	the	key-value	subscript	takes
and	returns	a	value	of	type	Int?,	or	“optional	int”.	The	Dictionary	type	uses	an	optional

subscript	type	to	model	the	fact	that	not	every	key	will	have	a	value,	and	to	give	a	way	to	delete	a
value	for	a	key	by	assigning	a	nil	value	for	that	key.

Subscript	Options

Subscripts	can	take	any	number	of	input	parameters,	and	these	input	parameters
can	be	of	any	type.	Subscripts	can	also	return	any	type.	Subscripts	can	use
variadic	parameters,	but	they	can’t	use	in-out	parameters	or	provide	default
parameter	values.

A	class	or	structure	can	provide	as	many	subscript	implementations	as	it	needs,
and	the	appropriate	subscript	to	be	used	will	be	inferred	based	on	the	types	of	the
value	or	values	that	are	contained	within	the	subscript	brackets	at	the	point	that
the	subscript	is	used.	This	definition	of	multiple	subscripts	is	known	as	subscript
overloading.

While	it	is	most	common	for	a	subscript	to	take	a	single	parameter,	you	can	also
define	a	subscript	with	multiple	parameters	if	it	is	appropriate	for	your	type.	The
following	example	defines	a	Matrix	structure,	which	represents	a	two-
dimensional	matrix	of	Double	values.	The	Matrix	structure’s	subscript	takes	two
integer	parameters:

1 struct	Matrix	{

2 				let	rows:	Int,	columns:	Int

3 				var	grid:	[Double]

4 				init(rows:	Int,	columns:	Int)	{

5 								self.rows	=	rows

6 								self.columns	=	columns

7 								grid	=	Array(repeating:	0.0,	count:	rows	*	columns)

8 				}

9 				func	indexIsValid(row:	Int,	column:	Int)	->	Bool	{

10 								return	row	>=	0	&&	row	<	rows	&&	column	>=	0	&&	column	

<	columns

11 				}

12 				subscript(row:	Int,	column:	Int)	->	Double	{

13 								get	{

14 												assert(indexIsValid(row:	row,	column:	column),	

"Index	out	of	range")

15 												return	grid[(row	*	columns)	+	column]

16 								}

17 								set	{

18 												assert(indexIsValid(row:	row,	column:	column),	

"Index	out	of	range")

19 												grid[(row	*	columns)	+	column]	=	newValue

20 								}

21 				}

22 }

Matrix	provides	an	initializer	that	takes	two	parameters	called	rows	and	columns,
and	creates	an	array	that	is	large	enough	to	store	rows	*	columns	values	of	type
Double.	Each	position	in	the	matrix	is	given	an	initial	value	of	0.0.	To	achieve
this,	the	array’s	size,	and	an	initial	cell	value	of	0.0,	are	passed	to	an	array
initializer	that	creates	and	initializes	a	new	array	of	the	correct	size.	This
initializer	is	described	in	more	detail	in	Creating	an	Array	with	a	Default	Value.

You	can	construct	a	new	Matrix	instance	by	passing	an	appropriate	row	and
column	count	to	its	initializer:

	 var	matrix	=	Matrix(rows:	2,	columns:	2)

The	example	above	creates	a	new	Matrix	instance	with	two	rows	and	two
columns.	The	grid	array	for	this	Matrix	instance	is	effectively	a	flattened	version
of	the	matrix,	as	read	from	top	left	to	bottom	right:

Values	in	the	matrix	can	be	set	by	passing	row	and	column	values	into	the
subscript,	separated	by	a	comma:

1 matrix[0,	1]	=	1.5

2 matrix[1,	0]	=	3.2

These	two	statements	call	the	subscript’s	setter	to	set	a	value	of	1.5	in	the	top
right	position	of	the	matrix	(where	row	is	0	and	column	is	1),	and	3.2	in	the
bottom	left	position	(where	row	is	1	and	column	is	0):

The	Matrix	subscript’s	getter	and	setter	both	contain	an	assertion	to	check	that
the	subscript’s	row	and	column	values	are	valid.	To	assist	with	these	assertions,
Matrix	includes	a	convenience	method	called	indexIsValid(row:column:),
which	checks	whether	the	requested	row	and	column	are	inside	the	bounds	of	the
matrix:

1 func	indexIsValid(row:	Int,	column:	Int)	->	Bool	{

2 				return	row	>=	0	&&	row	<	rows	&&	column	>=	0	&&	column	<	

columns

3 }

An	assertion	is	triggered	if	you	try	to	access	a	subscript	that	is	outside	of	the
matrix	bounds:

1 let	someValue	=	matrix[2,	2]

2 //	This	triggers	an	assert,	because	[2,	2]	is	outside	of	the	

matrix	bounds.

Type	Subscripts

Instance	subscripts,	as	described	above,	are	subscripts	that	you	call	on	an
instance	of	a	particular	type.	You	can	also	define	subscripts	that	are	called	on	the
type	itself.	This	kind	of	subscript	is	called	a	type	subscript.	You	indicate	a	type
subscript	by	writing	the	static	keyword	before	the	subscript	keyword.	Classes
can	use	the	class	keyword	instead,	to	allow	subclasses	to	override	the
superclass’s	implementation	of	that	subscript.	The	example	below	shows	how
you	define	and	call	a	type	subscript:

1 enum	Planet:	Int	{

2 				case	mercury	=	1,	venus,	earth,	mars,	jupiter,	saturn,	

uranus,	neptune

3 				static	subscript(n:	Int)	->	Planet	{

4 								return	Planet(rawValue:	n)!

5 				}

6 }

7 let	mars	=	Planet[4]

8 print(mars)

Inheritance

A	class	can	inherit	methods,	properties,	and	other	characteristics	from	another
class.	When	one	class	inherits	from	another,	the	inheriting	class	is	known	as	a
subclass,	and	the	class	it	inherits	from	is	known	as	its	superclass.	Inheritance	is	a
fundamental	behavior	that	differentiates	classes	from	other	types	in	Swift.

Classes	in	Swift	can	call	and	access	methods,	properties,	and	subscripts
belonging	to	their	superclass	and	can	provide	their	own	overriding	versions	of
those	methods,	properties,	and	subscripts	to	refine	or	modify	their	behavior.
Swift	helps	to	ensure	your	overrides	are	correct	by	checking	that	the	override
definition	has	a	matching	superclass	definition.

Classes	can	also	add	property	observers	to	inherited	properties	in	order	to	be
notified	when	the	value	of	a	property	changes.	Property	observers	can	be	added
to	any	property,	regardless	of	whether	it	was	originally	defined	as	a	stored	or
computed	property.

Defining	a	Base	Class

Any	class	that	does	not	inherit	from	another	class	is	known	as	a	base	class.

NOTE

Swift	classes	do	not	inherit	from	a	universal	base	class.	Classes	you	define	without	specifying	a
superclass	automatically	become	base	classes	for	you	to	build	upon.

The	example	below	defines	a	base	class	called	Vehicle.	This	base	class	defines	a
stored	property	called	currentSpeed,	with	a	default	value	of	0.0	(inferring	a
property	type	of	Double).	The	currentSpeed	property’s	value	is	used	by	a	read-
only	computed	String	property	called	description	to	create	a	description	of	the
vehicle.

The	Vehicle	base	class	also	defines	a	method	called	makeNoise.	This	method

does	not	actually	do	anything	for	a	base	Vehicle	instance,	but	will	be	customized
by	subclasses	of	Vehicle	later	on:

1 class	Vehicle	{

2 				var	currentSpeed	=	0.0

3 				var	description:	String	{

4 								return	"traveling	at	\(currentSpeed)	miles	per	hour"

5 				}

6 				func	makeNoise()	{

7 								//	do	nothing	-	an	arbitrary	vehicle	doesn't	

necessarily	make	a	noise

8 				}

9 }

You	create	a	new	instance	of	Vehicle	with	initializer	syntax,	which	is	written	as
a	type	name	followed	by	empty	parentheses:

	 let	someVehicle	=	Vehicle()

Having	created	a	new	Vehicle	instance,	you	can	access	its	description	property
to	print	a	human-readable	description	of	the	vehicle’s	current	speed:

1 print("Vehicle:	\(someVehicle.description)")

2 //	Vehicle:	traveling	at	0.0	miles	per	hour

The	Vehicle	class	defines	common	characteristics	for	an	arbitrary	vehicle,	but	is
not	much	use	in	itself.	To	make	it	more	useful,	you	need	to	refine	it	to	describe
more	specific	kinds	of	vehicles.

Subclassing

Subclassing	is	the	act	of	basing	a	new	class	on	an	existing	class.	The	subclass

inherits	characteristics	from	the	existing	class,	which	you	can	then	refine.	You
can	also	add	new	characteristics	to	the	subclass.

To	indicate	that	a	subclass	has	a	superclass,	write	the	subclass	name	before	the
superclass	name,	separated	by	a	colon:

1 class	SomeSubclass:	SomeSuperclass	{

2 				//	subclass	definition	goes	here

3 }

The	following	example	defines	a	subclass	called	Bicycle,	with	a	superclass	of
Vehicle:

1 class	Bicycle:	Vehicle	{

2 				var	hasBasket	=	false

3 }

The	new	Bicycle	class	automatically	gains	all	of	the	characteristics	of	Vehicle,
such	as	its	currentSpeed	and	description	properties	and	its	makeNoise()	method.

In	addition	to	the	characteristics	it	inherits,	the	Bicycle	class	defines	a	new
stored	property,	hasBasket,	with	a	default	value	of	false	(inferring	a	type	of	Bool
for	the	property).

By	default,	any	new	Bicycle	instance	you	create	will	not	have	a	basket.	You	can
set	the	hasBasket	property	to	true	for	a	particular	Bicycle	instance	after	that
instance	is	created:

1 let	bicycle	=	Bicycle()

2 bicycle.hasBasket	=	true

You	can	also	modify	the	inherited	currentSpeed	property	of	a	Bicycle	instance,
and	query	the	instance’s	inherited	description	property:

1 bicycle.currentSpeed	=	15.0

2 print("Bicycle:	\(bicycle.description)")

3 //	Bicycle:	traveling	at	15.0	miles	per	hour

Subclasses	can	themselves	be	subclassed.	The	next	example	creates	a	subclass	of
Bicycle	for	a	two-seater	bicycle	known	as	a	“tandem”:

1 class	Tandem:	Bicycle	{

2 				var	currentNumberOfPassengers	=	0

3 }

Tandem	inherits	all	of	the	properties	and	methods	from	Bicycle,	which	in	turn
inherits	all	of	the	properties	and	methods	from	Vehicle.	The	Tandem	subclass	also
adds	a	new	stored	property	called	currentNumberOfPassengers,	with	a	default
value	of	0.

If	you	create	an	instance	of	Tandem,	you	can	work	with	any	of	its	new	and
inherited	properties,	and	query	the	read-only	description	property	it	inherits
from	Vehicle:

1 let	tandem	=	Tandem()

2 tandem.hasBasket	=	true

3 tandem.currentNumberOfPassengers	=	2

4 tandem.currentSpeed	=	22.0

5 print("Tandem:	\(tandem.description)")

6 //	Tandem:	traveling	at	22.0	miles	per	hour

Overriding

A	subclass	can	provide	its	own	custom	implementation	of	an	instance	method,
type	method,	instance	property,	type	property,	or	subscript	that	it	would
otherwise	inherit	from	a	superclass.	This	is	known	as	overriding.

To	override	a	characteristic	that	would	otherwise	be	inherited,	you	prefix	your
overriding	definition	with	the	override	keyword.	Doing	so	clarifies	that	you
intend	to	provide	an	override	and	have	not	provided	a	matching	definition	by
mistake.	Overriding	by	accident	can	cause	unexpected	behavior,	and	any
overrides	without	the	override	keyword	are	diagnosed	as	an	error	when	your
code	is	compiled.

The	override	keyword	also	prompts	the	Swift	compiler	to	check	that	your
overriding	class’s	superclass	(or	one	of	its	parents)	has	a	declaration	that	matches
the	one	you	provided	for	the	override.	This	check	ensures	that	your	overriding
definition	is	correct.

Accessing	Superclass	Methods,	Properties,	and	Subscripts
When	you	provide	a	method,	property,	or	subscript	override	for	a	subclass,	it	is
sometimes	useful	to	use	the	existing	superclass	implementation	as	part	of	your
override.	For	example,	you	can	refine	the	behavior	of	that	existing
implementation,	or	store	a	modified	value	in	an	existing	inherited	variable.

Where	this	is	appropriate,	you	access	the	superclass	version	of	a	method,
property,	or	subscript	by	using	the	super	prefix:

An	overridden	method	named	someMethod()	can	call	the	superclass	version
of	someMethod()	by	calling	super.someMethod()	within	the	overriding
method	implementation.

An	overridden	property	called	someProperty	can	access	the	superclass
version	of	someProperty	as	super.someProperty	within	the	overriding	getter
or	setter	implementation.

An	overridden	subscript	for	someIndex	can	access	the	superclass	version	of
the	same	subscript	as	super[someIndex]	from	within	the	overriding
subscript	implementation.

Overriding	Methods

You	can	override	an	inherited	instance	or	type	method	to	provide	a	tailored	or
alternative	implementation	of	the	method	within	your	subclass.

The	following	example	defines	a	new	subclass	of	Vehicle	called	Train,	which
overrides	the	makeNoise()	method	that	Train	inherits	from	Vehicle:

1 class	Train:	Vehicle	{

2 				override	func	makeNoise()	{

3 								print("Choo	Choo")

4 				}

5 }

If	you	create	a	new	instance	of	Train	and	call	its	makeNoise()	method,	you	can
see	that	the	Train	subclass	version	of	the	method	is	called:

1 let	train	=	Train()

2 train.makeNoise()

3 //	Prints	"Choo	Choo"

Overriding	Properties
You	can	override	an	inherited	instance	or	type	property	to	provide	your	own
custom	getter	and	setter	for	that	property,	or	to	add	property	observers	to	enable
the	overriding	property	to	observe	when	the	underlying	property	value	changes.

Overriding	Property	Getters	and	Setters

You	can	provide	a	custom	getter	(and	setter,	if	appropriate)	to	override	any
inherited	property,	regardless	of	whether	the	inherited	property	is	implemented
as	a	stored	or	computed	property	at	source.	The	stored	or	computed	nature	of	an
inherited	property	is	not	known	by	a	subclass—it	only	knows	that	the	inherited
property	has	a	certain	name	and	type.	You	must	always	state	both	the	name	and
the	type	of	the	property	you	are	overriding,	to	enable	the	compiler	to	check	that
your	override	matches	a	superclass	property	with	the	same	name	and	type.

You	can	present	an	inherited	read-only	property	as	a	read-write	property	by
providing	both	a	getter	and	a	setter	in	your	subclass	property	override.	You
cannot,	however,	present	an	inherited	read-write	property	as	a	read-only
property.

NOTE

If	you	provide	a	setter	as	part	of	a	property	override,	you	must	also	provide	a	getter	for	that	override.
If	you	don’t	want	to	modify	the	inherited	property’s	value	within	the	overriding	getter,	you	can
simply	pass	through	the	inherited	value	by	returning	super.someProperty	from	the	getter,
where	someProperty	is	the	name	of	the	property	you	are	overriding.

The	following	example	defines	a	new	class	called	Car,	which	is	a	subclass	of
Vehicle.	The	Car	class	introduces	a	new	stored	property	called	gear,	with	a
default	integer	value	of	1.	The	Car	class	also	overrides	the	description	property
it	inherits	from	Vehicle,	to	provide	a	custom	description	that	includes	the	current
gear:

1 class	Car:	Vehicle	{

2 				var	gear	=	1

3 				override	var	description:	String	{

4 								return	super.description	+	"	in	gear	\(gear)"

5 				}

6 }

The	override	of	the	description	property	starts	by	calling	super.description,
which	returns	the	Vehicle	class’s	description	property.	The	Car	class’s	version
of	description	then	adds	some	extra	text	onto	the	end	of	this	description	to
provide	information	about	the	current	gear.

If	you	create	an	instance	of	the	Car	class	and	set	its	gear	and	currentSpeed
properties,	you	can	see	that	its	description	property	returns	the	tailored
description	defined	within	the	Car	class:

1 let	car	=	Car()

2 car.currentSpeed	=	25.0

3 car.gear	=	3

4 print("Car:	\(car.description)")

5 //	Car:	traveling	at	25.0	miles	per	hour	in	gear	3

Overriding	Property	Observers

You	can	use	property	overriding	to	add	property	observers	to	an	inherited
property.	This	enables	you	to	be	notified	when	the	value	of	an	inherited	property
changes,	regardless	of	how	that	property	was	originally	implemented.	For	more
information	on	property	observers,	see	Property	Observers.

NOTE

You	cannot	add	property	observers	to	inherited	constant	stored	properties	or	inherited	read-only
computed	properties.	The	value	of	these	properties	cannot	be	set,	and	so	it	is	not	appropriate	to
provide	a	willSet	or	didSet	implementation	as	part	of	an	override.

Note	also	that	you	cannot	provide	both	an	overriding	setter	and	an	overriding	property	observer	for
the	same	property.	If	you	want	to	observe	changes	to	a	property’s	value,	and	you	are	already
providing	a	custom	setter	for	that	property,	you	can	simply	observe	any	value	changes	from	within
the	custom	setter.

The	following	example	defines	a	new	class	called	AutomaticCar,	which	is	a
subclass	of	Car.	The	AutomaticCar	class	represents	a	car	with	an	automatic
gearbox,	which	automatically	selects	an	appropriate	gear	to	use	based	on	the
current	speed:

1 class	AutomaticCar:	Car	{

2 				override	var	currentSpeed:	Double	{

3 								didSet	{

4 												gear	=	Int(currentSpeed	/	10.0)	+	1

5 								}

6 				}

7 }

Whenever	you	set	the	currentSpeed	property	of	an	AutomaticCar	instance,	the
property’s	didSet	observer	sets	the	instance’s	gear	property	to	an	appropriate

choice	of	gear	for	the	new	speed.	Specifically,	the	property	observer	chooses	a
gear	that	is	the	new	currentSpeed	value	divided	by	10,	rounded	down	to	the
nearest	integer,	plus	1.	A	speed	of	35.0	produces	a	gear	of	4:

1 let	automatic	=	AutomaticCar()

2 automatic.currentSpeed	=	35.0

3 print("AutomaticCar:	\(automatic.description)")

4 //	AutomaticCar:	traveling	at	35.0	miles	per	hour	in	gear	4

Preventing	Overrides

You	can	prevent	a	method,	property,	or	subscript	from	being	overridden	by
marking	it	as	final.	Do	this	by	writing	the	final	modifier	before	the	method,
property,	or	subscript’s	introducer	keyword	(such	as	final	var,	final	func,
final	class	func,	and	final	subscript).

Any	attempt	to	override	a	final	method,	property,	or	subscript	in	a	subclass	is
reported	as	a	compile-time	error.	Methods,	properties,	or	subscripts	that	you	add
to	a	class	in	an	extension	can	also	be	marked	as	final	within	the	extension’s
definition.

You	can	mark	an	entire	class	as	final	by	writing	the	final	modifier	before	the
class	keyword	in	its	class	definition	(final	class).	Any	attempt	to	subclass	a
final	class	is	reported	as	a	compile-time	error.

Initialization

Initialization	is	the	process	of	preparing	an	instance	of	a	class,	structure,	or
enumeration	for	use.	This	process	involves	setting	an	initial	value	for	each	stored
property	on	that	instance	and	performing	any	other	setup	or	initialization	that	is
required	before	the	new	instance	is	ready	for	use.

You	implement	this	initialization	process	by	defining	initializers,	which	are	like
special	methods	that	can	be	called	to	create	a	new	instance	of	a	particular	type.
Unlike	Objective-C	initializers,	Swift	initializers	do	not	return	a	value.	Their
primary	role	is	to	ensure	that	new	instances	of	a	type	are	correctly	initialized
before	they	are	used	for	the	first	time.

Instances	of	class	types	can	also	implement	a	deinitializer,	which	performs	any
custom	cleanup	just	before	an	instance	of	that	class	is	deallocated.	For	more
information	about	deinitializers,	see	Deinitialization.

Setting	Initial	Values	for	Stored	Properties

Classes	and	structures	must	set	all	of	their	stored	properties	to	an	appropriate
initial	value	by	the	time	an	instance	of	that	class	or	structure	is	created.	Stored
properties	cannot	be	left	in	an	indeterminate	state.

You	can	set	an	initial	value	for	a	stored	property	within	an	initializer,	or	by
assigning	a	default	property	value	as	part	of	the	property’s	definition.	These
actions	are	described	in	the	following	sections.

NOTE

When	you	assign	a	default	value	to	a	stored	property,	or	set	its	initial	value	within	an	initializer,	the
value	of	that	property	is	set	directly,	without	calling	any	property	observers.

Initializers
Initializers	are	called	to	create	a	new	instance	of	a	particular	type.	In	its	simplest
form,	an	initializer	is	like	an	instance	method	with	no	parameters,	written	using
the	init	keyword:

1 init()	{

2 				//	perform	some	initialization	here

3 }

The	example	below	defines	a	new	structure	called	Fahrenheit	to	store
temperatures	expressed	in	the	Fahrenheit	scale.	The	Fahrenheit	structure	has	one
stored	property,	temperature,	which	is	of	type	Double:

1 struct	Fahrenheit	{

2 				var	temperature:	Double

3 				init()	{

4 								temperature	=	32.0

5 				}

6 }

7 var	f	=	Fahrenheit()

8 print("The	default	temperature	is	\(f.temperature)°	

Fahrenheit")

9 //	Prints	"The	default	temperature	is	32.0°	Fahrenheit"

The	structure	defines	a	single	initializer,	init,	with	no	parameters,	which
initializes	the	stored	temperature	with	a	value	of	32.0	(the	freezing	point	of
water	in	degrees	Fahrenheit).

Default	Property	Values
You	can	set	the	initial	value	of	a	stored	property	from	within	an	initializer,	as
shown	above.	Alternatively,	specify	a	default	property	value	as	part	of	the
property’s	declaration.	You	specify	a	default	property	value	by	assigning	an

initial	value	to	the	property	when	it	is	defined.

NOTE

If	a	property	always	takes	the	same	initial	value,	provide	a	default	value	rather	than	setting	a	value
within	an	initializer.	The	end	result	is	the	same,	but	the	default	value	ties	the	property’s	initialization
more	closely	to	its	declaration.	It	makes	for	shorter,	clearer	initializers	and	enables	you	to	infer	the
type	of	the	property	from	its	default	value.	The	default	value	also	makes	it	easier	for	you	to	take
advantage	of	default	initializers	and	initializer	inheritance,	as	described	later	in	this	chapter.

You	can	write	the	Fahrenheit	structure	from	above	in	a	simpler	form	by
providing	a	default	value	for	its	temperature	property	at	the	point	that	the
property	is	declared:

1 struct	Fahrenheit	{

2 				var	temperature	=	32.0

3 }

Customizing	Initialization

You	can	customize	the	initialization	process	with	input	parameters	and	optional
property	types,	or	by	assigning	constant	properties	during	initialization,	as
described	in	the	following	sections.

Initialization	Parameters
You	can	provide	initialization	parameters	as	part	of	an	initializer’s	definition,	to
define	the	types	and	names	of	values	that	customize	the	initialization	process.
Initialization	parameters	have	the	same	capabilities	and	syntax	as	function	and
method	parameters.

The	following	example	defines	a	structure	called	Celsius,	which	stores
temperatures	expressed	in	degrees	Celsius.	The	Celsius	structure	implements
two	custom	initializers	called	init(fromFahrenheit:)	and	init(fromKelvin:),
which	initialize	a	new	instance	of	the	structure	with	a	value	from	a	different

temperature	scale:

1 struct	Celsius	{

2 				var	temperatureInCelsius:	Double

3 				init(fromFahrenheit	fahrenheit:	Double)	{

4 								temperatureInCelsius	=	(fahrenheit	-	32.0)	/	1.8

5 				}

6 				init(fromKelvin	kelvin:	Double)	{

7 								temperatureInCelsius	=	kelvin	-	273.15

8 				}

9 }

10 let	boilingPointOfWater	=	Celsius(fromFahrenheit:	212.0)

11 //	boilingPointOfWater.temperatureInCelsius	is	100.0

12 let	freezingPointOfWater	=	Celsius(fromKelvin:	273.15)

13 //	freezingPointOfWater.temperatureInCelsius	is	0.0

The	first	initializer	has	a	single	initialization	parameter	with	an	argument	label	of
fromFahrenheit	and	a	parameter	name	of	fahrenheit.	The	second	initializer	has
a	single	initialization	parameter	with	an	argument	label	of	fromKelvin	and	a
parameter	name	of	kelvin.	Both	initializers	convert	their	single	argument	into
the	corresponding	Celsius	value	and	store	this	value	in	a	property	called
temperatureInCelsius.

Parameter	Names	and	Argument	Labels
As	with	function	and	method	parameters,	initialization	parameters	can	have	both
a	parameter	name	for	use	within	the	initializer’s	body	and	an	argument	label	for
use	when	calling	the	initializer.

However,	initializers	do	not	have	an	identifying	function	name	before	their
parentheses	in	the	way	that	functions	and	methods	do.	Therefore,	the	names	and
types	of	an	initializer’s	parameters	play	a	particularly	important	role	in
identifying	which	initializer	should	be	called.	Because	of	this,	Swift	provides	an

automatic	argument	label	for	every	parameter	in	an	initializer	if	you	don’t
provide	one.

The	following	example	defines	a	structure	called	Color,	with	three	constant
properties	called	red,	green,	and	blue.	These	properties	store	a	value	between
0.0	and	1.0	to	indicate	the	amount	of	red,	green,	and	blue	in	the	color.

Color	provides	an	initializer	with	three	appropriately	named	parameters	of	type
Double	for	its	red,	green,	and	blue	components.	Color	also	provides	a	second
initializer	with	a	single	white	parameter,	which	is	used	to	provide	the	same	value
for	all	three	color	components.

1 struct	Color	{

2 				let	red,	green,	blue:	Double

3 				init(red:	Double,	green:	Double,	blue:	Double)	{

4 								self.red			=	red

5 								self.green	=	green

6 								self.blue		=	blue

7 				}

8 				init(white:	Double)	{

9 								red			=	white

10 								green	=	white

11 								blue		=	white

12 				}

13 }

Both	initializers	can	be	used	to	create	a	new	Color	instance,	by	providing	named
values	for	each	initializer	parameter:

1 let	magenta	=	Color(red:	1.0,	green:	0.0,	blue:	1.0)

2 let	halfGray	=	Color(white:	0.5)

Note	that	it	is	not	possible	to	call	these	initializers	without	using	argument
labels.	Argument	labels	must	always	be	used	in	an	initializer	if	they	are	defined,

and	omitting	them	is	a	compile-time	error:

1 let	veryGreen	=	Color(0.0,	1.0,	0.0)

2 //	this	reports	a	compile-time	error	-	argument	labels	are	

required

Initializer	Parameters	Without	Argument	Labels
If	you	do	not	want	to	use	an	argument	label	for	an	initializer	parameter,	write	an
underscore	(_)	instead	of	an	explicit	argument	label	for	that	parameter	to
override	the	default	behavior.

Here’s	an	expanded	version	of	the	Celsius	example	from	Initialization
Parameters	above,	with	an	additional	initializer	to	create	a	new	Celsius	instance
from	a	Double	value	that	is	already	in	the	Celsius	scale:

1 struct	Celsius	{

2 				var	temperatureInCelsius:	Double

3 				init(fromFahrenheit	fahrenheit:	Double)	{

4 								temperatureInCelsius	=	(fahrenheit	-	32.0)	/	1.8

5 				}

6 				init(fromKelvin	kelvin:	Double)	{

7 								temperatureInCelsius	=	kelvin	-	273.15

8 				}

9 				init(_	celsius:	Double)	{

10 								temperatureInCelsius	=	celsius

11 				}

12 }

13 let	bodyTemperature	=	Celsius(37.0)

14 //	bodyTemperature.temperatureInCelsius	is	37.0

The	initializer	call	Celsius(37.0)	is	clear	in	its	intent	without	the	need	for	an

argument	label.	It	is	therefore	appropriate	to	write	this	initializer	as	init(_
celsius:	Double)	so	that	it	can	be	called	by	providing	an	unnamed	Double	value.

Optional	Property	Types
If	your	custom	type	has	a	stored	property	that	is	logically	allowed	to	have	“no
value”—perhaps	because	its	value	cannot	be	set	during	initialization,	or	because
it	is	allowed	to	have	“no	value”	at	some	later	point—declare	the	property	with	an
optional	type.	Properties	of	optional	type	are	automatically	initialized	with	a
value	of	nil,	indicating	that	the	property	is	deliberately	intended	to	have	“no
value	yet”	during	initialization.

The	following	example	defines	a	class	called	SurveyQuestion,	with	an	optional
String	property	called	response:

1 class	SurveyQuestion	{

2 				var	text:	String

3 				var	response:	String?

4 				init(text:	String)	{

5 								self.text	=	text

6 				}

7 				func	ask()	{

8 								print(text)

9 				}

10 }

11 let	cheeseQuestion	=	SurveyQuestion(text:	"Do	you	like	

cheese?")

12 cheeseQuestion.ask()

13 //	Prints	"Do	you	like	cheese?"

14 cheeseQuestion.response	=	"Yes,	I	do	like	cheese."

The	response	to	a	survey	question	cannot	be	known	until	it	is	asked,	and	so	the
response	property	is	declared	with	a	type	of	String?,	or	“optional	String”.	It	is

automatically	assigned	a	default	value	of	nil,	meaning	“no	string	yet”,	when	a
new	instance	of	SurveyQuestion	is	initialized.

Assigning	Constant	Properties	During	Initialization
You	can	assign	a	value	to	a	constant	property	at	any	point	during	initialization,
as	long	as	it	is	set	to	a	definite	value	by	the	time	initialization	finishes.	Once	a
constant	property	is	assigned	a	value,	it	can’t	be	further	modified.

NOTE

For	class	instances,	a	constant	property	can	be	modified	during	initialization	only	by	the	class	that
introduces	it.	It	cannot	be	modified	by	a	subclass.

You	can	revise	the	SurveyQuestion	example	from	above	to	use	a	constant
property	rather	than	a	variable	property	for	the	text	property	of	the	question,	to
indicate	that	the	question	does	not	change	once	an	instance	of	SurveyQuestion	is
created.	Even	though	the	text	property	is	now	a	constant,	it	can	still	be	set
within	the	class’s	initializer:

1 class	SurveyQuestion	{

2 				let	text:	String

3 				var	response:	String?

4 				init(text:	String)	{

5 								self.text	=	text

6 				}

7 				func	ask()	{

8 								print(text)

9 				}

10 }

11 let	beetsQuestion	=	SurveyQuestion(text:	"How	about	beets?")

12 beetsQuestion.ask()

13 //	Prints	"How	about	beets?"

14 beetsQuestion.response	=	"I	also	like	beets.	(But	not	with	

cheese.)"

Default	Initializers

Swift	provides	a	default	initializer	for	any	structure	or	class	that	provides	default
values	for	all	of	its	properties	and	does	not	provide	at	least	one	initializer	itself.
The	default	initializer	simply	creates	a	new	instance	with	all	of	its	properties	set
to	their	default	values.

This	example	defines	a	class	called	ShoppingListItem,	which	encapsulates	the
name,	quantity,	and	purchase	state	of	an	item	in	a	shopping	list:

1 class	ShoppingListItem	{

2 				var	name:	String?

3 				var	quantity	=	1

4 				var	purchased	=	false

5 }

6 var	item	=	ShoppingListItem()

Because	all	properties	of	the	ShoppingListItem	class	have	default	values,	and
because	it	is	a	base	class	with	no	superclass,	ShoppingListItem	automatically
gains	a	default	initializer	implementation	that	creates	a	new	instance	with	all	of
its	properties	set	to	their	default	values.	(The	name	property	is	an	optional	String
property,	and	so	it	automatically	receives	a	default	value	of	nil,	even	though	this
value	is	not	written	in	the	code.)	The	example	above	uses	the	default	initializer
for	the	ShoppingListItem	class	to	create	a	new	instance	of	the	class	with
initializer	syntax,	written	as	ShoppingListItem(),	and	assigns	this	new	instance
to	a	variable	called	item.

Memberwise	Initializers	for	Structure	Types

Structure	types	automatically	receive	a	memberwise	initializer	if	they	don’t
define	any	of	their	own	custom	initializers.	Unlike	a	default	initializer,	the
structure	receives	a	memberwise	initializer	even	if	it	has	stored	properties	that
don’t	have	default	values.

The	memberwise	initializer	is	a	shorthand	way	to	initialize	the	member
properties	of	new	structure	instances.	Initial	values	for	the	properties	of	the	new
instance	can	be	passed	to	the	memberwise	initializer	by	name.

The	example	below	defines	a	structure	called	Size	with	two	properties	called
width	and	height.	Both	properties	are	inferred	to	be	of	type	Double	by	assigning
a	default	value	of	0.0.

The	Size	structure	automatically	receives	an	init(width:height:)	memberwise
initializer,	which	you	can	use	to	initialize	a	new	Size	instance:

1 struct	Size	{

2 				var	width	=	0.0,	height	=	0.0

3 }

4 let	twoByTwo	=	Size(width:	2.0,	height:	2.0)

When	you	call	a	memberwise	initializer,	you	can	omit	values	for	any	properties
that	have	default	values.	In	the	example	above,	the	Size	structure	has	a	default
value	for	both	its	height	and	width	properties.	You	can	omit	either	property	or
both	properties,	and	the	initializer	uses	the	default	value	for	anything	you	omit—
for	example:

1 let	zeroByTwo	=	Size(height:	2.0)

2 print(zeroByTwo.width,	zeroByTwo.height)

3 //	Prints	"0.0	2.0"

4

5 let	zeroByZero	=	Size()

6 print(zeroByZero.width,	zeroByZero.height)

7 //	Prints	"0.0	0.0"

Initializer	Delegation	for	Value	Types

Initializers	can	call	other	initializers	to	perform	part	of	an	instance’s
initialization.	This	process,	known	as	initializer	delegation,	avoids	duplicating
code	across	multiple	initializers.

The	rules	for	how	initializer	delegation	works,	and	for	what	forms	of	delegation
are	allowed,	are	different	for	value	types	and	class	types.	Value	types	(structures
and	enumerations)	do	not	support	inheritance,	and	so	their	initializer	delegation
process	is	relatively	simple,	because	they	can	only	delegate	to	another	initializer
that	they	provide	themselves.	Classes,	however,	can	inherit	from	other	classes,	as
described	in	Inheritance.	This	means	that	classes	have	additional	responsibilities
for	ensuring	that	all	stored	properties	they	inherit	are	assigned	a	suitable	value
during	initialization.	These	responsibilities	are	described	in	Class	Inheritance
and	Initialization	below.

For	value	types,	you	use	self.init	to	refer	to	other	initializers	from	the	same
value	type	when	writing	your	own	custom	initializers.	You	can	call	self.init
only	from	within	an	initializer.

Note	that	if	you	define	a	custom	initializer	for	a	value	type,	you	will	no	longer
have	access	to	the	default	initializer	(or	the	memberwise	initializer,	if	it	is	a
structure)	for	that	type.	This	constraint	prevents	a	situation	in	which	additional
essential	setup	provided	in	a	more	complex	initializer	is	accidentally
circumvented	by	someone	using	one	of	the	automatic	initializers.

NOTE

If	you	want	your	custom	value	type	to	be	initializable	with	the	default	initializer	and	memberwise
initializer,	and	also	with	your	own	custom	initializers,	write	your	custom	initializers	in	an	extension
rather	than	as	part	of	the	value	type’s	original	implementation.	For	more	information,	see	Extensions.

The	following	example	defines	a	custom	Rect	structure	to	represent	a	geometric
rectangle.	The	example	requires	two	supporting	structures	called	Size	and	Point,
both	of	which	provide	default	values	of	0.0	for	all	of	their	properties:

1 struct	Size	{

2 				var	width	=	0.0,	height	=	0.0

3 }

4 struct	Point	{

5 				var	x	=	0.0,	y	=	0.0

6 }

You	can	initialize	the	Rect	structure	below	in	one	of	three	ways—by	using	its
default	zero-initialized	origin	and	size	property	values,	by	providing	a	specific
origin	point	and	size,	or	by	providing	a	specific	center	point	and	size.	These
initialization	options	are	represented	by	three	custom	initializers	that	are	part	of
the	Rect	structure’s	definition:

1 struct	Rect	{

2 				var	origin	=	Point()

3 				var	size	=	Size()

4 				init()	{}

5 				init(origin:	Point,	size:	Size)	{

6 								self.origin	=	origin

7 								self.size	=	size

8 				}

9 				init(center:	Point,	size:	Size)	{

10 								let	originX	=	center.x	-	(size.width	/	2)

11 								let	originY	=	center.y	-	(size.height	/	2)

12 								self.init(origin:	Point(x:	originX,	y:	originY),	size:	

size)

13 				}

14 }

The	first	Rect	initializer,	init(),	is	functionally	the	same	as	the	default	initializer
that	the	structure	would	have	received	if	it	did	not	have	its	own	custom
initializers.	This	initializer	has	an	empty	body,	represented	by	an	empty	pair	of
curly	braces	{}.	Calling	this	initializer	returns	a	Rect	instance	whose	origin	and
size	properties	are	both	initialized	with	the	default	values	of	Point(x:	0.0,	y:

0.0)	and	Size(width:	0.0,	height:	0.0)	from	their	property	definitions:

1 let	basicRect	=	Rect()

2 //	basicRect's	origin	is	(0.0,	0.0)	and	its	size	is	(0.0,	0.0)

The	second	Rect	initializer,	init(origin:size:),	is	functionally	the	same	as	the
memberwise	initializer	that	the	structure	would	have	received	if	it	did	not	have
its	own	custom	initializers.	This	initializer	simply	assigns	the	origin	and	size
argument	values	to	the	appropriate	stored	properties:

1 let	originRect	=	Rect(origin:	Point(x:	2.0,	y:	2.0),

2 																						size:	Size(width:	5.0,	height:	5.0))

3 //	originRect's	origin	is	(2.0,	2.0)	and	its	size	is	(5.0,	5.0)

The	third	Rect	initializer,	init(center:size:),	is	slightly	more	complex.	It	starts
by	calculating	an	appropriate	origin	point	based	on	a	center	point	and	a	size
value.	It	then	calls	(or	delegates)	to	the	init(origin:size:)	initializer,	which
stores	the	new	origin	and	size	values	in	the	appropriate	properties:

1 let	centerRect	=	Rect(center:	Point(x:	4.0,	y:	4.0),

2 																						size:	Size(width:	3.0,	height:	3.0))

3 //	centerRect's	origin	is	(2.5,	2.5)	and	its	size	is	(3.0,	3.0)

The	init(center:size:)	initializer	could	have	assigned	the	new	values	of
origin	and	size	to	the	appropriate	properties	itself.	However,	it	is	more
convenient	(and	clearer	in	intent)	for	the	init(center:size:)	initializer	to	take
advantage	of	an	existing	initializer	that	already	provides	exactly	that
functionality.

NOTE

For	an	alternative	way	to	write	this	example	without	defining	the	init()	and
init(origin:size:)	initializers	yourself,	see	Extensions.

Class	Inheritance	and	Initialization

All	of	a	class’s	stored	properties—including	any	properties	the	class	inherits
from	its	superclass—must	be	assigned	an	initial	value	during	initialization.

Swift	defines	two	kinds	of	initializers	for	class	types	to	help	ensure	all	stored
properties	receive	an	initial	value.	These	are	known	as	designated	initializers	and
convenience	initializers.

Designated	Initializers	and	Convenience	Initializers
Designated	initializers	are	the	primary	initializers	for	a	class.	A	designated
initializer	fully	initializes	all	properties	introduced	by	that	class	and	calls	an
appropriate	superclass	initializer	to	continue	the	initialization	process	up	the
superclass	chain.

Classes	tend	to	have	very	few	designated	initializers,	and	it	is	quite	common	for
a	class	to	have	only	one.	Designated	initializers	are	“funnel”	points	through
which	initialization	takes	place,	and	through	which	the	initialization	process
continues	up	the	superclass	chain.

Every	class	must	have	at	least	one	designated	initializer.	In	some	cases,	this
requirement	is	satisfied	by	inheriting	one	or	more	designated	initializers	from	a
superclass,	as	described	in	Automatic	Initializer	Inheritance	below.

Convenience	initializers	are	secondary,	supporting	initializers	for	a	class.	You
can	define	a	convenience	initializer	to	call	a	designated	initializer	from	the	same
class	as	the	convenience	initializer	with	some	of	the	designated	initializer’s
parameters	set	to	default	values.	You	can	also	define	a	convenience	initializer	to
create	an	instance	of	that	class	for	a	specific	use	case	or	input	value	type.

You	do	not	have	to	provide	convenience	initializers	if	your	class	does	not	require
them.	Create	convenience	initializers	whenever	a	shortcut	to	a	common
initialization	pattern	will	save	time	or	make	initialization	of	the	class	clearer	in
intent.

Syntax	for	Designated	and	Convenience	Initializers
Designated	initializers	for	classes	are	written	in	the	same	way	as	simple
initializers	for	value	types:

	 init(parameters)	{

	 				 statements

	 }

Convenience	initializers	are	written	in	the	same	style,	but	with	the	convenience
modifier	placed	before	the	init	keyword,	separated	by	a	space:

	 convenience	init(parameters)	{

	 				 statements

	 }

Initializer	Delegation	for	Class	Types
To	simplify	the	relationships	between	designated	and	convenience	initializers,
Swift	applies	the	following	three	rules	for	delegation	calls	between	initializers:

Rule	1

A	designated	initializer	must	call	a	designated	initializer	from	its	immediate
superclass.

Rule	2

A	convenience	initializer	must	call	another	initializer	from	the	same	class.

Rule	3

A	convenience	initializer	must	ultimately	call	a	designated	initializer.

A	simple	way	to	remember	this	is:

Designated	initializers	must	always	delegate	up.

Convenience	initializers	must	always	delegate	across.

These	rules	are	illustrated	in	the	figure	below:

Here,	the	superclass	has	a	single	designated	initializer	and	two	convenience
initializers.	One	convenience	initializer	calls	another	convenience	initializer,
which	in	turn	calls	the	single	designated	initializer.	This	satisfies	rules	2	and	3
from	above.	The	superclass	does	not	itself	have	a	further	superclass,	and	so	rule
1	does	not	apply.

The	subclass	in	this	figure	has	two	designated	initializers	and	one	convenience
initializer.	The	convenience	initializer	must	call	one	of	the	two	designated
initializers,	because	it	can	only	call	another	initializer	from	the	same	class.	This
satisfies	rules	2	and	3	from	above.	Both	designated	initializers	must	call	the
single	designated	initializer	from	the	superclass,	to	satisfy	rule	1	from	above.

NOTE

These	rules	don’t	affect	how	users	of	your	classes	create	instances	of	each	class.	Any	initializer	in	the
diagram	above	can	be	used	to	create	a	fully	initialized	instance	of	the	class	they	belong	to.	The	rules
only	affect	how	you	write	the	implementation	of	the	class’s	initializers.

The	figure	below	shows	a	more	complex	class	hierarchy	for	four	classes.	It
illustrates	how	the	designated	initializers	in	this	hierarchy	act	as	“funnel”	points
for	class	initialization,	simplifying	the	interrelationships	among	classes	in	the
chain:

Two-Phase	Initialization
Class	initialization	in	Swift	is	a	two-phase	process.	In	the	first	phase,	each	stored
property	is	assigned	an	initial	value	by	the	class	that	introduced	it.	Once	the
initial	state	for	every	stored	property	has	been	determined,	the	second	phase
begins,	and	each	class	is	given	the	opportunity	to	customize	its	stored	properties
further	before	the	new	instance	is	considered	ready	for	use.

The	use	of	a	two-phase	initialization	process	makes	initialization	safe,	while	still
giving	complete	flexibility	to	each	class	in	a	class	hierarchy.	Two-phase
initialization	prevents	property	values	from	being	accessed	before	they	are
initialized,	and	prevents	property	values	from	being	set	to	a	different	value	by
another	initializer	unexpectedly.

NOTE

Swift’s	two-phase	initialization	process	is	similar	to	initialization	in	Objective-C.	The	main
difference	is	that	during	phase	1,	Objective-C	assigns	zero	or	null	values	(such	as	0	or	nil)	to	every

property.	Swift’s	initialization	flow	is	more	flexible	in	that	it	lets	you	set	custom	initial	values,	and
can	cope	with	types	for	which	0	or	nil	is	not	a	valid	default	value.

Swift’s	compiler	performs	four	helpful	safety-checks	to	make	sure	that	two-
phase	initialization	is	completed	without	error:

Safety	check	1

A	designated	initializer	must	ensure	that	all	of	the	properties	introduced	by
its	class	are	initialized	before	it	delegates	up	to	a	superclass	initializer.

As	mentioned	above,	the	memory	for	an	object	is	only	considered	fully
initialized	once	the	initial	state	of	all	of	its	stored	properties	is	known.	In	order
for	this	rule	to	be	satisfied,	a	designated	initializer	must	make	sure	that	all	of	its
own	properties	are	initialized	before	it	hands	off	up	the	chain.

Safety	check	2

A	designated	initializer	must	delegate	up	to	a	superclass	initializer	before
assigning	a	value	to	an	inherited	property.	If	it	doesn’t,	the	new	value	the
designated	initializer	assigns	will	be	overwritten	by	the	superclass	as	part	of
its	own	initialization.

Safety	check	3

A	convenience	initializer	must	delegate	to	another	initializer	before
assigning	a	value	to	any	property	(including	properties	defined	by	the	same
class).	If	it	doesn’t,	the	new	value	the	convenience	initializer	assigns	will	be
overwritten	by	its	own	class’s	designated	initializer.

Safety	check	4

An	initializer	cannot	call	any	instance	methods,	read	the	values	of	any
instance	properties,	or	refer	to	self	as	a	value	until	after	the	first	phase	of
initialization	is	complete.

The	class	instance	is	not	fully	valid	until	the	first	phase	ends.	Properties	can	only
be	accessed,	and	methods	can	only	be	called,	once	the	class	instance	is	known	to
be	valid	at	the	end	of	the	first	phase.

Here’s	how	two-phase	initialization	plays	out,	based	on	the	four	safety	checks
above:

Phase	1

A	designated	or	convenience	initializer	is	called	on	a	class.

Memory	for	a	new	instance	of	that	class	is	allocated.	The	memory	is	not	yet
initialized.

A	designated	initializer	for	that	class	confirms	that	all	stored	properties
introduced	by	that	class	have	a	value.	The	memory	for	these	stored
properties	is	now	initialized.

The	designated	initializer	hands	off	to	a	superclass	initializer	to	perform	the
same	task	for	its	own	stored	properties.

This	continues	up	the	class	inheritance	chain	until	the	top	of	the	chain	is
reached.

Once	the	top	of	the	chain	is	reached,	and	the	final	class	in	the	chain	has
ensured	that	all	of	its	stored	properties	have	a	value,	the	instance’s	memory
is	considered	to	be	fully	initialized,	and	phase	1	is	complete.

Phase	2

Working	back	down	from	the	top	of	the	chain,	each	designated	initializer	in
the	chain	has	the	option	to	customize	the	instance	further.	Initializers	are
now	able	to	access	self	and	can	modify	its	properties,	call	its	instance
methods,	and	so	on.

Finally,	any	convenience	initializers	in	the	chain	have	the	option	to
customize	the	instance	and	to	work	with	self.

Here’s	how	phase	1	looks	for	an	initialization	call	for	a	hypothetical	subclass	and
superclass:

In	this	example,	initialization	begins	with	a	call	to	a	convenience	initializer	on
the	subclass.	This	convenience	initializer	cannot	yet	modify	any	properties.	It
delegates	across	to	a	designated	initializer	from	the	same	class.

The	designated	initializer	makes	sure	that	all	of	the	subclass’s	properties	have	a
value,	as	per	safety	check	1.	It	then	calls	a	designated	initializer	on	its	superclass
to	continue	the	initialization	up	the	chain.

The	superclass’s	designated	initializer	makes	sure	that	all	of	the	superclass
properties	have	a	value.	There	are	no	further	superclasses	to	initialize,	and	so	no
further	delegation	is	needed.

As	soon	as	all	properties	of	the	superclass	have	an	initial	value,	its	memory	is
considered	fully	initialized,	and	phase	1	is	complete.

Here’s	how	phase	2	looks	for	the	same	initialization	call:

The	superclass’s	designated	initializer	now	has	an	opportunity	to	customize	the

instance	further	(although	it	does	not	have	to).

Once	the	superclass’s	designated	initializer	is	finished,	the	subclass’s	designated
initializer	can	perform	additional	customization	(although	again,	it	does	not	have
to).

Finally,	once	the	subclass’s	designated	initializer	is	finished,	the	convenience
initializer	that	was	originally	called	can	perform	additional	customization.

Initializer	Inheritance	and	Overriding
Unlike	subclasses	in	Objective-C,	Swift	subclasses	do	not	inherit	their	superclass
initializers	by	default.	Swift’s	approach	prevents	a	situation	in	which	a	simple
initializer	from	a	superclass	is	inherited	by	a	more	specialized	subclass	and	is
used	to	create	a	new	instance	of	the	subclass	that	is	not	fully	or	correctly
initialized.

NOTE

Superclass	initializers	are	inherited	in	certain	circumstances,	but	only	when	it	is	safe	and	appropriate
to	do	so.	For	more	information,	see	Automatic	Initializer	Inheritance	below.

If	you	want	a	custom	subclass	to	present	one	or	more	of	the	same	initializers	as
its	superclass,	you	can	provide	a	custom	implementation	of	those	initializers
within	the	subclass.

When	you	write	a	subclass	initializer	that	matches	a	superclass	designated
initializer,	you	are	effectively	providing	an	override	of	that	designated	initializer.
Therefore,	you	must	write	the	override	modifier	before	the	subclass’s	initializer
definition.	This	is	true	even	if	you	are	overriding	an	automatically	provided
default	initializer,	as	described	in	Default	Initializers.

As	with	an	overridden	property,	method	or	subscript,	the	presence	of	the
override	modifier	prompts	Swift	to	check	that	the	superclass	has	a	matching
designated	initializer	to	be	overridden,	and	validates	that	the	parameters	for	your
overriding	initializer	have	been	specified	as	intended.

NOTE

You	always	write	the	override	modifier	when	overriding	a	superclass	designated	initializer,	even
if	your	subclass’s	implementation	of	the	initializer	is	a	convenience	initializer.

Conversely,	if	you	write	a	subclass	initializer	that	matches	a	superclass
convenience	initializer,	that	superclass	convenience	initializer	can	never	be
called	directly	by	your	subclass,	as	per	the	rules	described	above	in	Initializer
Delegation	for	Class	Types.	Therefore,	your	subclass	is	not	(strictly	speaking)
providing	an	override	of	the	superclass	initializer.	As	a	result,	you	do	not	write
the	override	modifier	when	providing	a	matching	implementation	of	a
superclass	convenience	initializer.

The	example	below	defines	a	base	class	called	Vehicle.	This	base	class	declares
a	stored	property	called	numberOfWheels,	with	a	default	Int	value	of	0.	The
numberOfWheels	property	is	used	by	a	computed	property	called	description	to
create	a	String	description	of	the	vehicle’s	characteristics:

1 class	Vehicle	{

2 				var	numberOfWheels	=	0

3 				var	description:	String	{

4 								return	"\(numberOfWheels)	wheel(s)"

5 				}

6 }

The	Vehicle	class	provides	a	default	value	for	its	only	stored	property,	and	does
not	provide	any	custom	initializers	itself.	As	a	result,	it	automatically	receives	a
default	initializer,	as	described	in	Default	Initializers.	The	default	initializer
(when	available)	is	always	a	designated	initializer	for	a	class,	and	can	be	used	to
create	a	new	Vehicle	instance	with	a	numberOfWheels	of	0:

1 let	vehicle	=	Vehicle()

2 print("Vehicle:	\(vehicle.description)")

3 //	Vehicle:	0	wheel(s)

The	next	example	defines	a	subclass	of	Vehicle	called	Bicycle:

1 class	Bicycle:	Vehicle	{

2 				override	init()	{

3 								super.init()

4 								numberOfWheels	=	2

5 				}

6 }

The	Bicycle	subclass	defines	a	custom	designated	initializer,	init().	This
designated	initializer	matches	a	designated	initializer	from	the	superclass	of
Bicycle,	and	so	the	Bicycle	version	of	this	initializer	is	marked	with	the
override	modifier.

The	init()	initializer	for	Bicycle	starts	by	calling	super.init(),	which	calls	the
default	initializer	for	the	Bicycle	class’s	superclass,	Vehicle.	This	ensures	that
the	numberOfWheels	inherited	property	is	initialized	by	Vehicle	before	Bicycle
has	the	opportunity	to	modify	the	property.	After	calling	super.init(),	the
original	value	of	numberOfWheels	is	replaced	with	a	new	value	of	2.

If	you	create	an	instance	of	Bicycle,	you	can	call	its	inherited	description
computed	property	to	see	how	its	numberOfWheels	property	has	been	updated:

1 let	bicycle	=	Bicycle()

2 print("Bicycle:	\(bicycle.description)")

3 //	Bicycle:	2	wheel(s)

If	a	subclass	initializer	performs	no	customization	in	phase	2	of	the	initialization
process,	and	the	superclass	has	a	zero-argument	designated	initializer,	you	can
omit	a	call	to	super.init()	after	assigning	values	to	all	of	the	subclass’s	stored
properties.

This	example	defines	another	subclass	of	Vehicle,	called	Hoverboard.	In	its
initializer,	the	Hoverboard	class	sets	only	its	color	property.	Instead	of	making	an
explicit	call	to	super.init(),	this	initializer	relies	on	an	implicit	call	to	its

superclass’s	initializer	to	complete	the	process.

1 class	Hoverboard:	Vehicle	{

2 				var	color:	String

3 				init(color:	String)	{

4 								self.color	=	color

5 								//	super.init()	implicitly	called	here

6 				}

7 				override	var	description:	String	{

8 								return	"\(super.description)	in	a	beautiful	\(color)"

9 				}

10 }

An	instance	of	Hoverboard	uses	the	default	number	of	wheels	supplied	by	the
Vehicle	initializer.

1 let	hoverboard	=	Hoverboard(color:	"silver")

2 print("Hoverboard:	\(hoverboard.description)")

3 //	Hoverboard:	0	wheel(s)	in	a	beautiful	silver

NOTE

Subclasses	can	modify	inherited	variable	properties	during	initialization,	but	can	not	modify	inherited
constant	properties.

Automatic	Initializer	Inheritance
As	mentioned	above,	subclasses	do	not	inherit	their	superclass	initializers	by
default.	However,	superclass	initializers	are	automatically	inherited	if	certain
conditions	are	met.	In	practice,	this	means	that	you	do	not	need	to	write
initializer	overrides	in	many	common	scenarios,	and	can	inherit	your	superclass
initializers	with	minimal	effort	whenever	it	is	safe	to	do	so.

Assuming	that	you	provide	default	values	for	any	new	properties	you	introduce

in	a	subclass,	the	following	two	rules	apply:

Rule	1

If	your	subclass	doesn’t	define	any	designated	initializers,	it	automatically
inherits	all	of	its	superclass	designated	initializers.

Rule	2

If	your	subclass	provides	an	implementation	of	all	of	its	superclass
designated	initializers—either	by	inheriting	them	as	per	rule	1,	or	by
providing	a	custom	implementation	as	part	of	its	definition—then	it
automatically	inherits	all	of	the	superclass	convenience	initializers.

These	rules	apply	even	if	your	subclass	adds	further	convenience	initializers.

NOTE

A	subclass	can	implement	a	superclass	designated	initializer	as	a	subclass	convenience	initializer	as
part	of	satisfying	rule	2.

Designated	and	Convenience	Initializers	in	Action
The	following	example	shows	designated	initializers,	convenience	initializers,
and	automatic	initializer	inheritance	in	action.	This	example	defines	a	hierarchy
of	three	classes	called	Food,	RecipeIngredient,	and	ShoppingListItem,	and
demonstrates	how	their	initializers	interact.

The	base	class	in	the	hierarchy	is	called	Food,	which	is	a	simple	class	to
encapsulate	the	name	of	a	foodstuff.	The	Food	class	introduces	a	single	String
property	called	name	and	provides	two	initializers	for	creating	Food	instances:

1 class	Food	{

2 				var	name:	String

3 				init(name:	String)	{

4 								self.name	=	name

5 				}

6 				convenience	init()	{

7 								self.init(name:	"[Unnamed]")

8 				}

9 }

The	figure	below	shows	the	initializer	chain	for	the	Food	class:

Classes	do	not	have	a	default	memberwise	initializer,	and	so	the	Food	class
provides	a	designated	initializer	that	takes	a	single	argument	called	name.	This
initializer	can	be	used	to	create	a	new	Food	instance	with	a	specific	name:

1 let	namedMeat	=	Food(name:	"Bacon")

2 //	namedMeat's	name	is	"Bacon"

The	init(name:	String)	initializer	from	the	Food	class	is	provided	as	a
designated	initializer,	because	it	ensures	that	all	stored	properties	of	a	new	Food
instance	are	fully	initialized.	The	Food	class	does	not	have	a	superclass,	and	so
the	init(name:	String)	initializer	does	not	need	to	call	super.init()	to
complete	its	initialization.

The	Food	class	also	provides	a	convenience	initializer,	init(),	with	no
arguments.	The	init()	initializer	provides	a	default	placeholder	name	for	a	new
food	by	delegating	across	to	the	Food	class’s	init(name:	String)	with	a	name
value	of	[Unnamed]:

1 let	mysteryMeat	=	Food()

2 //	mysteryMeat's	name	is	"[Unnamed]"

The	second	class	in	the	hierarchy	is	a	subclass	of	Food	called	RecipeIngredient.
The	RecipeIngredient	class	models	an	ingredient	in	a	cooking	recipe.	It
introduces	an	Int	property	called	quantity	(in	addition	to	the	name	property	it
inherits	from	Food)	and	defines	two	initializers	for	creating	RecipeIngredient
instances:

1 class	RecipeIngredient:	Food	{

2 				var	quantity:	Int

3 				init(name:	String,	quantity:	Int)	{

4 								self.quantity	=	quantity

5 								super.init(name:	name)

6 				}

7 				override	convenience	init(name:	String)	{

8 								self.init(name:	name,	quantity:	1)

9 				}

10 }

The	figure	below	shows	the	initializer	chain	for	the	RecipeIngredient	class:

The	RecipeIngredient	class	has	a	single	designated	initializer,	init(name:
String,	quantity:	Int),	which	can	be	used	to	populate	all	of	the	properties	of	a
new	RecipeIngredient	instance.	This	initializer	starts	by	assigning	the	passed

quantity	argument	to	the	quantity	property,	which	is	the	only	new	property
introduced	by	RecipeIngredient.	After	doing	so,	the	initializer	delegates	up	to
the	init(name:	String)	initializer	of	the	Food	class.	This	process	satisfies	safety
check	1	from	Two-Phase	Initialization	above.

RecipeIngredient	also	defines	a	convenience	initializer,	init(name:	String),
which	is	used	to	create	a	RecipeIngredient	instance	by	name	alone.	This
convenience	initializer	assumes	a	quantity	of	1	for	any	RecipeIngredient
instance	that	is	created	without	an	explicit	quantity.	The	definition	of	this
convenience	initializer	makes	RecipeIngredient	instances	quicker	and	more
convenient	to	create,	and	avoids	code	duplication	when	creating	several	single-
quantity	RecipeIngredient	instances.	This	convenience	initializer	simply
delegates	across	to	the	class’s	designated	initializer,	passing	in	a	quantity	value
of	1.

The	init(name:	String)	convenience	initializer	provided	by	RecipeIngredient
takes	the	same	parameters	as	the	init(name:	String)	designated	initializer	from
Food.	Because	this	convenience	initializer	overrides	a	designated	initializer	from
its	superclass,	it	must	be	marked	with	the	override	modifier	(as	described	in
Initializer	Inheritance	and	Overriding).

Even	though	RecipeIngredient	provides	the	init(name:	String)	initializer	as	a
convenience	initializer,	RecipeIngredient	has	nonetheless	provided	an
implementation	of	all	of	its	superclass’s	designated	initializers.	Therefore,
RecipeIngredient	automatically	inherits	all	of	its	superclass’s	convenience
initializers	too.

In	this	example,	the	superclass	for	RecipeIngredient	is	Food,	which	has	a	single
convenience	initializer	called	init().	This	initializer	is	therefore	inherited	by
RecipeIngredient.	The	inherited	version	of	init()	functions	in	exactly	the	same
way	as	the	Food	version,	except	that	it	delegates	to	the	RecipeIngredient	version
of	init(name:	String)	rather	than	the	Food	version.

All	three	of	these	initializers	can	be	used	to	create	new	RecipeIngredient
instances:

1 let	oneMysteryItem	=	RecipeIngredient()

2 let	oneBacon	=	RecipeIngredient(name:	"Bacon")

3 let	sixEggs	=	RecipeIngredient(name:	"Eggs",	quantity:	6)

The	third	and	final	class	in	the	hierarchy	is	a	subclass	of	RecipeIngredient
called	ShoppingListItem.	The	ShoppingListItem	class	models	a	recipe	ingredient
as	it	appears	in	a	shopping	list.

Every	item	in	the	shopping	list	starts	out	as	“unpurchased”.	To	represent	this
fact,	ShoppingListItem	introduces	a	Boolean	property	called	purchased,	with	a
default	value	of	false.	ShoppingListItem	also	adds	a	computed	description
property,	which	provides	a	textual	description	of	a	ShoppingListItem	instance:

1 class	ShoppingListItem:	RecipeIngredient	{

2 				var	purchased	=	false

3 				var	description:	String	{

4 								var	output	=	"\(quantity)	x	\(name)"

5 								output	+=	purchased	?	"	✔"	:	"	✘"

6 								return	output

7 				}

8 }

NOTE

ShoppingListItem	does	not	define	an	initializer	to	provide	an	initial	value	for	purchased,
because	items	in	a	shopping	list	(as	modeled	here)	always	start	out	unpurchased.

Because	it	provides	a	default	value	for	all	of	the	properties	it	introduces	and	does
not	define	any	initializers	itself,	ShoppingListItem	automatically	inherits	all	of
the	designated	and	convenience	initializers	from	its	superclass.

The	figure	below	shows	the	overall	initializer	chain	for	all	three	classes:

You	can	use	all	three	of	the	inherited	initializers	to	create	a	new
ShoppingListItem	instance:

1 var	breakfastList	=	[

2 				ShoppingListItem(),

3 				ShoppingListItem(name:	"Bacon"),

4 				ShoppingListItem(name:	"Eggs",	quantity:	6),

5]

6 breakfastList[0].name	=	"Orange	juice"

7 breakfastList[0].purchased	=	true

8 for	item	in	breakfastList	{

9 				print(item.description)

10 }

11 //	1	x	Orange	juice	✔

12 //	1	x	Bacon	✘

13 //	6	x	Eggs	✘

Here,	a	new	array	called	breakfastList	is	created	from	an	array	literal
containing	three	new	ShoppingListItem	instances.	The	type	of	the	array	is
inferred	to	be	[ShoppingListItem].	After	the	array	is	created,	the	name	of	the
ShoppingListItem	at	the	start	of	the	array	is	changed	from	"[Unnamed]"	to
"Orange	juice"	and	it	is	marked	as	having	been	purchased.	Printing	the
description	of	each	item	in	the	array	shows	that	their	default	states	have	been	set
as	expected.

Failable	Initializers

It	is	sometimes	useful	to	define	a	class,	structure,	or	enumeration	for	which
initialization	can	fail.	This	failure	might	be	triggered	by	invalid	initialization
parameter	values,	the	absence	of	a	required	external	resource,	or	some	other
condition	that	prevents	initialization	from	succeeding.

To	cope	with	initialization	conditions	that	can	fail,	define	one	or	more	failable
initializers	as	part	of	a	class,	structure,	or	enumeration	definition.	You	write	a
failable	initializer	by	placing	a	question	mark	after	the	init	keyword	(init?).

NOTE

You	cannot	define	a	failable	and	a	nonfailable	initializer	with	the	same	parameter	types	and	names.

A	failable	initializer	creates	an	optional	value	of	the	type	it	initializes.	You	write
return	nil	within	a	failable	initializer	to	indicate	a	point	at	which	initialization
failure	can	be	triggered.

NOTE

Strictly	speaking,	initializers	do	not	return	a	value.	Rather,	their	role	is	to	ensure	that	self	is	fully
and	correctly	initialized	by	the	time	that	initialization	ends.	Although	you	write	return	nil	to
trigger	an	initialization	failure,	you	do	not	use	the	return	keyword	to	indicate	initialization	success.

For	instance,	failable	initializers	are	implemented	for	numeric	type	conversions.

To	ensure	conversion	between	numeric	types	maintains	the	value	exactly,	use	the
init(exactly:)	initializer.	If	the	type	conversion	cannot	maintain	the	value,	the
initializer	fails.

1 let	wholeNumber:	Double	=	12345.0

2 let	pi	=	3.14159

3

4 if	let	valueMaintained	=	Int(exactly:	wholeNumber)	{

5 				print("\(wholeNumber)	conversion	to	Int	maintains	value	of	

\(valueMaintained)")

6 }

7 //	Prints	"12345.0	conversion	to	Int	maintains	value	of	12345"

8

9 let	valueChanged	=	Int(exactly:	pi)

10 //	valueChanged	is	of	type	Int?,	not	Int

11

12 if	valueChanged	==	nil	{

13 				print("\(pi)	conversion	to	Int	does	not	maintain	value")

14 }

15 //	Prints	"3.14159	conversion	to	Int	does	not	maintain	value"

The	example	below	defines	a	structure	called	Animal,	with	a	constant	String
property	called	species.	The	Animal	structure	also	defines	a	failable	initializer
with	a	single	parameter	called	species.	This	initializer	checks	if	the	species
value	passed	to	the	initializer	is	an	empty	string.	If	an	empty	string	is	found,	an
initialization	failure	is	triggered.	Otherwise,	the	species	property’s	value	is	set,
and	initialization	succeeds:

1 struct	Animal	{

2 				let	species:	String

3 				init?(species:	String)	{

4 								if	species.isEmpty	{	return	nil	}

5 								self.species	=	species

6 				}

7 }

You	can	use	this	failable	initializer	to	try	to	initialize	a	new	Animal	instance	and
to	check	if	initialization	succeeded:

1 let	someCreature	=	Animal(species:	"Giraffe")

2 //	someCreature	is	of	type	Animal?,	not	Animal

3

4 if	let	giraffe	=	someCreature	{

5 				print("An	animal	was	initialized	with	a	species	of	\

(giraffe.species)")

6 }

7 //	Prints	"An	animal	was	initialized	with	a	species	of	Giraffe"

If	you	pass	an	empty	string	value	to	the	failable	initializer’s	species	parameter,
the	initializer	triggers	an	initialization	failure:

1 let	anonymousCreature	=	Animal(species:	"")

2 //	anonymousCreature	is	of	type	Animal?,	not	Animal

3

4 if	anonymousCreature	==	nil	{

5 				print("The	anonymous	creature	could	not	be	initialized")

6 }

7 //	Prints	"The	anonymous	creature	could	not	be	initialized"

NOTE

Checking	for	an	empty	string	value	(such	as	""	rather	than	"Giraffe")	is	not	the	same	as
checking	for	nil	to	indicate	the	absence	of	an	optional	String	value.	In	the	example	above,	an
empty	string	("")	is	a	valid,	non-optional	String.	However,	it	is	not	appropriate	for	an	animal	to
have	an	empty	string	as	the	value	of	its	species	property.	To	model	this	restriction,	the	failable
initializer	triggers	an	initialization	failure	if	an	empty	string	is	found.

Failable	Initializers	for	Enumerations
You	can	use	a	failable	initializer	to	select	an	appropriate	enumeration	case	based
on	one	or	more	parameters.	The	initializer	can	then	fail	if	the	provided
parameters	do	not	match	an	appropriate	enumeration	case.

The	example	below	defines	an	enumeration	called	TemperatureUnit,	with	three
possible	states	(kelvin,	celsius,	and	fahrenheit).	A	failable	initializer	is	used	to
find	an	appropriate	enumeration	case	for	a	Character	value	representing	a
temperature	symbol:

1 enum	TemperatureUnit	{

2 				case	kelvin,	celsius,	fahrenheit

3 				init?(symbol:	Character)	{

4 								switch	symbol	{

5 								case	"K":

6 												self	=	.kelvin

7 								case	"C":

8 												self	=	.celsius

9 								case	"F":

10 												self	=	.fahrenheit

11 								default:

12 												return	nil

13 								}

14 				}

15 }

You	can	use	this	failable	initializer	to	choose	an	appropriate	enumeration	case
for	the	three	possible	states	and	to	cause	initialization	to	fail	if	the	parameter
does	not	match	one	of	these	states:

1 let	fahrenheitUnit	=	TemperatureUnit(symbol:	"F")

2 if	fahrenheitUnit	!=	nil	{

3 				print("This	is	a	defined	temperature	unit,	so	

initialization	succeeded.")

4 }

5 //	Prints	"This	is	a	defined	temperature	unit,	so	

initialization	succeeded."

6

7 let	unknownUnit	=	TemperatureUnit(symbol:	"X")

8 if	unknownUnit	==	nil	{

9 				print("This	is	not	a	defined	temperature	unit,	so	

initialization	failed.")

10 }

11 //	Prints	"This	is	not	a	defined	temperature	unit,	so	

initialization	failed."

Failable	Initializers	for	Enumerations	with	Raw	Values
Enumerations	with	raw	values	automatically	receive	a	failable	initializer,	init?
(rawValue:),	that	takes	a	parameter	called	rawValue	of	the	appropriate	raw-value
type	and	selects	a	matching	enumeration	case	if	one	is	found,	or	triggers	an
initialization	failure	if	no	matching	value	exists.

You	can	rewrite	the	TemperatureUnit	example	from	above	to	use	raw	values	of
type	Character	and	to	take	advantage	of	the	init?(rawValue:)	initializer:

1 enum	TemperatureUnit:	Character	{

2 				case	kelvin	=	"K",	celsius	=	"C",	fahrenheit	=	"F"

3 }

4

5 let	fahrenheitUnit	=	TemperatureUnit(rawValue:	"F")

6 if	fahrenheitUnit	!=	nil	{

7 				print("This	is	a	defined	temperature	unit,	so	

initialization	succeeded.")

8 }

9 //	Prints	"This	is	a	defined	temperature	unit,	so	

initialization	succeeded."

10

11 let	unknownUnit	=	TemperatureUnit(rawValue:	"X")

12 if	unknownUnit	==	nil	{

13 				print("This	is	not	a	defined	temperature	unit,	so	

initialization	failed.")

14 }

15 //	Prints	"This	is	not	a	defined	temperature	unit,	so	

initialization	failed."

Propagation	of	Initialization	Failure
A	failable	initializer	of	a	class,	structure,	or	enumeration	can	delegate	across	to
another	failable	initializer	from	the	same	class,	structure,	or	enumeration.
Similarly,	a	subclass	failable	initializer	can	delegate	up	to	a	superclass	failable
initializer.

In	either	case,	if	you	delegate	to	another	initializer	that	causes	initialization	to
fail,	the	entire	initialization	process	fails	immediately,	and	no	further
initialization	code	is	executed.

NOTE

A	failable	initializer	can	also	delegate	to	a	nonfailable	initializer.	Use	this	approach	if	you	need	to	add
a	potential	failure	state	to	an	existing	initialization	process	that	does	not	otherwise	fail.

The	example	below	defines	a	subclass	of	Product	called	CartItem.	The	CartItem
class	models	an	item	in	an	online	shopping	cart.	CartItem	introduces	a	stored
constant	property	called	quantity	and	ensures	that	this	property	always	has	a
value	of	at	least	1:

1 class	Product	{

2 				let	name:	String

3 				init?(name:	String)	{

4 								if	name.isEmpty	{	return	nil	}

5 								self.name	=	name

6 				}

7 }

8

9 class	CartItem:	Product	{

10 				let	quantity:	Int

11 				init?(name:	String,	quantity:	Int)	{

12 								if	quantity	<	1	{	return	nil	}

13 								self.quantity	=	quantity

14 								super.init(name:	name)

15 				}

16 }

The	failable	initializer	for	CartItem	starts	by	validating	that	it	has	received	a
quantity	value	of	1	or	more.	If	the	quantity	is	invalid,	the	entire	initialization
process	fails	immediately	and	no	further	initialization	code	is	executed.
Likewise,	the	failable	initializer	for	Product	checks	the	name	value,	and	the
initializer	process	fails	immediately	if	name	is	the	empty	string.

If	you	create	a	CartItem	instance	with	a	nonempty	name	and	a	quantity	of	1	or
more,	initialization	succeeds:

1 if	let	twoSocks	=	CartItem(name:	"sock",	quantity:	2)	{

2 				print("Item:	\(twoSocks.name),	quantity:	\

(twoSocks.quantity)")

3 }

4 //	Prints	"Item:	sock,	quantity:	2"

If	you	try	to	create	a	CartItem	instance	with	a	quantity	value	of	0,	the	CartItem

initializer	causes	initialization	to	fail:

1 if	let	zeroShirts	=	CartItem(name:	"shirt",	quantity:	0)	{

2 				print("Item:	\(zeroShirts.name),	quantity:	\

(zeroShirts.quantity)")

3 }	else	{

4 				print("Unable	to	initialize	zero	shirts")

5 }

6 //	Prints	"Unable	to	initialize	zero	shirts"

Similarly,	if	you	try	to	create	a	CartItem	instance	with	an	empty	name	value,	the
superclass	Product	initializer	causes	initialization	to	fail:

1 if	let	oneUnnamed	=	CartItem(name:	"",	quantity:	1)	{

2 				print("Item:	\(oneUnnamed.name),	quantity:	\

(oneUnnamed.quantity)")

3 }	else	{

4 				print("Unable	to	initialize	one	unnamed	product")

5 }

6 //	Prints	"Unable	to	initialize	one	unnamed	product"

Overriding	a	Failable	Initializer
You	can	override	a	superclass	failable	initializer	in	a	subclass,	just	like	any	other
initializer.	Alternatively,	you	can	override	a	superclass	failable	initializer	with	a
subclass	nonfailable	initializer.	This	enables	you	to	define	a	subclass	for	which
initialization	cannot	fail,	even	though	initialization	of	the	superclass	is	allowed
to	fail.

Note	that	if	you	override	a	failable	superclass	initializer	with	a	nonfailable
subclass	initializer,	the	only	way	to	delegate	up	to	the	superclass	initializer	is	to
force-unwrap	the	result	of	the	failable	superclass	initializer.

NOTE

You	can	override	a	failable	initializer	with	a	nonfailable	initializer	but	not	the	other	way	around.

The	example	below	defines	a	class	called	Document.	This	class	models	a
document	that	can	be	initialized	with	a	name	property	that	is	either	a	nonempty
string	value	or	nil,	but	cannot	be	an	empty	string:

1 class	Document	{

2 				var	name:	String?

3 				//	this	initializer	creates	a	document	with	a	nil	name	

value

4 				init()	{}

5 				//	this	initializer	creates	a	document	with	a	nonempty	name	

value

6 				init?(name:	String)	{

7 								if	name.isEmpty	{	return	nil	}

8 								self.name	=	name

9 				}

10 }

The	next	example	defines	a	subclass	of	Document	called
AutomaticallyNamedDocument.	The	AutomaticallyNamedDocument	subclass
overrides	both	of	the	designated	initializers	introduced	by	Document.	These
overrides	ensure	that	an	AutomaticallyNamedDocument	instance	has	an	initial	name
value	of	"[Untitled]"	if	the	instance	is	initialized	without	a	name,	or	if	an	empty
string	is	passed	to	the	init(name:)	initializer:

1 class	AutomaticallyNamedDocument:	Document	{

2 				override	init()	{

3 								super.init()

4 								self.name	=	"[Untitled]"

5 				}

6 				override	init(name:	String)	{

7 								super.init()

8 								if	name.isEmpty	{

9 												self.name	=	"[Untitled]"

10 								}	else	{

11 												self.name	=	name

12 								}

13 				}

14 }

The	AutomaticallyNamedDocument	overrides	its	superclass’s	failable	init?
(name:)	initializer	with	a	nonfailable	init(name:)	initializer.	Because
AutomaticallyNamedDocument	copes	with	the	empty	string	case	in	a	different	way
than	its	superclass,	its	initializer	does	not	need	to	fail,	and	so	it	provides	a
nonfailable	version	of	the	initializer	instead.

You	can	use	forced	unwrapping	in	an	initializer	to	call	a	failable	initializer	from
the	superclass	as	part	of	the	implementation	of	a	subclass’s	nonfailable
initializer.	For	example,	the	UntitledDocument	subclass	below	is	always	named	"
[Untitled]",	and	it	uses	the	failable	init(name:)	initializer	from	its	superclass
during	initialization.

1 class	UntitledDocument:	Document	{

2 				override	init()	{

3 								super.init(name:	"[Untitled]")!

4 				}

5 }

In	this	case,	if	the	init(name:)	initializer	of	the	superclass	were	ever	called	with
an	empty	string	as	the	name,	the	forced	unwrapping	operation	would	result	in	a
runtime	error.	However,	because	it’s	called	with	a	string	constant,	you	can	see
that	the	initializer	won’t	fail,	so	no	runtime	error	can	occur	in	this	case.

The	init!	Failable	Initializer
You	typically	define	a	failable	initializer	that	creates	an	optional	instance	of	the
appropriate	type	by	placing	a	question	mark	after	the	init	keyword	(init?).
Alternatively,	you	can	define	a	failable	initializer	that	creates	an	implicitly
unwrapped	optional	instance	of	the	appropriate	type.	Do	this	by	placing	an
exclamation	mark	after	the	init	keyword	(init!)	instead	of	a	question	mark.

You	can	delegate	from	init?	to	init!	and	vice	versa,	and	you	can	override	init?
with	init!	and	vice	versa.	You	can	also	delegate	from	init	to	init!,	although
doing	so	will	trigger	an	assertion	if	the	init!	initializer	causes	initialization	to
fail.

Required	Initializers

Write	the	required	modifier	before	the	definition	of	a	class	initializer	to	indicate
that	every	subclass	of	the	class	must	implement	that	initializer:

1 class	SomeClass	{

2 				required	init()	{

3 								//	initializer	implementation	goes	here

4 				}

5 }

You	must	also	write	the	required	modifier	before	every	subclass	implementation
of	a	required	initializer,	to	indicate	that	the	initializer	requirement	applies	to
further	subclasses	in	the	chain.	You	do	not	write	the	override	modifier	when
overriding	a	required	designated	initializer:

1 class	SomeSubclass:	SomeClass	{

2 				required	init()	{

3 								//	subclass	implementation	of	the	required	initializer	

goes	here

4 				}

5 }

NOTE

You	do	not	have	to	provide	an	explicit	implementation	of	a	required	initializer	if	you	can	satisfy	the
requirement	with	an	inherited	initializer.

Setting	a	Default	Property	Value	with	a	Closure	or	Function

If	a	stored	property’s	default	value	requires	some	customization	or	setup,	you
can	use	a	closure	or	global	function	to	provide	a	customized	default	value	for
that	property.	Whenever	a	new	instance	of	the	type	that	the	property	belongs	to	is
initialized,	the	closure	or	function	is	called,	and	its	return	value	is	assigned	as	the
property’s	default	value.

These	kinds	of	closures	or	functions	typically	create	a	temporary	value	of	the
same	type	as	the	property,	tailor	that	value	to	represent	the	desired	initial	state,
and	then	return	that	temporary	value	to	be	used	as	the	property’s	default	value.

Here’s	a	skeleton	outline	of	how	a	closure	can	be	used	to	provide	a	default
property	value:

1 class	SomeClass	{

2 				let	someProperty:	SomeType	=	{

3 								//	create	a	default	value	for	someProperty	inside	this	

closure

4 								//	someValue	must	be	of	the	same	type	as	SomeType

5 								return	someValue

6 				}()

7 }

Note	that	the	closure’s	end	curly	brace	is	followed	by	an	empty	pair	of

parentheses.	This	tells	Swift	to	execute	the	closure	immediately.	If	you	omit
these	parentheses,	you	are	trying	to	assign	the	closure	itself	to	the	property,	and
not	the	return	value	of	the	closure.

NOTE

If	you	use	a	closure	to	initialize	a	property,	remember	that	the	rest	of	the	instance	has	not	yet	been
initialized	at	the	point	that	the	closure	is	executed.	This	means	that	you	cannot	access	any	other
property	values	from	within	your	closure,	even	if	those	properties	have	default	values.	You	also
cannot	use	the	implicit	self	property,	or	call	any	of	the	instance’s	methods.

The	example	below	defines	a	structure	called	Chessboard,	which	models	a	board
for	the	game	of	chess.	Chess	is	played	on	an	8	x	8	board,	with	alternating	black
and	white	squares.

To	represent	this	game	board,	the	Chessboard	structure	has	a	single	property
called	boardColors,	which	is	an	array	of	64	Bool	values.	A	value	of	true	in	the
array	represents	a	black	square	and	a	value	of	false	represents	a	white	square.
The	first	item	in	the	array	represents	the	top	left	square	on	the	board	and	the	last
item	in	the	array	represents	the	bottom	right	square	on	the	board.

The	boardColors	array	is	initialized	with	a	closure	to	set	up	its	color	values:

1 struct	Chessboard	{

2 				let	boardColors:	[Bool]	=	{

3 								var	temporaryBoard	=	[Bool]()

4 								var	isBlack	=	false

5 								for	i	in	1...8	{

6 												for	j	in	1...8	{

7 																temporaryBoard.append(isBlack)

8 																isBlack	=	!isBlack

9 												}

10 												isBlack	=	!isBlack

11 								}

12 								return	temporaryBoard

13 				}()

14 				func	squareIsBlackAt(row:	Int,	column:	Int)	->	Bool	{

15 								return	boardColors[(row	*	8)	+	column]

16 				}

17 }

Whenever	a	new	Chessboard	instance	is	created,	the	closure	is	executed,	and	the
default	value	of	boardColors	is	calculated	and	returned.	The	closure	in	the
example	above	calculates	and	sets	the	appropriate	color	for	each	square	on	the
board	in	a	temporary	array	called	temporaryBoard,	and	returns	this	temporary
array	as	the	closure’s	return	value	once	its	setup	is	complete.	The	returned	array
value	is	stored	in	boardColors	and	can	be	queried	with	the
squareIsBlackAt(row:column:)	utility	function:

1 let	board	=	Chessboard()

2 print(board.squareIsBlackAt(row:	0,	column:	1))

3 //	Prints	"true"

4 print(board.squareIsBlackAt(row:	7,	column:	7))

5 //	Prints	"false"

Deinitialization

A	deinitializer	is	called	immediately	before	a	class	instance	is	deallocated.	You
write	deinitializers	with	the	deinit	keyword,	similar	to	how	initializers	are
written	with	the	init	keyword.	Deinitializers	are	only	available	on	class	types.

How	Deinitialization	Works

Swift	automatically	deallocates	your	instances	when	they	are	no	longer	needed,
to	free	up	resources.	Swift	handles	the	memory	management	of	instances
through	automatic	reference	counting	(ARC),	as	described	in	Automatic
Reference	Counting.	Typically	you	don’t	need	to	perform	manual	cleanup	when
your	instances	are	deallocated.	However,	when	you	are	working	with	your	own
resources,	you	might	need	to	perform	some	additional	cleanup	yourself.	For
example,	if	you	create	a	custom	class	to	open	a	file	and	write	some	data	to	it,
you	might	need	to	close	the	file	before	the	class	instance	is	deallocated.

Class	definitions	can	have	at	most	one	deinitializer	per	class.	The	deinitializer
does	not	take	any	parameters	and	is	written	without	parentheses:

1 deinit	{

2 				//	perform	the	deinitialization

3 }

Deinitializers	are	called	automatically,	just	before	instance	deallocation	takes
place.	You	are	not	allowed	to	call	a	deinitializer	yourself.	Superclass
deinitializers	are	inherited	by	their	subclasses,	and	the	superclass	deinitializer	is
called	automatically	at	the	end	of	a	subclass	deinitializer	implementation.
Superclass	deinitializers	are	always	called,	even	if	a	subclass	does	not	provide	its
own	deinitializer.

Because	an	instance	is	not	deallocated	until	after	its	deinitializer	is	called,	a
deinitializer	can	access	all	properties	of	the	instance	it	is	called	on	and	can

modify	its	behavior	based	on	those	properties	(such	as	looking	up	the	name	of	a
file	that	needs	to	be	closed).

Deinitializers	in	Action

Here’s	an	example	of	a	deinitializer	in	action.	This	example	defines	two	new
types,	Bank	and	Player,	for	a	simple	game.	The	Bank	class	manages	a	made-up
currency,	which	can	never	have	more	than	10,000	coins	in	circulation.	There	can
only	ever	be	one	Bank	in	the	game,	and	so	the	Bank	is	implemented	as	a	class
with	type	properties	and	methods	to	store	and	manage	its	current	state:

1 class	Bank	{

2 				static	var	coinsInBank	=	10_000

3 				static	func	distribute(coins	numberOfCoinsRequested:	Int)	-

>	Int	{

4 								let	numberOfCoinsToVend	=	min(numberOfCoinsRequested,	

coinsInBank)

5 								coinsInBank	-=	numberOfCoinsToVend

6 								return	numberOfCoinsToVend

7 				}

8 				static	func	receive(coins:	Int)	{

9 								coinsInBank	+=	coins

10 				}

11 }

Bank	keeps	track	of	the	current	number	of	coins	it	holds	with	its	coinsInBank
property.	It	also	offers	two	methods—distribute(coins:)	and	receive(coins:)
—to	handle	the	distribution	and	collection	of	coins.

The	distribute(coins:)	method	checks	that	there	are	enough	coins	in	the	bank
before	distributing	them.	If	there	are	not	enough	coins,	Bank	returns	a	smaller
number	than	the	number	that	was	requested	(and	returns	zero	if	no	coins	are	left

in	the	bank).	It	returns	an	integer	value	to	indicate	the	actual	number	of	coins
that	were	provided.

The	receive(coins:)	method	simply	adds	the	received	number	of	coins	back
into	the	bank’s	coin	store.

The	Player	class	describes	a	player	in	the	game.	Each	player	has	a	certain
number	of	coins	stored	in	their	purse	at	any	time.	This	is	represented	by	the
player’s	coinsInPurse	property:

1 class	Player	{

2 				var	coinsInPurse:	Int

3 				init(coins:	Int)	{

4 								coinsInPurse	=	Bank.distribute(coins:	coins)

5 				}

6 				func	win(coins:	Int)	{

7 								coinsInPurse	+=	Bank.distribute(coins:	coins)

8 				}

9 				deinit	{

10 								Bank.receive(coins:	coinsInPurse)

11 				}

12 }

Each	Player	instance	is	initialized	with	a	starting	allowance	of	a	specified
number	of	coins	from	the	bank	during	initialization,	although	a	Player	instance
may	receive	fewer	than	that	number	if	not	enough	coins	are	available.

The	Player	class	defines	a	win(coins:)	method,	which	retrieves	a	certain
number	of	coins	from	the	bank	and	adds	them	to	the	player’s	purse.	The	Player
class	also	implements	a	deinitializer,	which	is	called	just	before	a	Player
instance	is	deallocated.	Here,	the	deinitializer	simply	returns	all	of	the	player’s
coins	to	the	bank:

1 var	playerOne:	Player?	=	Player(coins:	100)

2 print("A	new	player	has	joined	the	game	with	\

(playerOne!.coinsInPurse)	coins")

3 //	Prints	"A	new	player	has	joined	the	game	with	100	coins"

4 print("There	are	now	\(Bank.coinsInBank)	coins	left	in	the	

bank")

5 //	Prints	"There	are	now	9900	coins	left	in	the	bank"

A	new	Player	instance	is	created,	with	a	request	for	100	coins	if	they	are
available.	This	Player	instance	is	stored	in	an	optional	Player	variable	called
playerOne.	An	optional	variable	is	used	here,	because	players	can	leave	the	game
at	any	point.	The	optional	lets	you	track	whether	there	is	currently	a	player	in	the
game.

Because	playerOne	is	an	optional,	it	is	qualified	with	an	exclamation	mark	(!)
when	its	coinsInPurse	property	is	accessed	to	print	its	default	number	of	coins,
and	whenever	its	win(coins:)	method	is	called:

1 playerOne!.win(coins:	2_000)

2 print("PlayerOne	won	2000	coins	&	now	has	\

(playerOne!.coinsInPurse)	coins")

3 //	Prints	"PlayerOne	won	2000	coins	&	now	has	2100	coins"

4 print("The	bank	now	only	has	\(Bank.coinsInBank)	coins	left")

5 //	Prints	"The	bank	now	only	has	7900	coins	left"

Here,	the	player	has	won	2,000	coins.	The	player’s	purse	now	contains	2,100
coins,	and	the	bank	has	only	7,900	coins	left.

1 playerOne	=	nil

2 print("PlayerOne	has	left	the	game")

3 //	Prints	"PlayerOne	has	left	the	game"

4 print("The	bank	now	has	\(Bank.coinsInBank)	coins")

5 //	Prints	"The	bank	now	has	10000	coins"

The	player	has	now	left	the	game.	This	is	indicated	by	setting	the	optional
playerOne	variable	to	nil,	meaning	“no	Player	instance.”	At	the	point	that	this
happens,	the	playerOne	variable’s	reference	to	the	Player	instance	is	broken.	No
other	properties	or	variables	are	still	referring	to	the	Player	instance,	and	so	it	is
deallocated	in	order	to	free	up	its	memory.	Just	before	this	happens,	its
deinitializer	is	called	automatically,	and	its	coins	are	returned	to	the	bank.

Optional	Chaining

Optional	chaining	is	a	process	for	querying	and	calling	properties,	methods,	and
subscripts	on	an	optional	that	might	currently	be	nil.	If	the	optional	contains	a
value,	the	property,	method,	or	subscript	call	succeeds;	if	the	optional	is	nil,	the
property,	method,	or	subscript	call	returns	nil.	Multiple	queries	can	be	chained
together,	and	the	entire	chain	fails	gracefully	if	any	link	in	the	chain	is	nil.

NOTE

Optional	chaining	in	Swift	is	similar	to	messaging	nil	in	Objective-C,	but	in	a	way	that	works	for
any	type,	and	that	can	be	checked	for	success	or	failure.

Optional	Chaining	as	an	Alternative	to	Forced	Unwrapping

You	specify	optional	chaining	by	placing	a	question	mark	(?)	after	the	optional
value	on	which	you	wish	to	call	a	property,	method	or	subscript	if	the	optional	is
non-nil.	This	is	very	similar	to	placing	an	exclamation	mark	(!)	after	an	optional
value	to	force	the	unwrapping	of	its	value.	The	main	difference	is	that	optional
chaining	fails	gracefully	when	the	optional	is	nil,	whereas	forced	unwrapping
triggers	a	runtime	error	when	the	optional	is	nil.

To	reflect	the	fact	that	optional	chaining	can	be	called	on	a	nil	value,	the	result
of	an	optional	chaining	call	is	always	an	optional	value,	even	if	the	property,
method,	or	subscript	you	are	querying	returns	a	non-optional	value.	You	can	use
this	optional	return	value	to	check	whether	the	optional	chaining	call	was
successful	(the	returned	optional	contains	a	value),	or	did	not	succeed	due	to	a
nil	value	in	the	chain	(the	returned	optional	value	is	nil).

Specifically,	the	result	of	an	optional	chaining	call	is	of	the	same	type	as	the
expected	return	value,	but	wrapped	in	an	optional.	A	property	that	normally
returns	an	Int	will	return	an	Int?	when	accessed	through	optional	chaining.

The	next	several	code	snippets	demonstrate	how	optional	chaining	differs	from

forced	unwrapping	and	enables	you	to	check	for	success.

First,	two	classes	called	Person	and	Residence	are	defined:

1 class	Person	{

2 				var	residence:	Residence?

3 }

4

5 class	Residence	{

6 				var	numberOfRooms	=	1

7 }

Residence	instances	have	a	single	Int	property	called	numberOfRooms,	with	a
default	value	of	1.	Person	instances	have	an	optional	residence	property	of	type
Residence?.

If	you	create	a	new	Person	instance,	its	residence	property	is	default	initialized
to	nil,	by	virtue	of	being	optional.	In	the	code	below,	john	has	a	residence
property	value	of	nil:

	 let	john	=	Person()

If	you	try	to	access	the	numberOfRooms	property	of	this	person’s	residence,	by
placing	an	exclamation	mark	after	residence	to	force	the	unwrapping	of	its
value,	you	trigger	a	runtime	error,	because	there	is	no	residence	value	to
unwrap:

1 let	roomCount	=	john.residence!.numberOfRooms

2 //	this	triggers	a	runtime	error

The	code	above	succeeds	when	john.residence	has	a	non-nil	value	and	will	set
roomCount	to	an	Int	value	containing	the	appropriate	number	of	rooms.
However,	this	code	always	triggers	a	runtime	error	when	residence	is	nil,	as
illustrated	above.

Optional	chaining	provides	an	alternative	way	to	access	the	value	of
numberOfRooms.	To	use	optional	chaining,	use	a	question	mark	in	place	of	the
exclamation	mark:

1 if	let	roomCount	=	john.residence?.numberOfRooms	{

2 				print("John's	residence	has	\(roomCount)	room(s).")

3 }	else	{

4 				print("Unable	to	retrieve	the	number	of	rooms.")

5 }

6 //	Prints	"Unable	to	retrieve	the	number	of	rooms."

This	tells	Swift	to	“chain”	on	the	optional	residence	property	and	to	retrieve	the
value	of	numberOfRooms	if	residence	exists.

Because	the	attempt	to	access	numberOfRooms	has	the	potential	to	fail,	the
optional	chaining	attempt	returns	a	value	of	type	Int?,	or	“optional	Int”.	When
residence	is	nil,	as	in	the	example	above,	this	optional	Int	will	also	be	nil,	to
reflect	the	fact	that	it	was	not	possible	to	access	numberOfRooms.	The	optional	Int
is	accessed	through	optional	binding	to	unwrap	the	integer	and	assign	the	non-
optional	value	to	the	roomCount	variable.

Note	that	this	is	true	even	though	numberOfRooms	is	a	non-optional	Int.	The	fact
that	it	is	queried	through	an	optional	chain	means	that	the	call	to	numberOfRooms
will	always	return	an	Int?	instead	of	an	Int.

You	can	assign	a	Residence	instance	to	john.residence,	so	that	it	no	longer	has	a
nil	value:

	 john.residence	=	Residence()

john.residence	now	contains	an	actual	Residence	instance,	rather	than	nil.	If
you	try	to	access	numberOfRooms	with	the	same	optional	chaining	as	before,	it
will	now	return	an	Int?	that	contains	the	default	numberOfRooms	value	of	1:

1 if	let	roomCount	=	john.residence?.numberOfRooms	{

2 				print("John's	residence	has	\(roomCount)	room(s).")

3 }	else	{

4 				print("Unable	to	retrieve	the	number	of	rooms.")

5 }

6 //	Prints	"John's	residence	has	1	room(s)."

Defining	Model	Classes	for	Optional	Chaining

You	can	use	optional	chaining	with	calls	to	properties,	methods,	and	subscripts
that	are	more	than	one	level	deep.	This	enables	you	to	drill	down	into
subproperties	within	complex	models	of	interrelated	types,	and	to	check	whether
it	is	possible	to	access	properties,	methods,	and	subscripts	on	those
subproperties.

The	code	snippets	below	define	four	model	classes	for	use	in	several	subsequent
examples,	including	examples	of	multilevel	optional	chaining.	These	classes
expand	upon	the	Person	and	Residence	model	from	above	by	adding	a	Room	and
Address	class,	with	associated	properties,	methods,	and	subscripts.

The	Person	class	is	defined	in	the	same	way	as	before:

1 class	Person	{

2 				var	residence:	Residence?

3 }

The	Residence	class	is	more	complex	than	before.	This	time,	the	Residence	class
defines	a	variable	property	called	rooms,	which	is	initialized	with	an	empty	array
of	type	[Room]:

1 class	Residence	{

2 				var	rooms	=	[Room]()

3 				var	numberOfRooms:	Int	{

4 								return	rooms.count

5 				}

6 				subscript(i:	Int)	->	Room	{

7 								get	{

8 												return	rooms[i]

9 								}

10 								set	{

11 												rooms[i]	=	newValue

12 								}

13 				}

14 				func	printNumberOfRooms()	{

15 								print("The	number	of	rooms	is	\(numberOfRooms)")

16 				}

17 				var	address:	Address?

18 }

Because	this	version	of	Residence	stores	an	array	of	Room	instances,	its
numberOfRooms	property	is	implemented	as	a	computed	property,	not	a	stored
property.	The	computed	numberOfRooms	property	simply	returns	the	value	of	the
count	property	from	the	rooms	array.

As	a	shortcut	to	accessing	its	rooms	array,	this	version	of	Residence	provides	a
read-write	subscript	that	provides	access	to	the	room	at	the	requested	index	in
the	rooms	array.

This	version	of	Residence	also	provides	a	method	called	printNumberOfRooms,
which	simply	prints	the	number	of	rooms	in	the	residence.

Finally,	Residence	defines	an	optional	property	called	address,	with	a	type	of
Address?.	The	Address	class	type	for	this	property	is	defined	below.

The	Room	class	used	for	the	rooms	array	is	a	simple	class	with	one	property	called
name,	and	an	initializer	to	set	that	property	to	a	suitable	room	name:

1 class	Room	{

2 				let	name:	String

3 				init(name:	String)	{	self.name	=	name	}

4 }

The	final	class	in	this	model	is	called	Address.	This	class	has	three	optional
properties	of	type	String?.	The	first	two	properties,	buildingName	and
buildingNumber,	are	alternative	ways	to	identify	a	particular	building	as	part	of
an	address.	The	third	property,	street,	is	used	to	name	the	street	for	that	address:

1 class	Address	{

2 				var	buildingName:	String?

3 				var	buildingNumber:	String?

4 				var	street:	String?

5 				func	buildingIdentifier()	->	String?	{

6 								if	let	buildingNumber	=	buildingNumber,	let	street	=	

street	{

7 												return	"\(buildingNumber)	\(street)"

8 								}	else	if	buildingName	!=	nil	{

9 												return	buildingName

10 								}	else	{

11 												return	nil

12 								}

13 				}

14 }

The	Address	class	also	provides	a	method	called	buildingIdentifier(),	which
has	a	return	type	of	String?.	This	method	checks	the	properties	of	the	address
and	returns	buildingName	if	it	has	a	value,	or	buildingNumber	concatenated	with
street	if	both	have	values,	or	nil	otherwise.

Accessing	Properties	Through	Optional	Chaining

As	demonstrated	in	Optional	Chaining	as	an	Alternative	to	Forced	Unwrapping,
you	can	use	optional	chaining	to	access	a	property	on	an	optional	value,	and	to
check	if	that	property	access	is	successful.

Use	the	classes	defined	above	to	create	a	new	Person	instance,	and	try	to	access
its	numberOfRooms	property	as	before:

1 let	john	=	Person()

2 if	let	roomCount	=	john.residence?.numberOfRooms	{

3 				print("John's	residence	has	\(roomCount)	room(s).")

4 }	else	{

5 				print("Unable	to	retrieve	the	number	of	rooms.")

6 }

7 //	Prints	"Unable	to	retrieve	the	number	of	rooms."

Because	john.residence	is	nil,	this	optional	chaining	call	fails	in	the	same	way
as	before.

You	can	also	attempt	to	set	a	property’s	value	through	optional	chaining:

1 let	someAddress	=	Address()

2 someAddress.buildingNumber	=	"29"

3 someAddress.street	=	"Acacia	Road"

4 john.residence?.address	=	someAddress

In	this	example,	the	attempt	to	set	the	address	property	of	john.residence	will
fail,	because	john.residence	is	currently	nil.

The	assignment	is	part	of	the	optional	chaining,	which	means	none	of	the	code
on	the	right-hand	side	of	the	=	operator	is	evaluated.	In	the	previous	example,	it’s
not	easy	to	see	that	someAddress	is	never	evaluated,	because	accessing	a	constant
doesn’t	have	any	side	effects.	The	listing	below	does	the	same	assignment,	but	it
uses	a	function	to	create	the	address.	The	function	prints	“Function	was	called”

before	returning	a	value,	which	lets	you	see	whether	the	right-hand	side	of	the	=
operator	was	evaluated.

1 func	createAddress()	->	Address	{

2 				print("Function	was	called.")

3

4 				let	someAddress	=	Address()

5 				someAddress.buildingNumber	=	"29"

6 				someAddress.street	=	"Acacia	Road"

7

8 				return	someAddress

9 }

10 john.residence?.address	=	createAddress()

You	can	tell	that	the	createAddress()	function	isn’t	called,	because	nothing	is
printed.

Calling	Methods	Through	Optional	Chaining

You	can	use	optional	chaining	to	call	a	method	on	an	optional	value,	and	to
check	whether	that	method	call	is	successful.	You	can	do	this	even	if	that	method
does	not	define	a	return	value.

The	printNumberOfRooms()	method	on	the	Residence	class	prints	the	current
value	of	numberOfRooms.	Here’s	how	the	method	looks:

1 func	printNumberOfRooms()	{

2 				print("The	number	of	rooms	is	\(numberOfRooms)")

3 }

This	method	does	not	specify	a	return	type.	However,	functions	and	methods
with	no	return	type	have	an	implicit	return	type	of	Void,	as	described	in

Functions	Without	Return	Values.	This	means	that	they	return	a	value	of	(),	or
an	empty	tuple.

If	you	call	this	method	on	an	optional	value	with	optional	chaining,	the	method’s
return	type	will	be	Void?,	not	Void,	because	return	values	are	always	of	an
optional	type	when	called	through	optional	chaining.	This	enables	you	to	use	an
if	statement	to	check	whether	it	was	possible	to	call	the	printNumberOfRooms()
method,	even	though	the	method	does	not	itself	define	a	return	value.	Compare
the	return	value	from	the	printNumberOfRooms	call	against	nil	to	see	if	the
method	call	was	successful:

1 if	john.residence?.printNumberOfRooms()	!=	nil	{

2 				print("It	was	possible	to	print	the	number	of	rooms.")

3 }	else	{

4 				print("It	was	not	possible	to	print	the	number	of	rooms.")

5 }

6 //	Prints	"It	was	not	possible	to	print	the	number	of	rooms."

The	same	is	true	if	you	attempt	to	set	a	property	through	optional	chaining.	The
example	above	in	Accessing	Properties	Through	Optional	Chaining	attempts	to
set	an	address	value	for	john.residence,	even	though	the	residence	property	is
nil.	Any	attempt	to	set	a	property	through	optional	chaining	returns	a	value	of
type	Void?,	which	enables	you	to	compare	against	nil	to	see	if	the	property	was
set	successfully:

1 if	(john.residence?.address	=	someAddress)	!=	nil	{

2 				print("It	was	possible	to	set	the	address.")

3 }	else	{

4 				print("It	was	not	possible	to	set	the	address.")

5 }

6 //	Prints	"It	was	not	possible	to	set	the	address."

Accessing	Subscripts	Through	Optional	Chaining

You	can	use	optional	chaining	to	try	to	retrieve	and	set	a	value	from	a	subscript
on	an	optional	value,	and	to	check	whether	that	subscript	call	is	successful.

NOTE

When	you	access	a	subscript	on	an	optional	value	through	optional	chaining,	you	place	the	question
mark	before	the	subscript’s	brackets,	not	after.	The	optional	chaining	question	mark	always	follows
immediately	after	the	part	of	the	expression	that	is	optional.

The	example	below	tries	to	retrieve	the	name	of	the	first	room	in	the	rooms	array
of	the	john.residence	property	using	the	subscript	defined	on	the	Residence
class.	Because	john.residence	is	currently	nil,	the	subscript	call	fails:

1 if	let	firstRoomName	=	john.residence?[0].name	{

2 				print("The	first	room	name	is	\(firstRoomName).")

3 }	else	{

4 				print("Unable	to	retrieve	the	first	room	name.")

5 }

6 //	Prints	"Unable	to	retrieve	the	first	room	name."

The	optional	chaining	question	mark	in	this	subscript	call	is	placed	immediately
after	john.residence,	before	the	subscript	brackets,	because	john.residence	is
the	optional	value	on	which	optional	chaining	is	being	attempted.

Similarly,	you	can	try	to	set	a	new	value	through	a	subscript	with	optional
chaining:

	 john.residence?[0]	=	Room(name:	"Bathroom")

This	subscript	setting	attempt	also	fails,	because	residence	is	currently	nil.

If	you	create	and	assign	an	actual	Residence	instance	to	john.residence,	with
one	or	more	Room	instances	in	its	rooms	array,	you	can	use	the	Residence
subscript	to	access	the	actual	items	in	the	rooms	array	through	optional	chaining:

1 let	johnsHouse	=	Residence()

2 johnsHouse.rooms.append(Room(name:	"Living	Room"))

3 johnsHouse.rooms.append(Room(name:	"Kitchen"))

4 john.residence	=	johnsHouse

5

6 if	let	firstRoomName	=	john.residence?[0].name	{

7 				print("The	first	room	name	is	\(firstRoomName).")

8 }	else	{

9 				print("Unable	to	retrieve	the	first	room	name.")

10 }

11 //	Prints	"The	first	room	name	is	Living	Room."

Accessing	Subscripts	of	Optional	Type
If	a	subscript	returns	a	value	of	optional	type—such	as	the	key	subscript	of
Swift’s	Dictionary	type—place	a	question	mark	after	the	subscript’s	closing
bracket	to	chain	on	its	optional	return	value:

1 var	testScores	=	["Dave":	[86,	82,	84],	"Bev":	[79,	94,	81]]

2 testScores["Dave"]?[0]	=	91

3 testScores["Bev"]?[0]	+=	1

4 testScores["Brian"]?[0]	=	72

5 //	the	"Dave"	array	is	now	[91,	82,	84]	and	the	"Bev"	array	is	

now	[80,	94,	81]

The	example	above	defines	a	dictionary	called	testScores,	which	contains	two
key-value	pairs	that	map	a	String	key	to	an	array	of	Int	values.	The	example
uses	optional	chaining	to	set	the	first	item	in	the	"Dave"	array	to	91;	to	increment
the	first	item	in	the	"Bev"	array	by	1;	and	to	try	to	set	the	first	item	in	an	array	for
a	key	of	"Brian".	The	first	two	calls	succeed,	because	the	testScores	dictionary
contains	keys	for	"Dave"	and	"Bev".	The	third	call	fails,	because	the	testScores
dictionary	does	not	contain	a	key	for	"Brian".

Linking	Multiple	Levels	of	Chaining

You	can	link	together	multiple	levels	of	optional	chaining	to	drill	down	to
properties,	methods,	and	subscripts	deeper	within	a	model.	However,	multiple
levels	of	optional	chaining	do	not	add	more	levels	of	optionality	to	the	returned
value.

To	put	it	another	way:

If	the	type	you	are	trying	to	retrieve	is	not	optional,	it	will	become	optional
because	of	the	optional	chaining.

If	the	type	you	are	trying	to	retrieve	is	already	optional,	it	will	not	become
more	optional	because	of	the	chaining.

Therefore:

If	you	try	to	retrieve	an	Int	value	through	optional	chaining,	an	Int?	is
always	returned,	no	matter	how	many	levels	of	chaining	are	used.

Similarly,	if	you	try	to	retrieve	an	Int?	value	through	optional	chaining,	an
Int?	is	always	returned,	no	matter	how	many	levels	of	chaining	are	used.

The	example	below	tries	to	access	the	street	property	of	the	address	property	of
the	residence	property	of	john.	There	are	two	levels	of	optional	chaining	in	use
here,	to	chain	through	the	residence	and	address	properties,	both	of	which	are	of
optional	type:

1 if	let	johnsStreet	=	john.residence?.address?.street	{

2 				print("John's	street	name	is	\(johnsStreet).")

3 }	else	{

4 				print("Unable	to	retrieve	the	address.")

5 }

6 //	Prints	"Unable	to	retrieve	the	address."

The	value	of	john.residence	currently	contains	a	valid	Residence	instance.
However,	the	value	of	john.residence.address	is	currently	nil.	Because	of	this,

the	call	to	john.residence?.address?.street	fails.

Note	that	in	the	example	above,	you	are	trying	to	retrieve	the	value	of	the	street
property.	The	type	of	this	property	is	String?.	The	return	value	of
john.residence?.address?.street	is	therefore	also	String?,	even	though	two
levels	of	optional	chaining	are	applied	in	addition	to	the	underlying	optional	type
of	the	property.

If	you	set	an	actual	Address	instance	as	the	value	for	john.residence.address,
and	set	an	actual	value	for	the	address’s	street	property,	you	can	access	the
value	of	the	street	property	through	multilevel	optional	chaining:

1 let	johnsAddress	=	Address()

2 johnsAddress.buildingName	=	"The	Larches"

3 johnsAddress.street	=	"Laurel	Street"

4 john.residence?.address	=	johnsAddress

5

6 if	let	johnsStreet	=	john.residence?.address?.street	{

7 				print("John's	street	name	is	\(johnsStreet).")

8 }	else	{

9 				print("Unable	to	retrieve	the	address.")

10 }

11 //	Prints	"John's	street	name	is	Laurel	Street."

In	this	example,	the	attempt	to	set	the	address	property	of	john.residence	will
succeed,	because	the	value	of	john.residence	currently	contains	a	valid
Residence	instance.

Chaining	on	Methods	with	Optional	Return	Values

The	previous	example	shows	how	to	retrieve	the	value	of	a	property	of	optional
type	through	optional	chaining.	You	can	also	use	optional	chaining	to	call	a

method	that	returns	a	value	of	optional	type,	and	to	chain	on	that	method’s	return
value	if	needed.

The	example	below	calls	the	Address	class’s	buildingIdentifier()	method
through	optional	chaining.	This	method	returns	a	value	of	type	String?.	As
described	above,	the	ultimate	return	type	of	this	method	call	after	optional
chaining	is	also	String?:

1 if	let	buildingIdentifier	=	

john.residence?.address?.buildingIdentifier()	{

2 				print("John's	building	identifier	is	\

(buildingIdentifier).")

3 }

4 //	Prints	"John's	building	identifier	is	The	Larches."

If	you	want	to	perform	further	optional	chaining	on	this	method’s	return	value,
place	the	optional	chaining	question	mark	after	the	method’s	parentheses:

1 if	let	beginsWithThe	=

2 				

john.residence?.address?.buildingIdentifier()?.hasPrefix("The"

	{

3 				if	beginsWithThe	{

4 								print("John's	building	identifier	begins	with	

\"The\".")

5 				}	else	{

6 								print("John's	building	identifier	does	not	begin	with	

\"The\".")

7 				}

8 }

9 //	Prints	"John's	building	identifier	begins	with	"The"."

NOTE

In	the	example	above,	you	place	the	optional	chaining	question	mark	after	the	parentheses,	because
the	optional	value	you	are	chaining	on	is	the	buildingIdentifier()	method’s	return	value,
and	not	the	buildingIdentifier()	method	itself.

Error	Handling

Error	handling	is	the	process	of	responding	to	and	recovering	from	error
conditions	in	your	program.	Swift	provides	first-class	support	for	throwing,
catching,	propagating,	and	manipulating	recoverable	errors	at	runtime.

Some	operations	aren’t	guaranteed	to	always	complete	execution	or	produce	a
useful	output.	Optionals	are	used	to	represent	the	absence	of	a	value,	but	when
an	operation	fails,	it’s	often	useful	to	understand	what	caused	the	failure,	so	that
your	code	can	respond	accordingly.

As	an	example,	consider	the	task	of	reading	and	processing	data	from	a	file	on
disk.	There	are	a	number	of	ways	this	task	can	fail,	including	the	file	not	existing
at	the	specified	path,	the	file	not	having	read	permissions,	or	the	file	not	being
encoded	in	a	compatible	format.	Distinguishing	among	these	different	situations
allows	a	program	to	resolve	some	errors	and	to	communicate	to	the	user	any
errors	it	can’t	resolve.

NOTE

Error	handling	in	Swift	interoperates	with	error	handling	patterns	that	use	the	NSError	class	in
Cocoa	and	Objective-C.	For	more	information	about	this	class,	see	Handling	Cocoa	Errors	in	Swift.

Representing	and	Throwing	Errors

In	Swift,	errors	are	represented	by	values	of	types	that	conform	to	the	Error
protocol.	This	empty	protocol	indicates	that	a	type	can	be	used	for	error
handling.

Swift	enumerations	are	particularly	well	suited	to	modeling	a	group	of	related
error	conditions,	with	associated	values	allowing	for	additional	information
about	the	nature	of	an	error	to	be	communicated.	For	example,	here’s	how	you
might	represent	the	error	conditions	of	operating	a	vending	machine	inside	a
game:

https://developer.apple.com/documentation/swift/cocoa_design_patterns/handling_cocoa_errors_in_swift

1 enum	VendingMachineError:	Error	{

2 				case	invalidSelection

3 				case	insufficientFunds(coinsNeeded:	Int)

4 				case	outOfStock

5 }

Throwing	an	error	lets	you	indicate	that	something	unexpected	happened	and	the
normal	flow	of	execution	can’t	continue.	You	use	a	throw	statement	to	throw	an
error.	For	example,	the	following	code	throws	an	error	to	indicate	that	five
additional	coins	are	needed	by	the	vending	machine:

	 throw	VendingMachineError.insufficientFunds(coinsNeeded:	5)

Handling	Errors

When	an	error	is	thrown,	some	surrounding	piece	of	code	must	be	responsible
for	handling	the	error—for	example,	by	correcting	the	problem,	trying	an
alternative	approach,	or	informing	the	user	of	the	failure.

There	are	four	ways	to	handle	errors	in	Swift.	You	can	propagate	the	error	from	a
function	to	the	code	that	calls	that	function,	handle	the	error	using	a	do-catch
statement,	handle	the	error	as	an	optional	value,	or	assert	that	the	error	will	not
occur.	Each	approach	is	described	in	a	section	below.

When	a	function	throws	an	error,	it	changes	the	flow	of	your	program,	so	it’s
important	that	you	can	quickly	identify	places	in	your	code	that	can	throw	errors.
To	identify	these	places	in	your	code,	write	the	try	keyword—or	the	try?	or
try!	variation—before	a	piece	of	code	that	calls	a	function,	method,	or	initializer
that	can	throw	an	error.	These	keywords	are	described	in	the	sections	below.

NOTE

Error	handling	in	Swift	resembles	exception	handling	in	other	languages,	with	the	use	of	the	try,
catch	and	throw	keywords.	Unlike	exception	handling	in	many	languages—including	Objective-
C—error	handling	in	Swift	does	not	involve	unwinding	the	call	stack,	a	process	that	can	be

computationally	expensive.	As	such,	the	performance	characteristics	of	a	throw	statement	are
comparable	to	those	of	a	return	statement.

Propagating	Errors	Using	Throwing	Functions
To	indicate	that	a	function,	method,	or	initializer	can	throw	an	error,	you	write
the	throws	keyword	in	the	function’s	declaration	after	its	parameters.	A	function
marked	with	throws	is	called	a	throwing	function.	If	the	function	specifies	a
return	type,	you	write	the	throws	keyword	before	the	return	arrow	(->).

1 func	canThrowErrors()	throws	->	String

2

3 func	cannotThrowErrors()	->	String

A	throwing	function	propagates	errors	that	are	thrown	inside	of	it	to	the	scope
from	which	it’s	called.

NOTE

Only	throwing	functions	can	propagate	errors.	Any	errors	thrown	inside	a	nonthrowing	function	must
be	handled	inside	the	function.

In	the	example	below,	the	VendingMachine	class	has	a	vend(itemNamed:)	method
that	throws	an	appropriate	VendingMachineError	if	the	requested	item	is	not
available,	is	out	of	stock,	or	has	a	cost	that	exceeds	the	current	deposited
amount:

1 struct	Item	{

2 				var	price:	Int

3 				var	count:	Int

4 }

5

6 class	VendingMachine	{

7 				var	inventory	=	[

8 								"Candy	Bar":	Item(price:	12,	count:	7),

9 								"Chips":	Item(price:	10,	count:	4),

10 								"Pretzels":	Item(price:	7,	count:	11)

11]

12 				var	coinsDeposited	=	0

13

14 				func	vend(itemNamed	name:	String)	throws	{

15 								guard	let	item	=	inventory[name]	else	{

16 												throw	VendingMachineError.invalidSelection

17 								}

18

19 								guard	item.count	>	0	else	{

20 												throw	VendingMachineError.outOfStock

21 								}

22

23 								guard	item.price	<=	coinsDeposited	else	{

24 												throw	

VendingMachineError.insufficientFunds(coinsNeeded:	

item.price	-	coinsDeposited)

25 								}

26

27 								coinsDeposited	-=	item.price

28

29 								var	newItem	=	item

30 								newItem.count	-=	1

31 								inventory[name]	=	newItem

32

33 								print("Dispensing	\(name)")

34 				}

35 }

The	implementation	of	the	vend(itemNamed:)	method	uses	guard	statements	to
exit	the	method	early	and	throw	appropriate	errors	if	any	of	the	requirements	for
purchasing	a	snack	aren’t	met.	Because	a	throw	statement	immediately	transfers
program	control,	an	item	will	be	vended	only	if	all	of	these	requirements	are
met.

Because	the	vend(itemNamed:)	method	propagates	any	errors	it	throws,	any	code
that	calls	this	method	must	either	handle	the	errors—using	a	do-catch	statement,
try?,	or	try!—or	continue	to	propagate	them.	For	example,	the
buyFavoriteSnack(person:vendingMachine:)	in	the	example	below	is	also	a
throwing	function,	and	any	errors	that	the	vend(itemNamed:)	method	throws	will
propagate	up	to	the	point	where	the	buyFavoriteSnack(person:vendingMachine:)
function	is	called.

1 let	favoriteSnacks	=	[

2 				"Alice":	"Chips",

3 				"Bob":	"Licorice",

4 				"Eve":	"Pretzels",

5]

6 func	buyFavoriteSnack(person:	String,	vendingMachine:	

VendingMachine)	throws	{

7 				let	snackName	=	favoriteSnacks[person]	??	"Candy	Bar"

8 				try	vendingMachine.vend(itemNamed:	snackName)

9 }

In	this	example,	the	buyFavoriteSnack(person:	vendingMachine:)	function
looks	up	a	given	person’s	favorite	snack	and	tries	to	buy	it	for	them	by	calling
the	vend(itemNamed:)	method.	Because	the	vend(itemNamed:)	method	can	throw
an	error,	it’s	called	with	the	try	keyword	in	front	of	it.

Throwing	initializers	can	propagate	errors	in	the	same	way	as	throwing
functions.	For	example,	the	initializer	for	the	PurchasedSnack	structure	in	the
listing	below	calls	a	throwing	function	as	part	of	the	initialization	process,	and	it
handles	any	errors	that	it	encounters	by	propagating	them	to	its	caller.

1 struct	PurchasedSnack	{

2 				let	name:	String

3 				init(name:	String,	vendingMachine:	VendingMachine)	throws	{

4 								try	vendingMachine.vend(itemNamed:	name)

5 								self.name	=	name

6 				}

7 }

Handling	Errors	Using	Do-Catch
You	use	a	do-catch	statement	to	handle	errors	by	running	a	block	of	code.	If	an
error	is	thrown	by	the	code	in	the	do	clause,	it	is	matched	against	the	catch
clauses	to	determine	which	one	of	them	can	handle	the	error.

Here	is	the	general	form	of	a	do-catch	statement:

	 do	{

	 				try	 expression

	 				 statements

	 }	catch	 pattern	1 	{

	 				 statements

	 }	catch	 pattern	2 	where	 condition 	{

	 				 statements

	 }	catch	{

	 				 statements

	 }

You	write	a	pattern	after	catch	to	indicate	what	errors	that	clause	can	handle.	If	a
catch	clause	doesn’t	have	a	pattern,	the	clause	matches	any	error	and	binds	the
error	to	a	local	constant	named	error.	For	more	information	about	pattern
matching,	see	Patterns.

For	example,	the	following	code	matches	against	all	three	cases	of	the

VendingMachineError	enumeration.

1 var	vendingMachine	=	VendingMachine()

2 vendingMachine.coinsDeposited	=	8

3 do	{

4 				try	buyFavoriteSnack(person:	"Alice",	vendingMachine:	

vendingMachine)

5 				print("Success!	Yum.")

6 }	catch	VendingMachineError.invalidSelection	{

7 				print("Invalid	Selection.")

8 }	catch	VendingMachineError.outOfStock	{

9 				print("Out	of	Stock.")

10 }	catch	VendingMachineError.insufficientFunds(let	coinsNeeded)	

{

11 				print("Insufficient	funds.	Please	insert	an	additional	\

(coinsNeeded)	coins.")

12 }	catch	{

13 				print("Unexpected	error:	\(error).")

14 }

15 //	Prints	"Insufficient	funds.	Please	insert	an	additional	2	

coins."

In	the	above	example,	the	buyFavoriteSnack(person:vendingMachine:)	function
is	called	in	a	try	expression,	because	it	can	throw	an	error.	If	an	error	is	thrown,
execution	immediately	transfers	to	the	catch	clauses,	which	decide	whether	to
allow	propagation	to	continue.	If	no	pattern	is	matched,	the	error	gets	caught	by
the	final	catch	clause	and	is	bound	to	a	local	error	constant.	If	no	error	is
thrown,	the	remaining	statements	in	the	do	statement	are	executed.

The	catch	clauses	don’t	have	to	handle	every	possible	error	that	the	code	in	the
do	clause	can	throw.	If	none	of	the	catch	clauses	handle	the	error,	the	error
propagates	to	the	surrounding	scope.	However,	the	propagated	error	must	be

handled	by	some	surrounding	scope.	In	a	nonthrowing	function,	an	enclosing	do-
catch	clause	must	handle	the	error.	In	a	throwing	function,	either	an	enclosing
do-catch	clause	or	the	caller	must	handle	the	error.	If	the	error	propagates	to	the
top-level	scope	without	being	handled,	you’ll	get	a	runtime	error.

For	example,	the	above	example	can	be	written	so	any	error	that	isn’t	a
VendingMachineError	is	instead	caught	by	the	calling	function:

1 func	nourish(with	item:	String)	throws	{

2 				do	{

3 								try	vendingMachine.vend(itemNamed:	item)

4 				}	catch	is	VendingMachineError	{

5 								print("Invalid	selection,	out	of	stock,	or	not	enough	

money.")

6 				}

7 }

8

9 do	{

10 				try	nourish(with:	"Beet-Flavored	Chips")

11 }	catch	{

12 				print("Unexpected	non-vending-machine-related	error:	\

(error)")

13 }

14 //	Prints	"Invalid	selection,	out	of	stock,	or	not	enough	

money."

In	the	nourish(with:)	function,	if	vend(itemNamed:)	throws	an	error	that’s	one
of	the	cases	of	the	VendingMachineError	enumeration,	nourish(with:)	handles
the	error	by	printing	a	message.	Otherwise,	nourish(with:)	propagates	the	error
to	its	call	site.	The	error	is	then	caught	by	the	general	catch	clause.

Converting	Errors	to	Optional	Values
You	use	try?	to	handle	an	error	by	converting	it	to	an	optional	value.	If	an	error
is	thrown	while	evaluating	the	try?	expression,	the	value	of	the	expression	is
nil.	For	example,	in	the	following	code	x	and	y	have	the	same	value	and
behavior:

1 func	someThrowingFunction()	throws	->	Int	{

2 				//	...

3 }

4

5 let	x	=	try?	someThrowingFunction()

6

7 let	y:	Int?

8 do	{

9 				y	=	try	someThrowingFunction()

10 }	catch	{

11 				y	=	nil

12 }

If	someThrowingFunction()	throws	an	error,	the	value	of	x	and	y	is	nil.
Otherwise,	the	value	of	x	and	y	is	the	value	that	the	function	returned.	Note	that	x
and	y	are	an	optional	of	whatever	type	someThrowingFunction()	returns.	Here	the
function	returns	an	integer,	so	x	and	y	are	optional	integers.

Using	try?	lets	you	write	concise	error	handling	code	when	you	want	to	handle
all	errors	in	the	same	way.	For	example,	the	following	code	uses	several
approaches	to	fetch	data,	or	returns	nil	if	all	of	the	approaches	fail.

1 func	fetchData()	->	Data?	{

2 				if	let	data	=	try?	fetchDataFromDisk()	{	return	data	}

3 				if	let	data	=	try?	fetchDataFromServer()	{	return	data	}

4 				return	nil

5 }

Disabling	Error	Propagation
Sometimes	you	know	a	throwing	function	or	method	won’t,	in	fact,	throw	an
error	at	runtime.	On	those	occasions,	you	can	write	try!	before	the	expression	to
disable	error	propagation	and	wrap	the	call	in	a	runtime	assertion	that	no	error
will	be	thrown.	If	an	error	actually	is	thrown,	you’ll	get	a	runtime	error.

For	example,	the	following	code	uses	a	loadImage(atPath:)	function,	which
loads	the	image	resource	at	a	given	path	or	throws	an	error	if	the	image	can’t	be
loaded.	In	this	case,	because	the	image	is	shipped	with	the	application,	no	error
will	be	thrown	at	runtime,	so	it	is	appropriate	to	disable	error	propagation.

	 let	photo	=	try!	loadImage(atPath:	"./Resources/John	

Appleseed.jpg")

Specifying	Cleanup	Actions

You	use	a	defer	statement	to	execute	a	set	of	statements	just	before	code
execution	leaves	the	current	block	of	code.	This	statement	lets	you	do	any
necessary	cleanup	that	should	be	performed	regardless	of	how	execution	leaves
the	current	block	of	code—whether	it	leaves	because	an	error	was	thrown	or
because	of	a	statement	such	as	return	or	break.	For	example,	you	can	use	a
defer	statement	to	ensure	that	file	descriptors	are	closed	and	manually	allocated
memory	is	freed.

A	defer	statement	defers	execution	until	the	current	scope	is	exited.	This
statement	consists	of	the	defer	keyword	and	the	statements	to	be	executed	later.
The	deferred	statements	may	not	contain	any	code	that	would	transfer	control
out	of	the	statements,	such	as	a	break	or	a	return	statement,	or	by	throwing	an
error.	Deferred	actions	are	executed	in	the	reverse	of	the	order	that	they’re
written	in	your	source	code.	That	is,	the	code	in	the	first	defer	statement
executes	last,	the	code	in	the	second	defer	statement	executes	second	to	last,	and
so	on.	The	last	defer	statement	in	source	code	order	executes	first.

1 func	processFile(filename:	String)	throws	{

2 				if	exists(filename)	{

3 								let	file	=	open(filename)

4 								defer	{

5 												close(file)

6 								}

7 								while	let	line	=	try	file.readline()	{

8 												//	Work	with	the	file.

9 								}

10 								//	close(file)	is	called	here,	at	the	end	of	the	

scope.

11 				}

12 }

The	above	example	uses	a	defer	statement	to	ensure	that	the	open(_:)	function
has	a	corresponding	call	to	close(_:).

NOTE

You	can	use	a	defer	statement	even	when	no	error	handling	code	is	involved.

Type	Casting

Type	casting	is	a	way	to	check	the	type	of	an	instance,	or	to	treat	that	instance	as
a	different	superclass	or	subclass	from	somewhere	else	in	its	own	class
hierarchy.

Type	casting	in	Swift	is	implemented	with	the	is	and	as	operators.	These	two
operators	provide	a	simple	and	expressive	way	to	check	the	type	of	a	value	or
cast	a	value	to	a	different	type.

You	can	also	use	type	casting	to	check	whether	a	type	conforms	to	a	protocol,	as
described	in	Checking	for	Protocol	Conformance.

Defining	a	Class	Hierarchy	for	Type	Casting

You	can	use	type	casting	with	a	hierarchy	of	classes	and	subclasses	to	check	the
type	of	a	particular	class	instance	and	to	cast	that	instance	to	another	class	within
the	same	hierarchy.	The	three	code	snippets	below	define	a	hierarchy	of	classes
and	an	array	containing	instances	of	those	classes,	for	use	in	an	example	of	type
casting.

The	first	snippet	defines	a	new	base	class	called	MediaItem.	This	class	provides
basic	functionality	for	any	kind	of	item	that	appears	in	a	digital	media	library.
Specifically,	it	declares	a	name	property	of	type	String,	and	an	init	name
initializer.	(It	is	assumed	that	all	media	items,	including	all	movies	and	songs,
will	have	a	name.)

1 class	MediaItem	{

2 				var	name:	String

3 				init(name:	String)	{

4 								self.name	=	name

5 				}

6 }

The	next	snippet	defines	two	subclasses	of	MediaItem.	The	first	subclass,	Movie,
encapsulates	additional	information	about	a	movie	or	film.	It	adds	a	director
property	on	top	of	the	base	MediaItem	class,	with	a	corresponding	initializer.	The
second	subclass,	Song,	adds	an	artist	property	and	initializer	on	top	of	the	base
class:

1 class	Movie:	MediaItem	{

2 				var	director:	String

3 				init(name:	String,	director:	String)	{

4 								self.director	=	director

5 								super.init(name:	name)

6 				}

7 }

8

9 class	Song:	MediaItem	{

10 				var	artist:	String

11 				init(name:	String,	artist:	String)	{

12 								self.artist	=	artist

13 								super.init(name:	name)

14 				}

15 }

The	final	snippet	creates	a	constant	array	called	library,	which	contains	two
Movie	instances	and	three	Song	instances.	The	type	of	the	library	array	is
inferred	by	initializing	it	with	the	contents	of	an	array	literal.	Swift’s	type
checker	is	able	to	deduce	that	Movie	and	Song	have	a	common	superclass	of
MediaItem,	and	so	it	infers	a	type	of	[MediaItem]	for	the	library	array:

1 let	library	=	[

2 				Movie(name:	"Casablanca",	director:	"Michael	Curtiz"),

3 				Song(name:	"Blue	Suede	Shoes",	artist:	"Elvis	Presley"),

4 				Movie(name:	"Citizen	Kane",	director:	"Orson	Welles"),

5 				Song(name:	"The	One	And	Only",	artist:	"Chesney	Hawkes"),

6 				Song(name:	"Never	Gonna	Give	You	Up",	artist:	"Rick	

Astley")

7]

8 //	the	type	of	"library"	is	inferred	to	be	[MediaItem]

The	items	stored	in	library	are	still	Movie	and	Song	instances	behind	the	scenes.
However,	if	you	iterate	over	the	contents	of	this	array,	the	items	you	receive	back
are	typed	as	MediaItem,	and	not	as	Movie	or	Song.	In	order	to	work	with	them	as
their	native	type,	you	need	to	check	their	type,	or	downcast	them	to	a	different
type,	as	described	below.

Checking	Type

Use	the	type	check	operator	(is)	to	check	whether	an	instance	is	of	a	certain
subclass	type.	The	type	check	operator	returns	true	if	the	instance	is	of	that
subclass	type	and	false	if	it	is	not.

The	example	below	defines	two	variables,	movieCount	and	songCount,	which
count	the	number	of	Movie	and	Song	instances	in	the	library	array:

1 var	movieCount	=	0

2 var	songCount	=	0

3

4 for	item	in	library	{

5 				if	item	is	Movie	{

6 								movieCount	+=	1

7 				}	else	if	item	is	Song	{

8 								songCount	+=	1

9 				}

10 }

11

12 print("Media	library	contains	\(movieCount)	movies	and	\

(songCount)	songs")

13 //	Prints	"Media	library	contains	2	movies	and	3	songs"

This	example	iterates	through	all	items	in	the	library	array.	On	each	pass,	the
for-in	loop	sets	the	item	constant	to	the	next	MediaItem	in	the	array.

item	is	Movie	returns	true	if	the	current	MediaItem	is	a	Movie	instance	and	false
if	it	is	not.	Similarly,	item	is	Song	checks	whether	the	item	is	a	Song	instance.
At	the	end	of	the	for-in	loop,	the	values	of	movieCount	and	songCount	contain	a
count	of	how	many	MediaItem	instances	were	found	of	each	type.

Downcasting

A	constant	or	variable	of	a	certain	class	type	may	actually	refer	to	an	instance	of
a	subclass	behind	the	scenes.	Where	you	believe	this	is	the	case,	you	can	try	to
downcast	to	the	subclass	type	with	a	type	cast	operator	(as?	or	as!).

Because	downcasting	can	fail,	the	type	cast	operator	comes	in	two	different
forms.	The	conditional	form,	as?,	returns	an	optional	value	of	the	type	you	are
trying	to	downcast	to.	The	forced	form,	as!,	attempts	the	downcast	and	force-
unwraps	the	result	as	a	single	compound	action.

Use	the	conditional	form	of	the	type	cast	operator	(as?)	when	you	are	not	sure	if
the	downcast	will	succeed.	This	form	of	the	operator	will	always	return	an
optional	value,	and	the	value	will	be	nil	if	the	downcast	was	not	possible.	This
enables	you	to	check	for	a	successful	downcast.

Use	the	forced	form	of	the	type	cast	operator	(as!)	only	when	you	are	sure	that
the	downcast	will	always	succeed.	This	form	of	the	operator	will	trigger	a
runtime	error	if	you	try	to	downcast	to	an	incorrect	class	type.

The	example	below	iterates	over	each	MediaItem	in	library,	and	prints	an
appropriate	description	for	each	item.	To	do	this,	it	needs	to	access	each	item	as
a	true	Movie	or	Song,	and	not	just	as	a	MediaItem.	This	is	necessary	in	order	for	it
to	be	able	to	access	the	director	or	artist	property	of	a	Movie	or	Song	for	use	in
the	description.

In	this	example,	each	item	in	the	array	might	be	a	Movie,	or	it	might	be	a	Song.
You	don’t	know	in	advance	which	actual	class	to	use	for	each	item,	and	so	it	is
appropriate	to	use	the	conditional	form	of	the	type	cast	operator	(as?)	to	check
the	downcast	each	time	through	the	loop:

1 for	item	in	library	{

2 				if	let	movie	=	item	as?	Movie	{

3 								print("Movie:	\(movie.name),	dir.	\(movie.director)")

4 				}	else	if	let	song	=	item	as?	Song	{

5 								print("Song:	\(song.name),	by	\(song.artist)")

6 				}

7 }

8

9 //	Movie:	Casablanca,	dir.	Michael	Curtiz

10 //	Song:	Blue	Suede	Shoes,	by	Elvis	Presley

11 //	Movie:	Citizen	Kane,	dir.	Orson	Welles

12 //	Song:	The	One	And	Only,	by	Chesney	Hawkes

13 //	Song:	Never	Gonna	Give	You	Up,	by	Rick	Astley

The	example	starts	by	trying	to	downcast	the	current	item	as	a	Movie.	Because
item	is	a	MediaItem	instance,	it’s	possible	that	it	might	be	a	Movie;	equally,	it’s
also	possible	that	it	might	be	a	Song,	or	even	just	a	base	MediaItem.	Because	of
this	uncertainty,	the	as?	form	of	the	type	cast	operator	returns	an	optional	value
when	attempting	to	downcast	to	a	subclass	type.	The	result	of	item	as?	Movie	is
of	type	Movie?,	or	“optional	Movie”.

Downcasting	to	Movie	fails	when	applied	to	the	Song	instances	in	the	library
array.	To	cope	with	this,	the	example	above	uses	optional	binding	to	check

whether	the	optional	Movie	actually	contains	a	value	(that	is,	to	find	out	whether
the	downcast	succeeded.)	This	optional	binding	is	written	“if	let	movie	=	item
as?	Movie”,	which	can	be	read	as:

“Try	to	access	item	as	a	Movie.	If	this	is	successful,	set	a	new	temporary	constant
called	movie	to	the	value	stored	in	the	returned	optional	Movie.”

If	the	downcasting	succeeds,	the	properties	of	movie	are	then	used	to	print	a
description	for	that	Movie	instance,	including	the	name	of	its	director.	A	similar
principle	is	used	to	check	for	Song	instances,	and	to	print	an	appropriate
description	(including	artist	name)	whenever	a	Song	is	found	in	the	library.

NOTE

Casting	does	not	actually	modify	the	instance	or	change	its	values.	The	underlying	instance	remains
the	same;	it	is	simply	treated	and	accessed	as	an	instance	of	the	type	to	which	it	has	been	cast.

Type	Casting	for	Any	and	AnyObject

Swift	provides	two	special	types	for	working	with	nonspecific	types:

Any	can	represent	an	instance	of	any	type	at	all,	including	function	types.

AnyObject	can	represent	an	instance	of	any	class	type.

Use	Any	and	AnyObject	only	when	you	explicitly	need	the	behavior	and
capabilities	they	provide.	It	is	always	better	to	be	specific	about	the	types	you
expect	to	work	with	in	your	code.

Here’s	an	example	of	using	Any	to	work	with	a	mix	of	different	types,	including
function	types	and	nonclass	types.	The	example	creates	an	array	called	things,
which	can	store	values	of	type	Any:

1 var	things	=	[Any]()

2

3 things.append(0)

4 things.append(0.0)

5 things.append(42)

6 things.append(3.14159)

7 things.append("hello")

8 things.append((3.0,	5.0))

9 things.append(Movie(name:	"Ghostbusters",	director:	"Ivan	

Reitman"))

10 things.append({	(name:	String)	->	String	in	"Hello,	\(name)"	

})

The	things	array	contains	two	Int	values,	two	Double	values,	a	String	value,	a
tuple	of	type	(Double,	Double),	the	movie	“Ghostbusters”,	and	a	closure
expression	that	takes	a	String	value	and	returns	another	String	value.

To	discover	the	specific	type	of	a	constant	or	variable	that	is	known	only	to	be	of
type	Any	or	AnyObject,	you	can	use	an	is	or	as	pattern	in	a	switch	statement’s
cases.	The	example	below	iterates	over	the	items	in	the	things	array	and	queries
the	type	of	each	item	with	a	switch	statement.	Several	of	the	switch	statement’s
cases	bind	their	matched	value	to	a	constant	of	the	specified	type	to	enable	its
value	to	be	printed:

1 for	thing	in	things	{

2 				switch	thing	{

3 				case	0	as	Int:

4 								print("zero	as	an	Int")

5 				case	0	as	Double:

6 								print("zero	as	a	Double")

7 				case	let	someInt	as	Int:

8 								print("an	integer	value	of	\(someInt)")

9 				case	let	someDouble	as	Double	where	someDouble	>	0:

10 								print("a	positive	double	value	of	\(someDouble)")

11 				case	is	Double:

12 								print("some	other	double	value	that	I	don't	want	to	

print")

13 				case	let	someString	as	String:

14 								print("a	string	value	of	\"\(someString)\"")

15 				case	let	(x,	y)	as	(Double,	Double):

16 								print("an	(x,	y)	point	at	\(x),	\(y)")

17 				case	let	movie	as	Movie:

18 								print("a	movie	called	\(movie.name),	dir.	\

(movie.director)")

19 				case	let	stringConverter	as	(String)	->	String:

20 								print(stringConverter("Michael"))

21 				default:

22 								print("something	else")

23 				}

24 }

25

26 //	zero	as	an	Int

27 //	zero	as	a	Double

28 //	an	integer	value	of	42

29 //	a	positive	double	value	of	3.14159

30 //	a	string	value	of	"hello"

31 //	an	(x,	y)	point	at	3.0,	5.0

32 //	a	movie	called	Ghostbusters,	dir.	Ivan	Reitman

33 //	Hello,	Michael

NOTE

The	Any	type	represents	values	of	any	type,	including	optional	types.	Swift	gives	you	a	warning	if
you	use	an	optional	value	where	a	value	of	type	Any	is	expected.	If	you	really	do	need	to	use	an
optional	value	as	an	Any	value,	you	can	use	the	as	operator	to	explicitly	cast	the	optional	to	Any,	as
shown	below.

1 let	optionalNumber:	Int?	=	3

2 things.append(optionalNumber)								//	Warning

3 things.append(optionalNumber	as	Any)	//	No	warning

Nested	Types

Enumerations	are	often	created	to	support	a	specific	class	or	structure’s
functionality.	Similarly,	it	can	be	convenient	to	define	utility	classes	and
structures	purely	for	use	within	the	context	of	a	more	complex	type.	To
accomplish	this,	Swift	enables	you	to	define	nested	types,	whereby	you	nest
supporting	enumerations,	classes,	and	structures	within	the	definition	of	the	type
they	support.

To	nest	a	type	within	another	type,	write	its	definition	within	the	outer	braces	of
the	type	it	supports.	Types	can	be	nested	to	as	many	levels	as	are	required.

Nested	Types	in	Action

The	example	below	defines	a	structure	called	BlackjackCard,	which	models	a
playing	card	as	used	in	the	game	of	Blackjack.	The	BlackjackCard	structure
contains	two	nested	enumeration	types	called	Suit	and	Rank.

In	Blackjack,	the	Ace	cards	have	a	value	of	either	one	or	eleven.	This	feature	is
represented	by	a	structure	called	Values,	which	is	nested	within	the	Rank
enumeration:

1 struct	BlackjackCard	{

2

3 				//	nested	Suit	enumeration

4 				enum	Suit:	Character	{

5 								case	spades	=	"♠",	hearts	=	"♡",	diamonds	=	"♢",	clubs	

=	"♣"

6 				}

7

8 				//	nested	Rank	enumeration

9 				enum	Rank:	Int	{

10 								case	two	=	2,	three,	four,	five,	six,	seven,	eight,	

nine,	ten

11 								case	jack,	queen,	king,	ace

12 								struct	Values	{

13 												let	first:	Int,	second:	Int?

14 								}

15 								var	values:	Values	{

16 												switch	self	{

17 												case	.ace:

18 																return	Values(first:	1,	second:	11)

19 												case	.jack,	.queen,	.king:

20 																return	Values(first:	10,	second:	nil)

21 												default:

22 																return	Values(first:	self.rawValue,	second:	

nil)

23 												}

24 								}

25 				}

26

27 				//	BlackjackCard	properties	and	methods

28 				let	rank:	Rank,	suit:	Suit

29 				var	description:	String	{

30 								var	output	=	"suit	is	\(suit.rawValue),"

31 								output	+=	"	value	is	\(rank.values.first)"

32 								if	let	second	=	rank.values.second	{

33 												output	+=	"	or	\(second)"

34 								}

35 								return	output

36 				}

37 }

The	Suit	enumeration	describes	the	four	common	playing	card	suits,	together
with	a	raw	Character	value	to	represent	their	symbol.

The	Rank	enumeration	describes	the	thirteen	possible	playing	card	ranks,
together	with	a	raw	Int	value	to	represent	their	face	value.	(This	raw	Int	value	is
not	used	for	the	Jack,	Queen,	King,	and	Ace	cards.)

As	mentioned	above,	the	Rank	enumeration	defines	a	further	nested	structure	of
its	own,	called	Values.	This	structure	encapsulates	the	fact	that	most	cards	have
one	value,	but	the	Ace	card	has	two	values.	The	Values	structure	defines	two
properties	to	represent	this:

first,	of	type	Int

second,	of	type	Int?,	or	“optional	Int”

Rank	also	defines	a	computed	property,	values,	which	returns	an	instance	of	the
Values	structure.	This	computed	property	considers	the	rank	of	the	card	and
initializes	a	new	Values	instance	with	appropriate	values	based	on	its	rank.	It
uses	special	values	for	jack,	queen,	king,	and	ace.	For	the	numeric	cards,	it	uses
the	rank’s	raw	Int	value.

The	BlackjackCard	structure	itself	has	two	properties—rank	and	suit.	It	also
defines	a	computed	property	called	description,	which	uses	the	values	stored	in
rank	and	suit	to	build	a	description	of	the	name	and	value	of	the	card.	The
description	property	uses	optional	binding	to	check	whether	there	is	a	second
value	to	display,	and	if	so,	inserts	additional	description	detail	for	that	second
value.

Because	BlackjackCard	is	a	structure	with	no	custom	initializers,	it	has	an
implicit	memberwise	initializer,	as	described	in	Memberwise	Initializers	for
Structure	Types.	You	can	use	this	initializer	to	initialize	a	new	constant	called
theAceOfSpades:

1 let	theAceOfSpades	=	BlackjackCard(rank:	.ace,	suit:	.spades)

2 print("theAceOfSpades:	\(theAceOfSpades.description)")

3 //	Prints	"theAceOfSpades:	suit	is	♠,	value	is	1	or	11"

Even	though	Rank	and	Suit	are	nested	within	BlackjackCard,	their	type	can	be
inferred	from	context,	and	so	the	initialization	of	this	instance	is	able	to	refer	to
the	enumeration	cases	by	their	case	names	(.ace	and	.spades)	alone.	In	the
example	above,	the	description	property	correctly	reports	that	the	Ace	of
Spades	has	a	value	of	1	or	11.

Referring	to	Nested	Types

To	use	a	nested	type	outside	of	its	definition	context,	prefix	its	name	with	the
name	of	the	type	it	is	nested	within:

1 let	heartsSymbol	=	BlackjackCard.Suit.hearts.rawValue

2 //	heartsSymbol	is	"♡"

For	the	example	above,	this	enables	the	names	of	Suit,	Rank,	and	Values	to	be
kept	deliberately	short,	because	their	names	are	naturally	qualified	by	the	context
in	which	they	are	defined.

Extensions

Extensions	add	new	functionality	to	an	existing	class,	structure,	enumeration,	or
protocol	type.	This	includes	the	ability	to	extend	types	for	which	you	do	not
have	access	to	the	original	source	code	(known	as	retroactive	modeling).
Extensions	are	similar	to	categories	in	Objective-C.	(Unlike	Objective-C
categories,	Swift	extensions	do	not	have	names.)

Extensions	in	Swift	can:

Add	computed	instance	properties	and	computed	type	properties

Define	instance	methods	and	type	methods

Provide	new	initializers

Define	subscripts

Define	and	use	new	nested	types

Make	an	existing	type	conform	to	a	protocol

In	Swift,	you	can	even	extend	a	protocol	to	provide	implementations	of	its
requirements	or	add	additional	functionality	that	conforming	types	can	take
advantage	of.	For	more	details,	see	Protocol	Extensions.

NOTE

Extensions	can	add	new	functionality	to	a	type,	but	they	cannot	override	existing	functionality.

Extension	Syntax

Declare	extensions	with	the	extension	keyword:

1 extension	SomeType	{

2 				//	new	functionality	to	add	to	SomeType	goes	here

3 }

An	extension	can	extend	an	existing	type	to	make	it	adopt	one	or	more	protocols.
To	add	protocol	conformance,	you	write	the	protocol	names	the	same	way	as	you
write	them	for	a	class	or	structure:

1 extension	SomeType:	SomeProtocol,	AnotherProtocol	{

2 				//	implementation	of	protocol	requirements	goes	here

3 }

Adding	protocol	conformance	in	this	way	is	described	in	Adding	Protocol
Conformance	with	an	Extension.

An	extension	can	be	used	to	extend	an	existing	generic	type,	as	described	in
Extending	a	Generic	Type.	You	can	also	extend	a	generic	type	to	conditionally
add	functionality,	as	described	in	Extensions	with	a	Generic	Where	Clause.

NOTE

If	you	define	an	extension	to	add	new	functionality	to	an	existing	type,	the	new	functionality	will	be
available	on	all	existing	instances	of	that	type,	even	if	they	were	created	before	the	extension	was
defined.

Computed	Properties

Extensions	can	add	computed	instance	properties	and	computed	type	properties
to	existing	types.	This	example	adds	five	computed	instance	properties	to	Swift’s
built-in	Double	type,	to	provide	basic	support	for	working	with	distance	units:

1 extension	Double	{

2 				var	km:	Double	{	return	self	*	1_000.0	}

3 				var	m:	Double	{	return	self	}

4 				var	cm:	Double	{	return	self	/	100.0	}

5 				var	mm:	Double	{	return	self	/	1_000.0	}

6 				var	ft:	Double	{	return	self	/	3.28084	}

7 }

8 let	oneInch	=	25.4.mm

9 print("One	inch	is	\(oneInch)	meters")

10 //	Prints	"One	inch	is	0.0254	meters"

11 let	threeFeet	=	3.ft

12 print("Three	feet	is	\(threeFeet)	meters")

13 //	Prints	"Three	feet	is	0.914399970739201	meters"

These	computed	properties	express	that	a	Double	value	should	be	considered	as	a
certain	unit	of	length.	Although	they	are	implemented	as	computed	properties,
the	names	of	these	properties	can	be	appended	to	a	floating-point	literal	value
with	dot	syntax,	as	a	way	to	use	that	literal	value	to	perform	distance
conversions.

In	this	example,	a	Double	value	of	1.0	is	considered	to	represent	“one	meter”.
This	is	why	the	m	computed	property	returns	self—the	expression	1.m	is
considered	to	calculate	a	Double	value	of	1.0.

Other	units	require	some	conversion	to	be	expressed	as	a	value	measured	in
meters.	One	kilometer	is	the	same	as	1,000	meters,	so	the	km	computed	property
multiplies	the	value	by	1_000.00	to	convert	into	a	number	expressed	in	meters.
Similarly,	there	are	3.28084	feet	in	a	meter,	and	so	the	ft	computed	property
divides	the	underlying	Double	value	by	3.28084,	to	convert	it	from	feet	to	meters.

These	properties	are	read-only	computed	properties,	and	so	they	are	expressed
without	the	get	keyword,	for	brevity.	Their	return	value	is	of	type	Double,	and
can	be	used	within	mathematical	calculations	wherever	a	Double	is	accepted:

1 let	aMarathon	=	42.km	+	195.m

2 print("A	marathon	is	\(aMarathon)	meters	long")

3 //	Prints	"A	marathon	is	42195.0	meters	long"

NOTE

Extensions	can	add	new	computed	properties,	but	they	cannot	add	stored	properties,	or	add	property
observers	to	existing	properties.

Initializers

Extensions	can	add	new	initializers	to	existing	types.	This	enables	you	to	extend
other	types	to	accept	your	own	custom	types	as	initializer	parameters,	or	to
provide	additional	initialization	options	that	were	not	included	as	part	of	the
type’s	original	implementation.

Extensions	can	add	new	convenience	initializers	to	a	class,	but	they	cannot	add
new	designated	initializers	or	deinitializers	to	a	class.	Designated	initializers	and
deinitializers	must	always	be	provided	by	the	original	class	implementation.

If	you	use	an	extension	to	add	an	initializer	to	a	value	type	that	provides	default
values	for	all	of	its	stored	properties	and	does	not	define	any	custom	initializers,
you	can	call	the	default	initializer	and	memberwise	initializer	for	that	value	type
from	within	your	extension’s	initializer.	This	wouldn’t	be	the	case	if	you	had
written	the	initializer	as	part	of	the	value	type’s	original	implementation,	as
described	in	Initializer	Delegation	for	Value	Types.

If	you	use	an	extension	to	add	an	initializer	to	a	structure	that	was	declared	in
another	module,	the	new	initializer	can’t	access	self	until	it	calls	an	initializer
from	the	defining	module.

The	example	below	defines	a	custom	Rect	structure	to	represent	a	geometric
rectangle.	The	example	also	defines	two	supporting	structures	called	Size	and
Point,	both	of	which	provide	default	values	of	0.0	for	all	of	their	properties:

1 struct	Size	{

2 				var	width	=	0.0,	height	=	0.0

3 }

4 struct	Point	{

5 				var	x	=	0.0,	y	=	0.0

6 }

7 struct	Rect	{

8 				var	origin	=	Point()

9 				var	size	=	Size()

10 }

Because	the	Rect	structure	provides	default	values	for	all	of	its	properties,	it
receives	a	default	initializer	and	a	memberwise	initializer	automatically,	as
described	in	Default	Initializers.	These	initializers	can	be	used	to	create	new
Rect	instances:

1 let	defaultRect	=	Rect()

2 let	memberwiseRect	=	Rect(origin:	Point(x:	2.0,	y:	2.0),

3 			size:	Size(width:	5.0,	height:	5.0))

You	can	extend	the	Rect	structure	to	provide	an	additional	initializer	that	takes	a
specific	center	point	and	size:

1 extension	Rect	{

2 				init(center:	Point,	size:	Size)	{

3 								let	originX	=	center.x	-	(size.width	/	2)

4 								let	originY	=	center.y	-	(size.height	/	2)

5 								self.init(origin:	Point(x:	originX,	y:	originY),	size:	

size)

6 				}

7 }

This	new	initializer	starts	by	calculating	an	appropriate	origin	point	based	on	the
provided	center	point	and	size	value.	The	initializer	then	calls	the	structure’s
automatic	memberwise	initializer	init(origin:size:),	which	stores	the	new
origin	and	size	values	in	the	appropriate	properties:

1 let	centerRect	=	Rect(center:	Point(x:	4.0,	y:	4.0),

2 																						size:	Size(width:	3.0,	height:	3.0))

3 //	centerRect's	origin	is	(2.5,	2.5)	and	its	size	is	(3.0,	3.0)

NOTE

If	you	provide	a	new	initializer	with	an	extension,	you	are	still	responsible	for	making	sure	that	each
instance	is	fully	initialized	once	the	initializer	completes.

Methods

Extensions	can	add	new	instance	methods	and	type	methods	to	existing	types.
The	following	example	adds	a	new	instance	method	called	repetitions	to	the
Int	type:

1 extension	Int	{

2 				func	repetitions(task:	()	->	Void)	{

3 								for	_	in	0..<self	{

4 												task()

5 								}

6 				}

7 }

The	repetitions(task:)	method	takes	a	single	argument	of	type	()	->	Void,
which	indicates	a	function	that	has	no	parameters	and	does	not	return	a	value.

After	defining	this	extension,	you	can	call	the	repetitions(task:)	method	on
any	integer	to	perform	a	task	that	many	number	of	times:

1 3.repetitions	{

2 				print("Hello!")

3 }

4 //	Hello!

5 //	Hello!

6 //	Hello!

Mutating	Instance	Methods
Instance	methods	added	with	an	extension	can	also	modify	(or	mutate)	the
instance	itself.	Structure	and	enumeration	methods	that	modify	self	or	its
properties	must	mark	the	instance	method	as	mutating,	just	like	mutating
methods	from	an	original	implementation.

The	example	below	adds	a	new	mutating	method	called	square	to	Swift’s	Int
type,	which	squares	the	original	value:

1 extension	Int	{

2 				mutating	func	square()	{

3 								self	=	self	*	self

4 				}

5 }

6 var	someInt	=	3

7 someInt.square()

8 //	someInt	is	now	9

Subscripts

Extensions	can	add	new	subscripts	to	an	existing	type.	This	example	adds	an
integer	subscript	to	Swift’s	built-in	Int	type.	This	subscript	[n]	returns	the
decimal	digit	n	places	in	from	the	right	of	the	number:

123456789[0]	returns	9

123456789[1]	returns	8

…and	so	on:

1 extension	Int	{

2 				subscript(digitIndex:	Int)	->	Int	{

3 								var	decimalBase	=	1

4 								for	_	in	0..<digitIndex	{

5 												decimalBase	*=	10

6 								}

7 								return	(self	/	decimalBase)	%	10

8 				}

9 }

10 746381295[0]

11 //	returns	5

12 746381295[1]

13 //	returns	9

14 746381295[2]

15 //	returns	2

16 746381295[8]

17 //	returns	7

If	the	Int	value	does	not	have	enough	digits	for	the	requested	index,	the
subscript	implementation	returns	0,	as	if	the	number	had	been	padded	with	zeros
to	the	left:

1 746381295[9]

2 //	returns	0,	as	if	you	had	requested:

3 0746381295[9]

Nested	Types

Extensions	can	add	new	nested	types	to	existing	classes,	structures,	and
enumerations:

1 extension	Int	{

2 				enum	Kind	{

3 								case	negative,	zero,	positive

4 				}

5 				var	kind:	Kind	{

6 								switch	self	{

7 								case	0:

8 												return	.zero

9 								case	let	x	where	x	>	0:

10 												return	.positive

11 								default:

12 												return	.negative

13 								}

14 				}

15 }

This	example	adds	a	new	nested	enumeration	to	Int.	This	enumeration,	called
Kind,	expresses	the	kind	of	number	that	a	particular	integer	represents.
Specifically,	it	expresses	whether	the	number	is	negative,	zero,	or	positive.

This	example	also	adds	a	new	computed	instance	property	to	Int,	called	kind,
which	returns	the	appropriate	Kind	enumeration	case	for	that	integer.

The	nested	enumeration	can	now	be	used	with	any	Int	value:

1 func	printIntegerKinds(_	numbers:	[Int])	{

2 				for	number	in	numbers	{

3 								switch	number.kind	{

4 								case	.negative:

5 												print("-	",	terminator:	"")

6 								case	.zero:

7 												print("0	",	terminator:	"")

8 								case	.positive:

9 												print("+	",	terminator:	"")

10 								}

11 				}

12 				print("")

13 }

14 printIntegerKinds([3,	19,	-27,	0,	-6,	0,	7])

15 //	Prints	"+	+	-	0	-	0	+	"

This	function,	printIntegerKinds(_:),	takes	an	input	array	of	Int	values	and
iterates	over	those	values	in	turn.	For	each	integer	in	the	array,	the	function
considers	the	kind	computed	property	for	that	integer,	and	prints	an	appropriate
description.

NOTE

number.kind	is	already	known	to	be	of	type	Int.Kind.	Because	of	this,	all	of	the	Int.Kind
case	values	can	be	written	in	shorthand	form	inside	the	switch	statement,	such	as	.negative
rather	than	Int.Kind.negative.

Protocols

A	protocol	defines	a	blueprint	of	methods,	properties,	and	other	requirements
that	suit	a	particular	task	or	piece	of	functionality.	The	protocol	can	then	be
adopted	by	a	class,	structure,	or	enumeration	to	provide	an	actual
implementation	of	those	requirements.	Any	type	that	satisfies	the	requirements
of	a	protocol	is	said	to	conform	to	that	protocol.

In	addition	to	specifying	requirements	that	conforming	types	must	implement,
you	can	extend	a	protocol	to	implement	some	of	these	requirements	or	to
implement	additional	functionality	that	conforming	types	can	take	advantage	of.

Protocol	Syntax

You	define	protocols	in	a	very	similar	way	to	classes,	structures,	and
enumerations:

1 protocol	SomeProtocol	{

2 				//	protocol	definition	goes	here

3 }

Custom	types	state	that	they	adopt	a	particular	protocol	by	placing	the	protocol’s
name	after	the	type’s	name,	separated	by	a	colon,	as	part	of	their	definition.
Multiple	protocols	can	be	listed,	and	are	separated	by	commas:

1 struct	SomeStructure:	FirstProtocol,	AnotherProtocol	{

2 				//	structure	definition	goes	here

3 }

If	a	class	has	a	superclass,	list	the	superclass	name	before	any	protocols	it
adopts,	followed	by	a	comma:

1 class	SomeClass:	SomeSuperclass,	FirstProtocol,	AnotherProtocol	

{

2 				//	class	definition	goes	here

3 }

Property	Requirements

A	protocol	can	require	any	conforming	type	to	provide	an	instance	property	or
type	property	with	a	particular	name	and	type.	The	protocol	doesn’t	specify
whether	the	property	should	be	a	stored	property	or	a	computed	property—it
only	specifies	the	required	property	name	and	type.	The	protocol	also	specifies
whether	each	property	must	be	gettable	or	gettable	and	settable.

If	a	protocol	requires	a	property	to	be	gettable	and	settable,	that	property
requirement	can’t	be	fulfilled	by	a	constant	stored	property	or	a	read-only
computed	property.	If	the	protocol	only	requires	a	property	to	be	gettable,	the
requirement	can	be	satisfied	by	any	kind	of	property,	and	it’s	valid	for	the
property	to	be	also	settable	if	this	is	useful	for	your	own	code.

Property	requirements	are	always	declared	as	variable	properties,	prefixed	with
the	var	keyword.	Gettable	and	settable	properties	are	indicated	by	writing	{	get
set	}	after	their	type	declaration,	and	gettable	properties	are	indicated	by	writing
{	get	}.

1 protocol	SomeProtocol	{

2 				var	mustBeSettable:	Int	{	get	set	}

3 				var	doesNotNeedToBeSettable:	Int	{	get	}

4 }

Always	prefix	type	property	requirements	with	the	static	keyword	when	you
define	them	in	a	protocol.	This	rule	pertains	even	though	type	property
requirements	can	be	prefixed	with	the	class	or	static	keyword	when
implemented	by	a	class:

1 protocol	AnotherProtocol	{

2 				static	var	someTypeProperty:	Int	{	get	set	}

3 }

Here’s	an	example	of	a	protocol	with	a	single	instance	property	requirement:

1 protocol	FullyNamed	{

2 				var	fullName:	String	{	get	}

3 }

The	FullyNamed	protocol	requires	a	conforming	type	to	provide	a	fully	qualified
name.	The	protocol	doesn’t	specify	anything	else	about	the	nature	of	the
conforming	type—it	only	specifies	that	the	type	must	be	able	to	provide	a	full
name	for	itself.	The	protocol	states	that	any	FullyNamed	type	must	have	a
gettable	instance	property	called	fullName,	which	is	of	type	String.

Here’s	an	example	of	a	simple	structure	that	adopts	and	conforms	to	the
FullyNamed	protocol:

1 struct	Person:	FullyNamed	{

2 				var	fullName:	String

3 }

4 let	john	=	Person(fullName:	"John	Appleseed")

5 //	john.fullName	is	"John	Appleseed"

This	example	defines	a	structure	called	Person,	which	represents	a	specific
named	person.	It	states	that	it	adopts	the	FullyNamed	protocol	as	part	of	the	first
line	of	its	definition.

Each	instance	of	Person	has	a	single	stored	property	called	fullName,	which	is	of
type	String.	This	matches	the	single	requirement	of	the	FullyNamed	protocol,	and
means	that	Person	has	correctly	conformed	to	the	protocol.	(Swift	reports	an
error	at	compile-time	if	a	protocol	requirement	is	not	fulfilled.)

Here’s	a	more	complex	class,	which	also	adopts	and	conforms	to	the	FullyNamed

protocol:

1 class	Starship:	FullyNamed	{

2 				var	prefix:	String?

3 				var	name:	String

4 				init(name:	String,	prefix:	String?	=	nil)	{

5 								self.name	=	name

6 								self.prefix	=	prefix

7 				}

8 				var	fullName:	String	{

9 								return	(prefix	!=	nil	?	prefix!	+	"	"	:	"")	+	name

10 				}

11 }

12 var	ncc1701	=	Starship(name:	"Enterprise",	prefix:	"USS")

13 //	ncc1701.fullName	is	"USS	Enterprise"

This	class	implements	the	fullName	property	requirement	as	a	computed	read-
only	property	for	a	starship.	Each	Starship	class	instance	stores	a	mandatory
name	and	an	optional	prefix.	The	fullName	property	uses	the	prefix	value	if	it
exists,	and	prepends	it	to	the	beginning	of	name	to	create	a	full	name	for	the
starship.

Method	Requirements

Protocols	can	require	specific	instance	methods	and	type	methods	to	be
implemented	by	conforming	types.	These	methods	are	written	as	part	of	the
protocol’s	definition	in	exactly	the	same	way	as	for	normal	instance	and	type
methods,	but	without	curly	braces	or	a	method	body.	Variadic	parameters	are
allowed,	subject	to	the	same	rules	as	for	normal	methods.	Default	values,
however,	can’t	be	specified	for	method	parameters	within	a	protocol’s	definition.

As	with	type	property	requirements,	you	always	prefix	type	method

requirements	with	the	static	keyword	when	they’re	defined	in	a	protocol.	This
is	true	even	though	type	method	requirements	are	prefixed	with	the	class	or
static	keyword	when	implemented	by	a	class:

1 protocol	SomeProtocol	{

2 				static	func	someTypeMethod()

3 }

The	following	example	defines	a	protocol	with	a	single	instance	method
requirement:

1 protocol	RandomNumberGenerator	{

2 				func	random()	->	Double

3 }

This	protocol,	RandomNumberGenerator,	requires	any	conforming	type	to	have	an
instance	method	called	random,	which	returns	a	Double	value	whenever	it’s
called.	Although	it’s	not	specified	as	part	of	the	protocol,	it’s	assumed	that	this
value	will	be	a	number	from	0.0	up	to	(but	not	including)	1.0.

The	RandomNumberGenerator	protocol	doesn’t	make	any	assumptions	about	how
each	random	number	will	be	generated—it	simply	requires	the	generator	to
provide	a	standard	way	to	generate	a	new	random	number.

Here’s	an	implementation	of	a	class	that	adopts	and	conforms	to	the
RandomNumberGenerator	protocol.	This	class	implements	a	pseudorandom
number	generator	algorithm	known	as	a	linear	congruential	generator:

1 class	LinearCongruentialGenerator:	RandomNumberGenerator	{

2 				var	lastRandom	=	42.0

3 				let	m	=	139968.0

4 				let	a	=	3877.0

5 				let	c	=	29573.0

6 				func	random()	->	Double	{

7 								lastRandom	=	((lastRandom	*	a	+	c)

8 												.truncatingRemainder(dividingBy:m))

9 								return	lastRandom	/	m

10 				}

11 }

12 let	generator	=	LinearCongruentialGenerator()

13 print("Here's	a	random	number:	\(generator.random())")

14 //	Prints	"Here's	a	random	number:	0.3746499199817101"

15 print("And	another	one:	\(generator.random())")

16 //	Prints	"And	another	one:	0.729023776863283"

Mutating	Method	Requirements

It’s	sometimes	necessary	for	a	method	to	modify	(or	mutate)	the	instance	it
belongs	to.	For	instance	methods	on	value	types	(that	is,	structures	and
enumerations)	you	place	the	mutating	keyword	before	a	method’s	func	keyword
to	indicate	that	the	method	is	allowed	to	modify	the	instance	it	belongs	to	and
any	properties	of	that	instance.	This	process	is	described	in	Modifying	Value
Types	from	Within	Instance	Methods.

If	you	define	a	protocol	instance	method	requirement	that	is	intended	to	mutate
instances	of	any	type	that	adopts	the	protocol,	mark	the	method	with	the
mutating	keyword	as	part	of	the	protocol’s	definition.	This	enables	structures
and	enumerations	to	adopt	the	protocol	and	satisfy	that	method	requirement.

NOTE

If	you	mark	a	protocol	instance	method	requirement	as	mutating,	you	don’t	need	to	write	the
mutating	keyword	when	writing	an	implementation	of	that	method	for	a	class.	The	mutating
keyword	is	only	used	by	structures	and	enumerations.

The	example	below	defines	a	protocol	called	Togglable,	which	defines	a	single
instance	method	requirement	called	toggle.	As	its	name	suggests,	the	toggle()

method	is	intended	to	toggle	or	invert	the	state	of	any	conforming	type,	typically
by	modifying	a	property	of	that	type.

The	toggle()	method	is	marked	with	the	mutating	keyword	as	part	of	the
Togglable	protocol	definition,	to	indicate	that	the	method	is	expected	to	mutate
the	state	of	a	conforming	instance	when	it’s	called:

1 protocol	Togglable	{

2 				mutating	func	toggle()

3 }

If	you	implement	the	Togglable	protocol	for	a	structure	or	enumeration,	that
structure	or	enumeration	can	conform	to	the	protocol	by	providing	an
implementation	of	the	toggle()	method	that	is	also	marked	as	mutating.

The	example	below	defines	an	enumeration	called	OnOffSwitch.	This
enumeration	toggles	between	two	states,	indicated	by	the	enumeration	cases	on
and	off.	The	enumeration’s	toggle	implementation	is	marked	as	mutating,	to
match	the	Togglable	protocol’s	requirements:

1 enum	OnOffSwitch:	Togglable	{

2 				case	off,	on

3 				mutating	func	toggle()	{

4 								switch	self	{

5 								case	.off:

6 												self	=	.on

7 								case	.on:

8 												self	=	.off

9 								}

10 				}

11 }

12 var	lightSwitch	=	OnOffSwitch.off

13 lightSwitch.toggle()

14 //	lightSwitch	is	now	equal	to	.on

Initializer	Requirements

Protocols	can	require	specific	initializers	to	be	implemented	by	conforming
types.	You	write	these	initializers	as	part	of	the	protocol’s	definition	in	exactly
the	same	way	as	for	normal	initializers,	but	without	curly	braces	or	an	initializer
body:

1 protocol	SomeProtocol	{

2 				init(someParameter:	Int)

3 }

Class	Implementations	of	Protocol	Initializer	Requirements
You	can	implement	a	protocol	initializer	requirement	on	a	conforming	class	as
either	a	designated	initializer	or	a	convenience	initializer.	In	both	cases,	you
must	mark	the	initializer	implementation	with	the	required	modifier:

1 class	SomeClass:	SomeProtocol	{

2 				required	init(someParameter:	Int)	{

3 								//	initializer	implementation	goes	here

4 				}

5 }

The	use	of	the	required	modifier	ensures	that	you	provide	an	explicit	or
inherited	implementation	of	the	initializer	requirement	on	all	subclasses	of	the
conforming	class,	such	that	they	also	conform	to	the	protocol.

For	more	information	on	required	initializers,	see	Required	Initializers.

NOTE

You	don’t	need	to	mark	protocol	initializer	implementations	with	the	required	modifier	on	classes
that	are	marked	with	the	final	modifier,	because	final	classes	can’t	subclassed.	For	more	about	the
final	modifier,	see	Preventing	Overrides.

If	a	subclass	overrides	a	designated	initializer	from	a	superclass,	and	also
implements	a	matching	initializer	requirement	from	a	protocol,	mark	the
initializer	implementation	with	both	the	required	and	override	modifiers:

1 protocol	SomeProtocol	{

2 				init()

3 }

4

5 class	SomeSuperClass	{

6 				init()	{

7 								//	initializer	implementation	goes	here

8 				}

9 }

10

11 class	SomeSubClass:	SomeSuperClass,	SomeProtocol	{

12 				//	"required"	from	SomeProtocol	conformance;	"override"	

from	SomeSuperClass

13 				required	override	init()	{

14 								//	initializer	implementation	goes	here

15 				}

16 }

Failable	Initializer	Requirements
Protocols	can	define	failable	initializer	requirements	for	conforming	types,	as
defined	in	Failable	Initializers.

A	failable	initializer	requirement	can	be	satisfied	by	a	failable	or	nonfailable

initializer	on	a	conforming	type.	A	nonfailable	initializer	requirement	can	be
satisfied	by	a	nonfailable	initializer	or	an	implicitly	unwrapped	failable
initializer.

Protocols	as	Types

Protocols	don’t	actually	implement	any	functionality	themselves.	Nonetheless,
you	can	use	protocols	as	a	fully	fledged	types	in	your	code.	Using	a	protocol	as	a
type	is	sometimes	called	an	existential	type,	which	comes	from	the	phrase	“there
exists	a	type	T	such	that	T	conforms	to	the	protocol”.

You	can	use	a	protocol	in	many	places	where	other	types	are	allowed,	including:

As	a	parameter	type	or	return	type	in	a	function,	method,	or	initializer

As	the	type	of	a	constant,	variable,	or	property

As	the	type	of	items	in	an	array,	dictionary,	or	other	container

NOTE

Because	protocols	are	types,	begin	their	names	with	a	capital	letter	(such	as	FullyNamed	and
RandomNumberGenerator)	to	match	the	names	of	other	types	in	Swift	(such	as	Int,	String,
and	Double).

Here’s	an	example	of	a	protocol	used	as	a	type:

1 class	Dice	{

2 				let	sides:	Int

3 				let	generator:	RandomNumberGenerator

4 				init(sides:	Int,	generator:	RandomNumberGenerator)	{

5 								self.sides	=	sides

6 								self.generator	=	generator

7 				}

8 				func	roll()	->	Int	{

9 								return	Int(generator.random()	*	Double(sides))	+	1

10 				}

11 }

This	example	defines	a	new	class	called	Dice,	which	represents	an	n-sided	dice
for	use	in	a	board	game.	Dice	instances	have	an	integer	property	called	sides,
which	represents	how	many	sides	they	have,	and	a	property	called	generator,
which	provides	a	random	number	generator	from	which	to	create	dice	roll
values.

The	generator	property	is	of	type	RandomNumberGenerator.	Therefore,	you	can
set	it	to	an	instance	of	any	type	that	adopts	the	RandomNumberGenerator	protocol.
Nothing	else	is	required	of	the	instance	you	assign	to	this	property,	except	that
the	instance	must	adopt	the	RandomNumberGenerator	protocol.	Because	its	type	is
RandomNumberGenerator,	code	inside	the	Dice	class	can	only	interact	with
generator	in	ways	that	apply	to	all	generators	that	conform	to	this	protocol.	That
means	it	can’t	use	any	methods	or	properties	that	are	defined	by	the	underlying
type	of	the	generator.	However,	you	can	downcast	from	a	protocol	type	to	an
underlying	type	in	the	same	way	you	can	downcast	from	a	superclass	to	a
subclass,	as	discussed	in	Downcasting.

Dice	also	has	an	initializer,	to	set	up	its	initial	state.	This	initializer	has	a
parameter	called	generator,	which	is	also	of	type	RandomNumberGenerator.	You
can	pass	a	value	of	any	conforming	type	in	to	this	parameter	when	initializing	a
new	Dice	instance.

Dice	provides	one	instance	method,	roll,	which	returns	an	integer	value	between
1	and	the	number	of	sides	on	the	dice.	This	method	calls	the	generator’s
random()	method	to	create	a	new	random	number	between	0.0	and	1.0,	and	uses
this	random	number	to	create	a	dice	roll	value	within	the	correct	range.	Because
generator	is	known	to	adopt	RandomNumberGenerator,	it’s	guaranteed	to	have	a
random()	method	to	call.

Here’s	how	the	Dice	class	can	be	used	to	create	a	six-sided	dice	with	a
LinearCongruentialGenerator	instance	as	its	random	number	generator:

1 var	d6	=	Dice(sides:	6,	generator:	

LinearCongruentialGenerator())

2 for	_	in	1...5	{

3 				print("Random	dice	roll	is	\(d6.roll())")

4 }

5 //	Random	dice	roll	is	3

6 //	Random	dice	roll	is	5

7 //	Random	dice	roll	is	4

8 //	Random	dice	roll	is	5

9 //	Random	dice	roll	is	4

Delegation

Delegation	is	a	design	pattern	that	enables	a	class	or	structure	to	hand	off	(or
delegate)	some	of	its	responsibilities	to	an	instance	of	another	type.	This	design
pattern	is	implemented	by	defining	a	protocol	that	encapsulates	the	delegated
responsibilities,	such	that	a	conforming	type	(known	as	a	delegate)	is	guaranteed
to	provide	the	functionality	that	has	been	delegated.	Delegation	can	be	used	to
respond	to	a	particular	action,	or	to	retrieve	data	from	an	external	source	without
needing	to	know	the	underlying	type	of	that	source.

The	example	below	defines	two	protocols	for	use	with	dice-based	board	games:

1 protocol	DiceGame	{

2 				var	dice:	Dice	{	get	}

3 				func	play()

4 }

5 protocol	DiceGameDelegate:	AnyObject	{

6 				func	gameDidStart(_	game:	DiceGame)

7 				func	game(_	game:	DiceGame,	didStartNewTurnWithDiceRoll	

diceRoll:	Int)

8 				func	gameDidEnd(_	game:	DiceGame)

9 }

The	DiceGame	protocol	is	a	protocol	that	can	be	adopted	by	any	game	that
involves	dice.

The	DiceGameDelegate	protocol	can	be	adopted	to	track	the	progress	of	a
DiceGame.	To	prevent	strong	reference	cycles,	delegates	are	declared	as	weak
references.	For	information	about	weak	references,	see	Strong	Reference	Cycles
Between	Class	Instances.	Marking	the	protocol	as	class-only	lets	the
SnakesAndLadders	class	later	in	this	chapter	declare	that	its	delegate	must	use	a
weak	reference.	A	class-only	protocol	is	marked	by	its	inheritance	from
AnyObject,	as	discussed	in	Class-Only	Protocols.

Here’s	a	version	of	the	Snakes	and	Ladders	game	originally	introduced	in
Control	Flow.	This	version	is	adapted	to	use	a	Dice	instance	for	its	dice-rolls;	to
adopt	the	DiceGame	protocol;	and	to	notify	a	DiceGameDelegate	about	its	progress:

1 class	SnakesAndLadders:	DiceGame	{

2 				let	finalSquare	=	25

3 				let	dice	=	Dice(sides:	6,	generator:	

LinearCongruentialGenerator())

4 				var	square	=	0

5 				var	board:	[Int]

6 				init()	{

7 								board	=	Array(repeating:	0,	count:	finalSquare	+	1)

8 								board[03]	=	+08;	board[06]	=	+11;	board[09]	=	+09;	

board[10]	=	+02

9 								board[14]	=	-10;	board[19]	=	-11;	board[22]	=	-02;	

board[24]	=	-08

10 				}

11 				weak	var	delegate:	DiceGameDelegate?

12 				func	play()	{

13 								square	=	0

14 								delegate?.gameDidStart(self)

15 								gameLoop:	while	square	!=	finalSquare	{

16 												let	diceRoll	=	dice.roll()

17 												delegate?.game(self,	didStartNewTurnWithDiceRoll:	

diceRoll)

18 												switch	square	+	diceRoll	{

19 												case	finalSquare:

20 																break	gameLoop

21 												case	let	newSquare	where	newSquare	>	finalSquare:

22 																continue	gameLoop

23 												default:

24 																square	+=	diceRoll

25 																square	+=	board[square]

26 												}

27 								}

28 								delegate?.gameDidEnd(self)

29 				}

30 }

For	a	description	of	the	Snakes	and	Ladders	gameplay,	see	Break.

This	version	of	the	game	is	wrapped	up	as	a	class	called	SnakesAndLadders,
which	adopts	the	DiceGame	protocol.	It	provides	a	gettable	dice	property	and	a
play()	method	in	order	to	conform	to	the	protocol.	(The	dice	property	is
declared	as	a	constant	property	because	it	doesn’t	need	to	change	after
initialization,	and	the	protocol	only	requires	that	it	must	be	gettable.)

The	Snakes	and	Ladders	game	board	setup	takes	place	within	the	class’s	init()
initializer.	All	game	logic	is	moved	into	the	protocol’s	play	method,	which	uses
the	protocol’s	required	dice	property	to	provide	its	dice	roll	values.

Note	that	the	delegate	property	is	defined	as	an	optional	DiceGameDelegate,
because	a	delegate	isn’t	required	in	order	to	play	the	game.	Because	it’s	of	an
optional	type,	the	delegate	property	is	automatically	set	to	an	initial	value	of
nil.	Thereafter,	the	game	instantiator	has	the	option	to	set	the	property	to	a
suitable	delegate.	Because	the	DiceGameDelegate	protocol	is	class-only,	you	can
declare	the	delegate	to	be	weak	to	prevent	reference	cycles.

DiceGameDelegate	provides	three	methods	for	tracking	the	progress	of	a	game.
These	three	methods	have	been	incorporated	into	the	game	logic	within	the
play()	method	above,	and	are	called	when	a	new	game	starts,	a	new	turn	begins,
or	the	game	ends.

Because	the	delegate	property	is	an	optional	DiceGameDelegate,	the	play()
method	uses	optional	chaining	each	time	it	calls	a	method	on	the	delegate.	If	the
delegate	property	is	nil,	these	delegate	calls	fail	gracefully	and	without	error.	If
the	delegate	property	is	non-nil,	the	delegate	methods	are	called,	and	are	passed
the	SnakesAndLadders	instance	as	a	parameter.

This	next	example	shows	a	class	called	DiceGameTracker,	which	adopts	the
DiceGameDelegate	protocol:

1 class	DiceGameTracker:	DiceGameDelegate	{

2 				var	numberOfTurns	=	0

3 				func	gameDidStart(_	game:	DiceGame)	{

4 								numberOfTurns	=	0

5 								if	game	is	SnakesAndLadders	{

6 												print("Started	a	new	game	of	Snakes	and	Ladders")

7 								}

8 								print("The	game	is	using	a	\(game.dice.sides)-sided	

dice")

9 				}

10 				func	game(_	game:	DiceGame,	didStartNewTurnWithDiceRoll	

diceRoll:	Int)	{

11 								numberOfTurns	+=	1

12 								print("Rolled	a	\(diceRoll)")

13 				}

14 				func	gameDidEnd(_	game:	DiceGame)	{

15 								print("The	game	lasted	for	\(numberOfTurns)	turns")

16 				}

17 }

DiceGameTracker	implements	all	three	methods	required	by	DiceGameDelegate.	It
uses	these	methods	to	keep	track	of	the	number	of	turns	a	game	has	taken.	It
resets	a	numberOfTurns	property	to	zero	when	the	game	starts,	increments	it	each
time	a	new	turn	begins,	and	prints	out	the	total	number	of	turns	once	the	game
has	ended.

The	implementation	of	gameDidStart(_:)	shown	above	uses	the	game	parameter
to	print	some	introductory	information	about	the	game	that	is	about	to	be	played.
The	game	parameter	has	a	type	of	DiceGame,	not	SnakesAndLadders,	and	so
gameDidStart(_:)	can	access	and	use	only	methods	and	properties	that	are
implemented	as	part	of	the	DiceGame	protocol.	However,	the	method	is	still	able
to	use	type	casting	to	query	the	type	of	the	underlying	instance.	In	this	example,
it	checks	whether	game	is	actually	an	instance	of	SnakesAndLadders	behind	the
scenes,	and	prints	an	appropriate	message	if	so.

The	gameDidStart(_:)	method	also	accesses	the	dice	property	of	the	passed	game
parameter.	Because	game	is	known	to	conform	to	the	DiceGame	protocol,	it’s
guaranteed	to	have	a	dice	property,	and	so	the	gameDidStart(_:)	method	is	able
to	access	and	print	the	dice’s	sides	property,	regardless	of	what	kind	of	game	is
being	played.

Here’s	how	DiceGameTracker	looks	in	action:

1 let	tracker	=	DiceGameTracker()

2 let	game	=	SnakesAndLadders()

3 game.delegate	=	tracker

4 game.play()

5 //	Started	a	new	game	of	Snakes	and	Ladders

6 //	The	game	is	using	a	6-sided	dice

7 //	Rolled	a	3

8 //	Rolled	a	5

9 //	Rolled	a	4

10 //	Rolled	a	5

11 //	The	game	lasted	for	4	turns

Adding	Protocol	Conformance	with	an	Extension

You	can	extend	an	existing	type	to	adopt	and	conform	to	a	new	protocol,	even	if
you	don’t	have	access	to	the	source	code	for	the	existing	type.	Extensions	can
add	new	properties,	methods,	and	subscripts	to	an	existing	type,	and	are
therefore	able	to	add	any	requirements	that	a	protocol	may	demand.	For	more
about	extensions,	see	Extensions.

NOTE

Existing	instances	of	a	type	automatically	adopt	and	conform	to	a	protocol	when	that	conformance	is
added	to	the	instance’s	type	in	an	extension.

For	example,	this	protocol,	called	TextRepresentable,	can	be	implemented	by
any	type	that	has	a	way	to	be	represented	as	text.	This	might	be	a	description	of
itself,	or	a	text	version	of	its	current	state:

1 protocol	TextRepresentable	{

2 				var	textualDescription:	String	{	get	}

3 }

The	Dice	class	from	above	can	be	extended	to	adopt	and	conform	to
TextRepresentable:

1 extension	Dice:	TextRepresentable	{

2 				var	textualDescription:	String	{

3 								return	"A	\(sides)-sided	dice"

4 				}

5 }

This	extension	adopts	the	new	protocol	in	exactly	the	same	way	as	if	Dice	had
provided	it	in	its	original	implementation.	The	protocol	name	is	provided	after
the	type	name,	separated	by	a	colon,	and	an	implementation	of	all	requirements
of	the	protocol	is	provided	within	the	extension’s	curly	braces.

Any	Dice	instance	can	now	be	treated	as	TextRepresentable:

1 let	d12	=	Dice(sides:	12,	generator:	

LinearCongruentialGenerator())

2 print(d12.textualDescription)

3 //	Prints	"A	12-sided	dice"

Similarly,	the	SnakesAndLadders	game	class	can	be	extended	to	adopt	and
conform	to	the	TextRepresentable	protocol:

1 extension	SnakesAndLadders:	TextRepresentable	{

2 				var	textualDescription:	String	{

3 								return	"A	game	of	Snakes	and	Ladders	with	\

(finalSquare)	squares"

4 				}

5 }

6 print(game.textualDescription)

7 //	Prints	"A	game	of	Snakes	and	Ladders	with	25	squares"

Conditionally	Conforming	to	a	Protocol
A	generic	type	may	be	able	to	satisfy	the	requirements	of	a	protocol	only	under
certain	conditions,	such	as	when	the	type’s	generic	parameter	conforms	to	the
protocol.	You	can	make	a	generic	type	conditionally	conform	to	a	protocol	by

listing	constraints	when	extending	the	type.	Write	these	constraints	after	the
name	of	the	protocol	you’re	adopting	by	writing	a	generic	where	clause.	For
more	about	generic	where	clauses,	see	Generic	Where	Clauses.

The	following	extension	makes	Array	instances	conform	to	the
TextRepresentable	protocol	whenever	they	store	elements	of	a	type	that
conforms	to	TextRepresentable.

1 extension	Array:	TextRepresentable	where	Element:	

TextRepresentable	{

2 				var	textualDescription:	String	{

3 								let	itemsAsText	=	self.map	{	$0.textualDescription	}

4 								return	"["	+	itemsAsText.joined(separator:	",	")	+	"]"

5 				}

6 }

7 let	myDice	=	[d6,	d12]

8 print(myDice.textualDescription)

9 //	Prints	"[A	6-sided	dice,	A	12-sided	dice]"

Declaring	Protocol	Adoption	with	an	Extension
If	a	type	already	conforms	to	all	of	the	requirements	of	a	protocol,	but	has	not
yet	stated	that	it	adopts	that	protocol,	you	can	make	it	adopt	the	protocol	with	an
empty	extension:

1 struct	Hamster	{

2 				var	name:	String

3 				var	textualDescription:	String	{

4 								return	"A	hamster	named	\(name)"

5 				}

6 }

7 extension	Hamster:	TextRepresentable	{}

Instances	of	Hamster	can	now	be	used	wherever	TextRepresentable	is	the
required	type:

1 let	simonTheHamster	=	Hamster(name:	"Simon")

2 let	somethingTextRepresentable:	TextRepresentable	=	

simonTheHamster

3 print(somethingTextRepresentable.textualDescription)

4 //	Prints	"A	hamster	named	Simon"

NOTE

Types	don’t	automatically	adopt	a	protocol	just	by	satisfying	its	requirements.	They	must	always
explicitly	declare	their	adoption	of	the	protocol.

Collections	of	Protocol	Types

A	protocol	can	be	used	as	the	type	to	be	stored	in	a	collection	such	as	an	array	or
a	dictionary,	as	mentioned	in	Protocols	as	Types.	This	example	creates	an	array
of	TextRepresentable	things:

	 let	things:	[TextRepresentable]	=	[game,	d12,	simonTheHamster]

It’s	now	possible	to	iterate	over	the	items	in	the	array,	and	print	each	item’s
textual	description:

1 for	thing	in	things	{

2 				print(thing.textualDescription)

3 }

4 //	A	game	of	Snakes	and	Ladders	with	25	squares

5 //	A	12-sided	dice

6 //	A	hamster	named	Simon

Note	that	the	thing	constant	is	of	type	TextRepresentable.	It’s	not	of	type	Dice,
or	DiceGame,	or	Hamster,	even	if	the	actual	instance	behind	the	scenes	is	of	one	of
those	types.	Nonetheless,	because	it’s	of	type	TextRepresentable,	and	anything
that	is	TextRepresentable	is	known	to	have	a	textualDescription	property,	it’s
safe	to	access	thing.textualDescription	each	time	through	the	loop.

Protocol	Inheritance

A	protocol	can	inherit	one	or	more	other	protocols	and	can	add	further
requirements	on	top	of	the	requirements	it	inherits.	The	syntax	for	protocol
inheritance	is	similar	to	the	syntax	for	class	inheritance,	but	with	the	option	to
list	multiple	inherited	protocols,	separated	by	commas:

1 protocol	InheritingProtocol:	SomeProtocol,	AnotherProtocol	{

2 				//	protocol	definition	goes	here

3 }

Here’s	an	example	of	a	protocol	that	inherits	the	TextRepresentable	protocol
from	above:

1 protocol	PrettyTextRepresentable:	TextRepresentable	{

2 				var	prettyTextualDescription:	String	{	get	}

3 }

This	example	defines	a	new	protocol,	PrettyTextRepresentable,	which	inherits
from	TextRepresentable.	Anything	that	adopts	PrettyTextRepresentable	must
satisfy	all	of	the	requirements	enforced	by	TextRepresentable,	plus	the
additional	requirements	enforced	by	PrettyTextRepresentable.	In	this	example,
PrettyTextRepresentable	adds	a	single	requirement	to	provide	a	gettable
property	called	prettyTextualDescription	that	returns	a	String.

The	SnakesAndLadders	class	can	be	extended	to	adopt	and	conform	to
PrettyTextRepresentable:

1 extension	SnakesAndLadders:	PrettyTextRepresentable	{

2 				var	prettyTextualDescription:	String	{

3 								var	output	=	textualDescription	+	":\n"

4 								for	index	in	1...finalSquare	{

5 												switch	board[index]	{

6 												case	let	ladder	where	ladder	>	0:

7 																output	+=	"▲	"

8 												case	let	snake	where	snake	<	0:

9 																output	+=	"▼	"

10 												default:

11 																output	+=	"○	"

12 												}

13 								}

14 								return	output

15 				}

16 }

This	extension	states	that	it	adopts	the	PrettyTextRepresentable	protocol	and
provides	an	implementation	of	the	prettyTextualDescription	property	for	the
SnakesAndLadders	type.	Anything	that	is	PrettyTextRepresentable	must	also	be
TextRepresentable,	and	so	the	implementation	of	prettyTextualDescription
starts	by	accessing	the	textualDescription	property	from	the	TextRepresentable
protocol	to	begin	an	output	string.	It	appends	a	colon	and	a	line	break,	and	uses
this	as	the	start	of	its	pretty	text	representation.	It	then	iterates	through	the	array
of	board	squares,	and	appends	a	geometric	shape	to	represent	the	contents	of
each	square:

If	the	square’s	value	is	greater	than	0,	it’s	the	base	of	a	ladder,	and	is
represented	by	▲.

If	the	square’s	value	is	less	than	0,	it’s	the	head	of	a	snake,	and	is
represented	by	▼.

Otherwise,	the	square’s	value	is	0,	and	it’s	a	“free”	square,	represented	by	○.

The	prettyTextualDescription	property	can	now	be	used	to	print	a	pretty	text
description	of	any	SnakesAndLadders	instance:

1 print(game.prettyTextualDescription)

2 //	A	game	of	Snakes	and	Ladders	with	25	squares:

3 //	○	○	▲	○	○	▲	○	○	▲	▲	○	○	○	▼	○	○	○	○	▼	○	○	▼	○	▼	○

Class-Only	Protocols

You	can	limit	protocol	adoption	to	class	types	(and	not	structures	or
enumerations)	by	adding	the	AnyObject	protocol	to	a	protocol’s	inheritance	list.

1 protocol	SomeClassOnlyProtocol:	AnyObject,	

SomeInheritedProtocol	{

2 				//	class-only	protocol	definition	goes	here

3 }

In	the	example	above,	SomeClassOnlyProtocol	can	only	be	adopted	by	class
types.	It’s	a	compile-time	error	to	write	a	structure	or	enumeration	definition	that
tries	to	adopt	SomeClassOnlyProtocol.

NOTE

Use	a	class-only	protocol	when	the	behavior	defined	by	that	protocol’s	requirements	assumes	or
requires	that	a	conforming	type	has	reference	semantics	rather	than	value	semantics.	For	more	about
reference	and	value	semantics,	see	Structures	and	Enumerations	Are	Value	Types	and	Classes	Are
Reference	Types.

Protocol	Composition

It	can	be	useful	to	require	a	type	to	conform	to	multiple	protocols	at	the	same
time.	You	can	combine	multiple	protocols	into	a	single	requirement	with	a
protocol	composition.	Protocol	compositions	behave	as	if	you	defined	a
temporary	local	protocol	that	has	the	combined	requirements	of	all	protocols	in
the	composition.	Protocol	compositions	don’t	define	any	new	protocol	types.

Protocol	compositions	have	the	form	SomeProtocol	&	AnotherProtocol.	You	can
list	as	many	protocols	as	you	need,	separating	them	with	ampersands	(&).	In
addition	to	its	list	of	protocols,	a	protocol	composition	can	also	contain	one	class
type,	which	you	can	use	to	specify	a	required	superclass.

Here’s	an	example	that	combines	two	protocols	called	Named	and	Aged	into	a
single	protocol	composition	requirement	on	a	function	parameter:

1 protocol	Named	{

2 				var	name:	String	{	get	}

3 }

4 protocol	Aged	{

5 				var	age:	Int	{	get	}

6 }

7 struct	Person:	Named,	Aged	{

8 				var	name:	String

9 				var	age:	Int

10 }

11 func	wishHappyBirthday(to	celebrator:	Named	&	Aged)	{

12 				print("Happy	birthday,	\(celebrator.name),	you're	\

(celebrator.age)!")

13 }

14 let	birthdayPerson	=	Person(name:	"Malcolm",	age:	21)

15 wishHappyBirthday(to:	birthdayPerson)

16 //	Prints	"Happy	birthday,	Malcolm,	you're	21!"

In	this	example,	the	Named	protocol	has	a	single	requirement	for	a	gettable	String

property	called	name.	The	Aged	protocol	has	a	single	requirement	for	a	gettable
Int	property	called	age.	Both	protocols	are	adopted	by	a	structure	called	Person.

The	example	also	defines	a	wishHappyBirthday(to:)	function.	The	type	of	the
celebrator	parameter	is	Named	&	Aged,	which	means	“any	type	that	conforms	to
both	the	Named	and	Aged	protocols.”	It	doesn’t	matter	which	specific	type	is
passed	to	the	function,	as	long	as	it	conforms	to	both	of	the	required	protocols.

The	example	then	creates	a	new	Person	instance	called	birthdayPerson	and
passes	this	new	instance	to	the	wishHappyBirthday(to:)	function.	Because
Person	conforms	to	both	protocols,	this	call	is	valid,	and	the
wishHappyBirthday(to:)	function	can	print	its	birthday	greeting.

Here’s	an	example	that	combines	the	Named	protocol	from	the	previous	example
with	a	Location	class:

1 class	Location	{

2 				var	latitude:	Double

3 				var	longitude:	Double

4 				init(latitude:	Double,	longitude:	Double)	{

5 								self.latitude	=	latitude

6 								self.longitude	=	longitude

7 				}

8 }

9 class	City:	Location,	Named	{

10 				var	name:	String

11 				init(name:	String,	latitude:	Double,	longitude:	Double)	{

12 								self.name	=	name

13 								super.init(latitude:	latitude,	longitude:	longitude)

14 				}

15 }

16 func	beginConcert(in	location:	Location	&	Named)	{

17 				print("Hello,	\(location.name)!")

18 }

19

20 let	seattle	=	City(name:	"Seattle",	latitude:	47.6,	longitude:	

-122.3)

21 beginConcert(in:	seattle)

22 //	Prints	"Hello,	Seattle!"

The	beginConcert(in:)	function	takes	a	parameter	of	type	Location	&	Named,
which	means	“any	type	that’s	a	subclass	of	Location	and	that	conforms	to	the
Named	protocol.”	In	this	case,	City	satisfies	both	requirements.

Passing	birthdayPerson	to	the	beginConcert(in:)	function	is	invalid	because
Person	isn’t	a	subclass	of	Location.	Likewise,	if	you	made	a	subclass	of
Location	that	didn’t	conform	to	the	Named	protocol,	calling	beginConcert(in:)
with	an	instance	of	that	type	is	also	invalid.

Checking	for	Protocol	Conformance

You	can	use	the	is	and	as	operators	described	in	Type	Casting	to	check	for
protocol	conformance,	and	to	cast	to	a	specific	protocol.	Checking	for	and
casting	to	a	protocol	follows	exactly	the	same	syntax	as	checking	for	and	casting
to	a	type:

The	is	operator	returns	true	if	an	instance	conforms	to	a	protocol	and
returns	false	if	it	doesn’t.

The	as?	version	of	the	downcast	operator	returns	an	optional	value	of	the
protocol’s	type,	and	this	value	is	nil	if	the	instance	doesn’t	conform	to	that
protocol.

The	as!	version	of	the	downcast	operator	forces	the	downcast	to	the
protocol	type	and	triggers	a	runtime	error	if	the	downcast	doesn’t	succeed.

This	example	defines	a	protocol	called	HasArea,	with	a	single	property

requirement	of	a	gettable	Double	property	called	area:

1 protocol	HasArea	{

2 				var	area:	Double	{	get	}

3 }

Here	are	two	classes,	Circle	and	Country,	both	of	which	conform	to	the	HasArea
protocol:

1 class	Circle:	HasArea	{

2 				let	pi	=	3.1415927

3 				var	radius:	Double

4 				var	area:	Double	{	return	pi	*	radius	*	radius	}

5 				init(radius:	Double)	{	self.radius	=	radius	}

6 }

7 class	Country:	HasArea	{

8 				var	area:	Double

9 				init(area:	Double)	{	self.area	=	area	}

10 }

The	Circle	class	implements	the	area	property	requirement	as	a	computed
property,	based	on	a	stored	radius	property.	The	Country	class	implements	the
area	requirement	directly	as	a	stored	property.	Both	classes	correctly	conform	to
the	HasArea	protocol.

Here’s	a	class	called	Animal,	which	doesn’t	conform	to	the	HasArea	protocol:

1 class	Animal	{

2 				var	legs:	Int

3 				init(legs:	Int)	{	self.legs	=	legs	}

4 }

The	Circle,	Country	and	Animal	classes	don’t	have	a	shared	base	class.

Nonetheless,	they’re	all	classes,	and	so	instances	of	all	three	types	can	be	used	to
initialize	an	array	that	stores	values	of	type	AnyObject:

1 let	objects:	[AnyObject]	=	[

2 				Circle(radius:	2.0),

3 				Country(area:	243_610),

4 				Animal(legs:	4)

5]

The	objects	array	is	initialized	with	an	array	literal	containing	a	Circle	instance
with	a	radius	of	2	units;	a	Country	instance	initialized	with	the	surface	area	of	the
United	Kingdom	in	square	kilometers;	and	an	Animal	instance	with	four	legs.

The	objects	array	can	now	be	iterated,	and	each	object	in	the	array	can	be
checked	to	see	if	it	conforms	to	the	HasArea	protocol:

1 for	object	in	objects	{

2 				if	let	objectWithArea	=	object	as?	HasArea	{

3 								print("Area	is	\(objectWithArea.area)")

4 				}	else	{

5 								print("Something	that	doesn't	have	an	area")

6 				}

7 }

8 //	Area	is	12.5663708

9 //	Area	is	243610.0

10 //	Something	that	doesn't	have	an	area

Whenever	an	object	in	the	array	conforms	to	the	HasArea	protocol,	the	optional
value	returned	by	the	as?	operator	is	unwrapped	with	optional	binding	into	a
constant	called	objectWithArea.	The	objectWithArea	constant	is	known	to	be	of
type	HasArea,	and	so	its	area	property	can	be	accessed	and	printed	in	a	type-safe
way.

Note	that	the	underlying	objects	aren’t	changed	by	the	casting	process.	They

continue	to	be	a	Circle,	a	Country	and	an	Animal.	However,	at	the	point	that
they’re	stored	in	the	objectWithArea	constant,	they’re	only	known	to	be	of	type
HasArea,	and	so	only	their	area	property	can	be	accessed.

Optional	Protocol	Requirements

You	can	define	optional	requirements	for	protocols.	These	requirements	don’t
have	to	be	implemented	by	types	that	conform	to	the	protocol.	Optional
requirements	are	prefixed	by	the	optional	modifier	as	part	of	the	protocol’s
definition.	Optional	requirements	are	available	so	that	you	can	write	code	that
interoperates	with	Objective-C.	Both	the	protocol	and	the	optional	requirement
must	be	marked	with	the	@objc	attribute.	Note	that	@objc	protocols	can	be
adopted	only	by	classes	that	inherit	from	Objective-C	classes	or	other	@objc
classes.	They	can’t	be	adopted	by	structures	or	enumerations.

When	you	use	a	method	or	property	in	an	optional	requirement,	its	type
automatically	becomes	an	optional.	For	example,	a	method	of	type	(Int)	->
String	becomes	((Int)	->	String)?.	Note	that	the	entire	function	type	is
wrapped	in	the	optional,	not	the	method’s	return	value.

An	optional	protocol	requirement	can	be	called	with	optional	chaining,	to
account	for	the	possibility	that	the	requirement	was	not	implemented	by	a	type
that	conforms	to	the	protocol.	You	check	for	an	implementation	of	an	optional
method	by	writing	a	question	mark	after	the	name	of	the	method	when	it’s
called,	such	as	someOptionalMethod?(someArgument).	For	information	on
optional	chaining,	see	Optional	Chaining.

The	following	example	defines	an	integer-counting	class	called	Counter,	which
uses	an	external	data	source	to	provide	its	increment	amount.	This	data	source	is
defined	by	the	CounterDataSource	protocol,	which	has	two	optional
requirements:

1 @objc	protocol	CounterDataSource	{

2 				@objc	optional	func	increment(forCount	count:	Int)	->	Int

3 				@objc	optional	var	fixedIncrement:	Int	{	get	}

4 }

The	CounterDataSource	protocol	defines	an	optional	method	requirement	called
increment(forCount:)	and	an	optional	property	requirement	called
fixedIncrement.	These	requirements	define	two	different	ways	for	data	sources
to	provide	an	appropriate	increment	amount	for	a	Counter	instance.

NOTE

Strictly	speaking,	you	can	write	a	custom	class	that	conforms	to	CounterDataSource	without
implementing	either	protocol	requirement.	They’re	both	optional,	after	all.	Although	technically
allowed,	this	wouldn’t	make	for	a	very	good	data	source.

The	Counter	class,	defined	below,	has	an	optional	dataSource	property	of	type
CounterDataSource?:

1 class	Counter	{

2 				var	count	=	0

3 				var	dataSource:	CounterDataSource?

4 				func	increment()	{

5 								if	let	amount	=	dataSource?.increment?(forCount:	count)	

{

6 												count	+=	amount

7 								}	else	if	let	amount	=	dataSource?.fixedIncrement	{

8 												count	+=	amount

9 								}

10 				}

11 }

The	Counter	class	stores	its	current	value	in	a	variable	property	called	count.	The
Counter	class	also	defines	a	method	called	increment,	which	increments	the
count	property	every	time	the	method	is	called.

The	increment()	method	first	tries	to	retrieve	an	increment	amount	by	looking
for	an	implementation	of	the	increment(forCount:)	method	on	its	data	source.

The	increment()	method	uses	optional	chaining	to	try	to	call
increment(forCount:),	and	passes	the	current	count	value	as	the	method’s	single
argument.

Note	that	two	levels	of	optional	chaining	are	at	play	here.	First,	it’s	possible	that
dataSource	may	be	nil,	and	so	dataSource	has	a	question	mark	after	its	name	to
indicate	that	increment(forCount:)	should	be	called	only	if	dataSource	isn’t	nil.
Second,	even	if	dataSource	does	exist,	there’s	no	guarantee	that	it	implements
increment(forCount:),	because	it’s	an	optional	requirement.	Here,	the
possibility	that	increment(forCount:)	might	not	be	implemented	is	also	handled
by	optional	chaining.	The	call	to	increment(forCount:)	happens	only	if
increment(forCount:)	exists—that	is,	if	it	isn’t	nil.	This	is	why
increment(forCount:)	is	also	written	with	a	question	mark	after	its	name.

Because	the	call	to	increment(forCount:)	can	fail	for	either	of	these	two
reasons,	the	call	returns	an	optional	Int	value.	This	is	true	even	though
increment(forCount:)	is	defined	as	returning	a	non-optional	Int	value	in	the
definition	of	CounterDataSource.	Even	though	there	are	two	optional	chaining
operations,	one	after	another,	the	result	is	still	wrapped	in	a	single	optional.	For
more	information	about	using	multiple	optional	chaining	operations,	see	Linking
Multiple	Levels	of	Chaining.

After	calling	increment(forCount:),	the	optional	Int	that	it	returns	is	unwrapped
into	a	constant	called	amount,	using	optional	binding.	If	the	optional	Int	does
contain	a	value—that	is,	if	the	delegate	and	method	both	exist,	and	the	method
returned	a	value—the	unwrapped	amount	is	added	onto	the	stored	count	property,
and	incrementation	is	complete.

If	it’s	not	possible	to	retrieve	a	value	from	the	increment(forCount:)	method—
either	because	dataSource	is	nil,	or	because	the	data	source	doesn’t	implement
increment(forCount:)—then	the	increment()	method	tries	to	retrieve	a	value
from	the	data	source’s	fixedIncrement	property	instead.	The	fixedIncrement
property	is	also	an	optional	requirement,	so	its	value	is	an	optional	Int	value,
even	though	fixedIncrement	is	defined	as	a	non-optional	Int	property	as	part	of
the	CounterDataSource	protocol	definition.

Here’s	a	simple	CounterDataSource	implementation	where	the	data	source
returns	a	constant	value	of	3	every	time	it’s	queried.	It	does	this	by	implementing

the	optional	fixedIncrement	property	requirement:

1 class	ThreeSource:	NSObject,	CounterDataSource	{

2 				let	fixedIncrement	=	3

3 }

You	can	use	an	instance	of	ThreeSource	as	the	data	source	for	a	new	Counter
instance:

1 var	counter	=	Counter()

2 counter.dataSource	=	ThreeSource()

3 for	_	in	1...4	{

4 				counter.increment()

5 				print(counter.count)

6 }

7 //	3

8 //	6

9 //	9

10 //	12

The	code	above	creates	a	new	Counter	instance;	sets	its	data	source	to	be	a	new
ThreeSource	instance;	and	calls	the	counter’s	increment()	method	four	times.	As
expected,	the	counter’s	count	property	increases	by	three	each	time	increment()
is	called.

Here’s	a	more	complex	data	source	called	TowardsZeroSource,	which	makes	a
Counter	instance	count	up	or	down	towards	zero	from	its	current	count	value:

1 class	TowardsZeroSource:	NSObject,	CounterDataSource	{

2 				func	increment(forCount	count:	Int)	->	Int	{

3 								if	count	==	0	{

4 												return	0

5 								}	else	if	count	<	0	{

6 												return	1

7 								}	else	{

8 												return	-1

9 								}

10 				}

11 }

The	TowardsZeroSource	class	implements	the	optional	increment(forCount:)
method	from	the	CounterDataSource	protocol	and	uses	the	count	argument	value
to	work	out	which	direction	to	count	in.	If	count	is	already	zero,	the	method
returns	0	to	indicate	that	no	further	counting	should	take	place.

You	can	use	an	instance	of	TowardsZeroSource	with	the	existing	Counter	instance
to	count	from	-4	to	zero.	Once	the	counter	reaches	zero,	no	more	counting	takes
place:

1 counter.count	=	-4

2 counter.dataSource	=	TowardsZeroSource()

3 for	_	in	1...5	{

4 				counter.increment()

5 				print(counter.count)

6 }

7 //	-3

8 //	-2

9 //	-1

10 //	0

11 //	0

Protocol	Extensions

Protocols	can	be	extended	to	provide	method,	initializer,	subscript,	and

computed	property	implementations	to	conforming	types.	This	allows	you	to
define	behavior	on	protocols	themselves,	rather	than	in	each	type’s	individual
conformance	or	in	a	global	function.

For	example,	the	RandomNumberGenerator	protocol	can	be	extended	to	provide	a
randomBool()	method,	which	uses	the	result	of	the	required	random()	method	to
return	a	random	Bool	value:

1 extension	RandomNumberGenerator	{

2 				func	randomBool()	->	Bool	{

3 								return	random()	>	0.5

4 				}

5 }

By	creating	an	extension	on	the	protocol,	all	conforming	types	automatically
gain	this	method	implementation	without	any	additional	modification.

1 let	generator	=	LinearCongruentialGenerator()

2 print("Here's	a	random	number:	\(generator.random())")

3 //	Prints	"Here's	a	random	number:	0.3746499199817101"

4 print("And	here's	a	random	Boolean:	\(generator.randomBool())")

5 //	Prints	"And	here's	a	random	Boolean:	true"

Protocol	extensions	can	add	implementations	to	conforming	types	but	can’t
make	a	protocol	extend	or	inherit	from	another	protocol.	Protocol	inheritance	is
always	specified	in	the	protocol	declaration	itself.

Providing	Default	Implementations
You	can	use	protocol	extensions	to	provide	a	default	implementation	to	any
method	or	computed	property	requirement	of	that	protocol.	If	a	conforming	type
provides	its	own	implementation	of	a	required	method	or	property,	that
implementation	will	be	used	instead	of	the	one	provided	by	the	extension.

NOTE

Protocol	requirements	with	default	implementations	provided	by	extensions	are	distinct	from	optional
protocol	requirements.	Although	conforming	types	don’t	have	to	provide	their	own	implementation
of	either,	requirements	with	default	implementations	can	be	called	without	optional	chaining.

For	example,	the	PrettyTextRepresentable	protocol,	which	inherits	the
TextRepresentable	protocol	can	provide	a	default	implementation	of	its	required
prettyTextualDescription	property	to	simply	return	the	result	of	accessing	the
textualDescription	property:

1 extension	PrettyTextRepresentable		{

2 				var	prettyTextualDescription:	String	{

3 								return	textualDescription

4 				}

5 }

Adding	Constraints	to	Protocol	Extensions
When	you	define	a	protocol	extension,	you	can	specify	constraints	that
conforming	types	must	satisfy	before	the	methods	and	properties	of	the
extension	are	available.	You	write	these	constraints	after	the	name	of	the
protocol	you’re	extending	by	writing	a	generic	where	clause.	For	more	about
generic	where	clauses,	see	Generic	Where	Clauses.

For	example,	you	can	define	an	extension	to	the	Collection	protocol	that	applies
to	any	collection	whose	elements	conform	to	the	Equatable	protocol.	By
constraining	a	collection’s	elements	to	the	Equatable	protocol,	a	part	of	the
standard	library,	you	can	use	the	==	and	!=	operators	to	check	for	equality	and
inequality	between	two	elements.

1 extension	Collection	where	Element:	Equatable	{

2 				func	allEqual()	->	Bool	{

3 								for	element	in	self	{

4 												if	element	!=	self.first	{

5 																return	false

6 												}

7 								}

8 								return	true

9 				}

10 }

The	allEqual()	method	returns	true	only	if	all	the	elements	in	the	collection	are
equal.

Consider	two	arrays	of	integers,	one	where	all	the	elements	are	the	same,	and
one	where	they	aren’t:

1 let	equalNumbers	=	[100,	100,	100,	100,	100]

2 let	differentNumbers	=	[100,	100,	200,	100,	200]

Because	arrays	conform	to	Collection	and	integers	conform	to	Equatable,
equalNumbers	and	differentNumbers	can	use	the	allEqual()	method:

1 print(equalNumbers.allEqual())

2 //	Prints	"true"

3 print(differentNumbers.allEqual())

4 //	Prints	"false"

NOTE

If	a	conforming	type	satisfies	the	requirements	for	multiple	constrained	extensions	that	provide
implementations	for	the	same	method	or	property,	Swift	uses	the	implementation	corresponding	to
the	most	specialized	constraints.

Generics

Generic	code	enables	you	to	write	flexible,	reusable	functions	and	types	that	can
work	with	any	type,	subject	to	requirements	that	you	define.	You	can	write	code
that	avoids	duplication	and	expresses	its	intent	in	a	clear,	abstracted	manner.

Generics	are	one	of	the	most	powerful	features	of	Swift,	and	much	of	the	Swift
standard	library	is	built	with	generic	code.	In	fact,	you’ve	been	using	generics
throughout	the	Language	Guide,	even	if	you	didn’t	realize	it.	For	example,
Swift’s	Array	and	Dictionary	types	are	both	generic	collections.	You	can	create
an	array	that	holds	Int	values,	or	an	array	that	holds	String	values,	or	indeed	an
array	for	any	other	type	that	can	be	created	in	Swift.	Similarly,	you	can	create	a
dictionary	to	store	values	of	any	specified	type,	and	there	are	no	limitations	on
what	that	type	can	be.

The	Problem	That	Generics	Solve

Here’s	a	standard,	nongeneric	function	called	swapTwoInts(_:_:),	which	swaps
two	Int	values:

1 func	swapTwoInts(_	a:	inout	Int,	_	b:	inout	Int)	{

2 				let	temporaryA	=	a

3 				a	=	b

4 				b	=	temporaryA

5 }

This	function	makes	use	of	in-out	parameters	to	swap	the	values	of	a	and	b,	as
described	in	In-Out	Parameters.

The	swapTwoInts(_:_:)	function	swaps	the	original	value	of	b	into	a,	and	the
original	value	of	a	into	b.	You	can	call	this	function	to	swap	the	values	in	two
Int	variables:

1 var	someInt	=	3

2 var	anotherInt	=	107

3 swapTwoInts(&someInt,	&anotherInt)

4 print("someInt	is	now	\(someInt),	and	anotherInt	is	now	\

(anotherInt)")

5 //	Prints	"someInt	is	now	107,	and	anotherInt	is	now	3"

The	swapTwoInts(_:_:)	function	is	useful,	but	it	can	only	be	used	with	Int
values.	If	you	want	to	swap	two	String	values,	or	two	Double	values,	you	have	to
write	more	functions,	such	as	the	swapTwoStrings(_:_:)	and
swapTwoDoubles(_:_:)	functions	shown	below:

1 func	swapTwoStrings(_	a:	inout	String,	_	b:	inout	String)	{

2 				let	temporaryA	=	a

3 				a	=	b

4 				b	=	temporaryA

5 }

6

7 func	swapTwoDoubles(_	a:	inout	Double,	_	b:	inout	Double)	{

8 				let	temporaryA	=	a

9 				a	=	b

10 				b	=	temporaryA

11 }

You	may	have	noticed	that	the	bodies	of	the	swapTwoInts(_:_:),
swapTwoStrings(_:_:),	and	swapTwoDoubles(_:_:)	functions	are	identical.	The
only	difference	is	the	type	of	the	values	that	they	accept	(Int,	String,	and
Double).

It’s	more	useful,	and	considerably	more	flexible,	to	write	a	single	function	that
swaps	two	values	of	any	type.	Generic	code	enables	you	to	write	such	a	function.
(A	generic	version	of	these	functions	is	defined	below.)

NOTE

In	all	three	functions,	the	types	of	a	and	b	must	be	the	same.	If	a	and	b	aren’t	of	the	same	type,	it
isn’t	possible	to	swap	their	values.	Swift	is	a	type-safe	language,	and	doesn’t	allow	(for	example)	a
variable	of	type	String	and	a	variable	of	type	Double	to	swap	values	with	each	other.	Attempting
to	do	so	results	in	a	compile-time	error.

Generic	Functions

Generic	functions	can	work	with	any	type.	Here’s	a	generic	version	of	the
swapTwoInts(_:_:)	function	from	above,	called	swapTwoValues(_:_:):

1 func	swapTwoValues<T>(_	a:	inout	T,	_	b:	inout	T)	{

2 				let	temporaryA	=	a

3 				a	=	b

4 				b	=	temporaryA

5 }

The	body	of	the	swapTwoValues(_:_:)	function	is	identical	to	the	body	of	the
swapTwoInts(_:_:)	function.	However,	the	first	line	of	swapTwoValues(_:_:)	is
slightly	different	from	swapTwoInts(_:_:).	Here’s	how	the	first	lines	compare:

1 func	swapTwoInts(_	a:	inout	Int,	_	b:	inout	Int)

2 func	swapTwoValues<T>(_	a:	inout	T,	_	b:	inout	T)

The	generic	version	of	the	function	uses	a	placeholder	type	name	(called	T,	in
this	case)	instead	of	an	actual	type	name	(such	as	Int,	String,	or	Double).	The
placeholder	type	name	doesn’t	say	anything	about	what	T	must	be,	but	it	does
say	that	both	a	and	b	must	be	of	the	same	type	T,	whatever	T	represents.	The
actual	type	to	use	in	place	of	T	is	determined	each	time	the	swapTwoValues(_:_:)
function	is	called.

The	other	difference	between	a	generic	function	and	a	nongeneric	function	is
that	the	generic	function’s	name	(swapTwoValues(_:_:))	is	followed	by	the

placeholder	type	name	(T)	inside	angle	brackets	(<T>).	The	brackets	tell	Swift
that	T	is	a	placeholder	type	name	within	the	swapTwoValues(_:_:)	function
definition.	Because	T	is	a	placeholder,	Swift	doesn’t	look	for	an	actual	type
called	T.

The	swapTwoValues(_:_:)	function	can	now	be	called	in	the	same	way	as
swapTwoInts,	except	that	it	can	be	passed	two	values	of	any	type,	as	long	as	both
of	those	values	are	of	the	same	type	as	each	other.	Each	time
swapTwoValues(_:_:)	is	called,	the	type	to	use	for	T	is	inferred	from	the	types	of
values	passed	to	the	function.

In	the	two	examples	below,	T	is	inferred	to	be	Int	and	String	respectively:

1 var	someInt	=	3

2 var	anotherInt	=	107

3 swapTwoValues(&someInt,	&anotherInt)

4 //	someInt	is	now	107,	and	anotherInt	is	now	3

5

6 var	someString	=	"hello"

7 var	anotherString	=	"world"

8 swapTwoValues(&someString,	&anotherString)

9 //	someString	is	now	"world",	and	anotherString	is	now	"hello"

NOTE

The	swapTwoValues(_:_:)	function	defined	above	is	inspired	by	a	generic	function	called
swap,	which	is	part	of	the	Swift	standard	library,	and	is	automatically	made	available	for	you	to	use
in	your	apps.	If	you	need	the	behavior	of	the	swapTwoValues(_:_:)	function	in	your	own	code,
you	can	use	Swift’s	existing	swap(_:_:)	function	rather	than	providing	your	own	implementation.

Type	Parameters

In	the	swapTwoValues(_:_:)	example	above,	the	placeholder	type	T	is	an	example
of	a	type	parameter.	Type	parameters	specify	and	name	a	placeholder	type,	and

are	written	immediately	after	the	function’s	name,	between	a	pair	of	matching
angle	brackets	(such	as	<T>).

Once	you	specify	a	type	parameter,	you	can	use	it	to	define	the	type	of	a
function’s	parameters	(such	as	the	a	and	b	parameters	of	the
swapTwoValues(_:_:)	function),	or	as	the	function’s	return	type,	or	as	a	type
annotation	within	the	body	of	the	function.	In	each	case,	the	type	parameter	is
replaced	with	an	actual	type	whenever	the	function	is	called.	(In	the
swapTwoValues(_:_:)	example	above,	T	was	replaced	with	Int	the	first	time	the
function	was	called,	and	was	replaced	with	String	the	second	time	it	was	called.)

You	can	provide	more	than	one	type	parameter	by	writing	multiple	type
parameter	names	within	the	angle	brackets,	separated	by	commas.

Naming	Type	Parameters

In	most	cases,	type	parameters	have	descriptive	names,	such	as	Key	and	Value	in
Dictionary<Key,	Value>	and	Element	in	Array<Element>,	which	tells	the	reader
about	the	relationship	between	the	type	parameter	and	the	generic	type	or
function	it’s	used	in.	However,	when	there	isn’t	a	meaningful	relationship
between	them,	it’s	traditional	to	name	them	using	single	letters	such	as	T,	U,	and
V,	such	as	T	in	the	swapTwoValues(_:_:)	function	above.

NOTE

Always	give	type	parameters	upper	camel	case	names	(such	as	T	and	MyTypeParameter)	to
indicate	that	they’re	a	placeholder	for	a	type,	not	a	value.

Generic	Types

In	addition	to	generic	functions,	Swift	enables	you	to	define	your	own	generic
types.	These	are	custom	classes,	structures,	and	enumerations	that	can	work	with
any	type,	in	a	similar	way	to	Array	and	Dictionary.

This	section	shows	you	how	to	write	a	generic	collection	type	called	Stack.	A
stack	is	an	ordered	set	of	values,	similar	to	an	array,	but	with	a	more	restricted
set	of	operations	than	Swift’s	Array	type.	An	array	allows	new	items	to	be
inserted	and	removed	at	any	location	in	the	array.	A	stack,	however,	allows	new
items	to	be	appended	only	to	the	end	of	the	collection	(known	as	pushing	a	new
value	on	to	the	stack).	Similarly,	a	stack	allows	items	to	be	removed	only	from
the	end	of	the	collection	(known	as	popping	a	value	off	the	stack).

NOTE

The	concept	of	a	stack	is	used	by	the	UINavigationController	class	to	model	the	view
controllers	in	its	navigation	hierarchy.	You	call	the	UINavigationController	class
pushViewController(_:animated:)	method	to	add	(or	push)	a	view	controller	on	to	the
navigation	stack,	and	its	popViewControllerAnimated(_:)	method	to	remove	(or	pop)	a
view	controller	from	the	navigation	stack.	A	stack	is	a	useful	collection	model	whenever	you	need	a
strict	“last	in,	first	out”	approach	to	managing	a	collection.

The	illustration	below	shows	the	push	and	pop	behavior	for	a	stack:

1.	 There	are	currently	three	values	on	the	stack.

2.	 A	fourth	value	is	pushed	onto	the	top	of	the	stack.

3.	 The	stack	now	holds	four	values,	with	the	most	recent	one	at	the	top.

4.	 The	top	item	in	the	stack	is	popped.

5.	 After	popping	a	value,	the	stack	once	again	holds	three	values.

Here’s	how	to	write	a	nongeneric	version	of	a	stack,	in	this	case	for	a	stack	of
Int	values:

1 struct	IntStack	{

2 				var	items	=	[Int]()

3 				mutating	func	push(_	item:	Int)	{

4 								items.append(item)

5 				}

6 				mutating	func	pop()	->	Int	{

7 								return	items.removeLast()

8 				}

9 }

This	structure	uses	an	Array	property	called	items	to	store	the	values	in	the
stack.	Stack	provides	two	methods,	push	and	pop,	to	push	and	pop	values	on	and
off	the	stack.	These	methods	are	marked	as	mutating,	because	they	need	to
modify	(or	mutate)	the	structure’s	items	array.

The	IntStack	type	shown	above	can	only	be	used	with	Int	values,	however.	It
would	be	much	more	useful	to	define	a	generic	Stack	class,	that	can	manage	a
stack	of	any	type	of	value.

Here’s	a	generic	version	of	the	same	code:

1 struct	Stack<Element>	{

2 				var	items	=	[Element]()

3 				mutating	func	push(_	item:	Element)	{

4 								items.append(item)

5 				}

6 				mutating	func	pop()	->	Element	{

7 								return	items.removeLast()

8 				}

9 }

Note	how	the	generic	version	of	Stack	is	essentially	the	same	as	the	nongeneric
version,	but	with	a	type	parameter	called	Element	instead	of	an	actual	type	of
Int.	This	type	parameter	is	written	within	a	pair	of	angle	brackets	(<Element>)
immediately	after	the	structure’s	name.

Element	defines	a	placeholder	name	for	a	type	to	be	provided	later.	This	future
type	can	be	referred	to	as	Element	anywhere	within	the	structure’s	definition.	In
this	case,	Element	is	used	as	a	placeholder	in	three	places:

To	create	a	property	called	items,	which	is	initialized	with	an	empty	array
of	values	of	type	Element

To	specify	that	the	push(_:)	method	has	a	single	parameter	called	item,
which	must	be	of	type	Element

To	specify	that	the	value	returned	by	the	pop()	method	will	be	a	value	of
type	Element

Because	it’s	a	generic	type,	Stack	can	be	used	to	create	a	stack	of	any	valid	type
in	Swift,	in	a	similar	manner	to	Array	and	Dictionary.

You	create	a	new	Stack	instance	by	writing	the	type	to	be	stored	in	the	stack
within	angle	brackets.	For	example,	to	create	a	new	stack	of	strings,	you	write
Stack<String>():

1 var	stackOfStrings	=	Stack<String>()

2 stackOfStrings.push("uno")

3 stackOfStrings.push("dos")

4 stackOfStrings.push("tres")

5 stackOfStrings.push("cuatro")

6 //	the	stack	now	contains	4	strings

Here’s	how	stackOfStrings	looks	after	pushing	these	four	values	on	to	the	stack:

Popping	a	value	from	the	stack	removes	and	returns	the	top	value,	"cuatro":

1 let	fromTheTop	=	stackOfStrings.pop()

2 //	fromTheTop	is	equal	to	"cuatro",	and	the	stack	now	contains	

3	strings

Here’s	how	the	stack	looks	after	popping	its	top	value:

Extending	a	Generic	Type

When	you	extend	a	generic	type,	you	don’t	provide	a	type	parameter	list	as	part
of	the	extension’s	definition.	Instead,	the	type	parameter	list	from	the	original
type	definition	is	available	within	the	body	of	the	extension,	and	the	original
type	parameter	names	are	used	to	refer	to	the	type	parameters	from	the	original
definition.

The	following	example	extends	the	generic	Stack	type	to	add	a	read-only
computed	property	called	topItem,	which	returns	the	top	item	on	the	stack
without	popping	it	from	the	stack:

1 extension	Stack	{

2 				var	topItem:	Element?	{

3 								return	items.isEmpty	?	nil	:	items[items.count	-	1]

4 				}

5 }

The	topItem	property	returns	an	optional	value	of	type	Element.	If	the	stack	is
empty,	topItem	returns	nil;	if	the	stack	isn’t	empty,	topItem	returns	the	final
item	in	the	items	array.

Note	that	this	extension	doesn’t	define	a	type	parameter	list.	Instead,	the	Stack
type’s	existing	type	parameter	name,	Element,	is	used	within	the	extension	to
indicate	the	optional	type	of	the	topItem	computed	property.

The	topItem	computed	property	can	now	be	used	with	any	Stack	instance	to
access	and	query	its	top	item	without	removing	it.

1 if	let	topItem	=	stackOfStrings.topItem	{

2 				print("The	top	item	on	the	stack	is	\(topItem).")

3 }

4 //	Prints	"The	top	item	on	the	stack	is	tres."

Extensions	of	a	generic	type	can	also	include	requirements	that	instances	of	the
extended	type	must	satisfy	in	order	to	gain	the	new	functionality,	as	discussed	in
Extensions	with	a	Generic	Where	Clause	below.

Type	Constraints

The	swapTwoValues(_:_:)	function	and	the	Stack	type	can	work	with	any	type.

However,	it’s	sometimes	useful	to	enforce	certain	type	constraints	on	the	types
that	can	be	used	with	generic	functions	and	generic	types.	Type	constraints
specify	that	a	type	parameter	must	inherit	from	a	specific	class,	or	conform	to	a
particular	protocol	or	protocol	composition.

For	example,	Swift’s	Dictionary	type	places	a	limitation	on	the	types	that	can	be
used	as	keys	for	a	dictionary.	As	described	in	Dictionaries,	the	type	of	a
dictionary’s	keys	must	be	hashable.	That	is,	it	must	provide	a	way	to	make	itself
uniquely	representable.	Dictionary	needs	its	keys	to	be	hashable	so	that	it	can
check	whether	it	already	contains	a	value	for	a	particular	key.	Without	this
requirement,	Dictionary	could	not	tell	whether	it	should	insert	or	replace	a	value
for	a	particular	key,	nor	would	it	be	able	to	find	a	value	for	a	given	key	that	is
already	in	the	dictionary.

This	requirement	is	enforced	by	a	type	constraint	on	the	key	type	for	Dictionary,
which	specifies	that	the	key	type	must	conform	to	the	Hashable	protocol,	a
special	protocol	defined	in	the	Swift	standard	library.	All	of	Swift’s	basic	types
(such	as	String,	Int,	Double,	and	Bool)	are	hashable	by	default.

You	can	define	your	own	type	constraints	when	creating	custom	generic	types,
and	these	constraints	provide	much	of	the	power	of	generic	programming.
Abstract	concepts	like	Hashable	characterize	types	in	terms	of	their	conceptual
characteristics,	rather	than	their	concrete	type.

Type	Constraint	Syntax
You	write	type	constraints	by	placing	a	single	class	or	protocol	constraint	after	a
type	parameter’s	name,	separated	by	a	colon,	as	part	of	the	type	parameter	list.
The	basic	syntax	for	type	constraints	on	a	generic	function	is	shown	below
(although	the	syntax	is	the	same	for	generic	types):

1 func	someFunction<T:	SomeClass,	U:	SomeProtocol>(someT:	T,	

someU:	U)	{

2 				//	function	body	goes	here

3 }

The	hypothetical	function	above	has	two	type	parameters.	The	first	type
parameter,	T,	has	a	type	constraint	that	requires	T	to	be	a	subclass	of	SomeClass.
The	second	type	parameter,	U,	has	a	type	constraint	that	requires	U	to	conform	to
the	protocol	SomeProtocol.

Type	Constraints	in	Action
Here’s	a	nongeneric	function	called	findIndex(ofString:in:),	which	is	given	a
String	value	to	find	and	an	array	of	String	values	within	which	to	find	it.	The
findIndex(ofString:in:)	function	returns	an	optional	Int	value,	which	will	be
the	index	of	the	first	matching	string	in	the	array	if	it’s	found,	or	nil	if	the	string
can’t	be	found:

1 func	findIndex(ofString	valueToFind:	String,	in	array:	

[String])	->	Int?	{

2 				for	(index,	value)	in	array.enumerated()	{

3 								if	value	==	valueToFind	{

4 												return	index

5 								}

6 				}

7 				return	nil

8 }

The	findIndex(ofString:in:)	function	can	be	used	to	find	a	string	value	in	an
array	of	strings:

1 let	strings	=	["cat",	"dog",	"llama",	"parakeet",	"terrapin"]

2 if	let	foundIndex	=	findIndex(ofString:	"llama",	in:	strings)	{

3 				print("The	index	of	llama	is	\(foundIndex)")

4 }

5 //	Prints	"The	index	of	llama	is	2"

The	principle	of	finding	the	index	of	a	value	in	an	array	isn’t	useful	only	for

strings,	however.	You	can	write	the	same	functionality	as	a	generic	function	by
replacing	any	mention	of	strings	with	values	of	some	type	T	instead.

Here’s	how	you	might	expect	a	generic	version	of	findIndex(ofString:in:),
called	findIndex(of:in:),	to	be	written.	Note	that	the	return	type	of	this	function
is	still	Int?,	because	the	function	returns	an	optional	index	number,	not	an
optional	value	from	the	array.	Be	warned,	though—this	function	doesn’t
compile,	for	reasons	explained	after	the	example:

1 func	findIndex<T>(of	valueToFind:	T,	in	array:[T])	->	Int?	{

2 				for	(index,	value)	in	array.enumerated()	{

3 								if	value	==	valueToFind	{

4 												return	index

5 								}

6 				}

7 				return	nil

8 }

This	function	doesn’t	compile	as	written	above.	The	problem	lies	with	the
equality	check,	“if	value	==	valueToFind”.	Not	every	type	in	Swift	can	be
compared	with	the	equal	to	operator	(==).	If	you	create	your	own	class	or
structure	to	represent	a	complex	data	model,	for	example,	then	the	meaning	of
“equal	to”	for	that	class	or	structure	isn’t	something	that	Swift	can	guess	for	you.
Because	of	this,	it	isn’t	possible	to	guarantee	that	this	code	will	work	for	every
possible	type	T,	and	an	appropriate	error	is	reported	when	you	try	to	compile	the
code.

All	is	not	lost,	however.	The	Swift	standard	library	defines	a	protocol	called
Equatable,	which	requires	any	conforming	type	to	implement	the	equal	to
operator	(==)	and	the	not	equal	to	operator	(!=)	to	compare	any	two	values	of	that
type.	All	of	Swift’s	standard	types	automatically	support	the	Equatable	protocol.

Any	type	that	is	Equatable	can	be	used	safely	with	the	findIndex(of:in:)
function,	because	it’s	guaranteed	to	support	the	equal	to	operator.	To	express	this
fact,	you	write	a	type	constraint	of	Equatable	as	part	of	the	type	parameter’s
definition	when	you	define	the	function:

1 func	findIndex<T:	Equatable>(of	valueToFind:	T,	in	array:[T])	-

>	Int?	{

2 				for	(index,	value)	in	array.enumerated()	{

3 								if	value	==	valueToFind	{

4 												return	index

5 								}

6 				}

7 				return	nil

8 }

The	single	type	parameter	for	findIndex(of:in:)	is	written	as	T:	Equatable,
which	means	“any	type	T	that	conforms	to	the	Equatable	protocol.”

The	findIndex(of:in:)	function	now	compiles	successfully	and	can	be	used
with	any	type	that	is	Equatable,	such	as	Double	or	String:

1 let	doubleIndex	=	findIndex(of:	9.3,	in:	[3.14159,	0.1,	0.25])

2 //	doubleIndex	is	an	optional	Int	with	no	value,	because	9.3	

isn't	in	the	array

3 let	stringIndex	=	findIndex(of:	"Andrea",	in:	["Mike",	

"Malcolm",	"Andrea"])

4 //	stringIndex	is	an	optional	Int	containing	a	value	of	2

Associated	Types

When	defining	a	protocol,	it’s	sometimes	useful	to	declare	one	or	more
associated	types	as	part	of	the	protocol’s	definition.	An	associated	type	gives	a
placeholder	name	to	a	type	that	is	used	as	part	of	the	protocol.	The	actual	type	to
use	for	that	associated	type	isn’t	specified	until	the	protocol	is	adopted.
Associated	types	are	specified	with	the	associatedtype	keyword.

Associated	Types	in	Action
Here’s	an	example	of	a	protocol	called	Container,	which	declares	an	associated
type	called	Item:

1 protocol	Container	{

2 				associatedtype	Item

3 				mutating	func	append(_	item:	Item)

4 				var	count:	Int	{	get	}

5 				subscript(i:	Int)	->	Item	{	get	}

6 }

The	Container	protocol	defines	three	required	capabilities	that	any	container
must	provide:

It	must	be	possible	to	add	a	new	item	to	the	container	with	an	append(_:)
method.

It	must	be	possible	to	access	a	count	of	the	items	in	the	container	through	a
count	property	that	returns	an	Int	value.

It	must	be	possible	to	retrieve	each	item	in	the	container	with	a	subscript
that	takes	an	Int	index	value.

This	protocol	doesn’t	specify	how	the	items	in	the	container	should	be	stored	or
what	type	they’re	allowed	to	be.	The	protocol	only	specifies	the	three	bits	of
functionality	that	any	type	must	provide	in	order	to	be	considered	a	Container.	A
conforming	type	can	provide	additional	functionality,	as	long	as	it	satisfies	these
three	requirements.

Any	type	that	conforms	to	the	Container	protocol	must	be	able	to	specify	the
type	of	values	it	stores.	Specifically,	it	must	ensure	that	only	items	of	the	right
type	are	added	to	the	container,	and	it	must	be	clear	about	the	type	of	the	items
returned	by	its	subscript.

To	define	these	requirements,	the	Container	protocol	needs	a	way	to	refer	to	the
type	of	the	elements	that	a	container	will	hold,	without	knowing	what	that	type	is

for	a	specific	container.	The	Container	protocol	needs	to	specify	that	any	value
passed	to	the	append(_:)	method	must	have	the	same	type	as	the	container’s
element	type,	and	that	the	value	returned	by	the	container’s	subscript	will	be	of
the	same	type	as	the	container’s	element	type.

To	achieve	this,	the	Container	protocol	declares	an	associated	type	called	Item,
written	as	associatedtype	Item.	The	protocol	doesn’t	define	what	Item	is—that
information	is	left	for	any	conforming	type	to	provide.	Nonetheless,	the	Item
alias	provides	a	way	to	refer	to	the	type	of	the	items	in	a	Container,	and	to	define
a	type	for	use	with	the	append(_:)	method	and	subscript,	to	ensure	that	the
expected	behavior	of	any	Container	is	enforced.

Here’s	a	version	of	the	nongeneric	IntStack	type	from	Generic	Types	above,
adapted	to	conform	to	the	Container	protocol:

1 struct	IntStack:	Container	{

2 				//	original	IntStack	implementation

3 				var	items	=	[Int]()

4 				mutating	func	push(_	item:	Int)	{

5 								items.append(item)

6 				}

7 				mutating	func	pop()	->	Int	{

8 								return	items.removeLast()

9 				}

10 				//	conformance	to	the	Container	protocol

11 				typealias	Item	=	Int

12 				mutating	func	append(_	item:	Int)	{

13 								self.push(item)

14 				}

15 				var	count:	Int	{

16 								return	items.count

17 				}

18 				subscript(i:	Int)	->	Int	{

19 								return	items[i]

20 				}

21 }

The	IntStack	type	implements	all	three	of	the	Container	protocol’s
requirements,	and	in	each	case	wraps	part	of	the	IntStack	type’s	existing
functionality	to	satisfy	these	requirements.

Moreover,	IntStack	specifies	that	for	this	implementation	of	Container,	the
appropriate	Item	to	use	is	a	type	of	Int.	The	definition	of	typealias	Item	=	Int
turns	the	abstract	type	of	Item	into	a	concrete	type	of	Int	for	this	implementation
of	the	Container	protocol.

Thanks	to	Swift’s	type	inference,	you	don’t	actually	need	to	declare	a	concrete
Item	of	Int	as	part	of	the	definition	of	IntStack.	Because	IntStack	conforms	to
all	of	the	requirements	of	the	Container	protocol,	Swift	can	infer	the	appropriate
Item	to	use,	simply	by	looking	at	the	type	of	the	append(_:)	method’s	item
parameter	and	the	return	type	of	the	subscript.	Indeed,	if	you	delete	the
typealias	Item	=	Int	line	from	the	code	above,	everything	still	works,	because
it’s	clear	what	type	should	be	used	for	Item.

You	can	also	make	the	generic	Stack	type	conform	to	the	Container	protocol:

1 struct	Stack<Element>:	Container	{

2 				//	original	Stack<Element>	implementation

3 				var	items	=	[Element]()

4 				mutating	func	push(_	item:	Element)	{

5 								items.append(item)

6 				}

7 				mutating	func	pop()	->	Element	{

8 								return	items.removeLast()

9 				}

10 				//	conformance	to	the	Container	protocol

11 				mutating	func	append(_	item:	Element)	{

12 								self.push(item)

13 				}

14 				var	count:	Int	{

15 								return	items.count

16 				}

17 				subscript(i:	Int)	->	Element	{

18 								return	items[i]

19 				}

20 }

This	time,	the	type	parameter	Element	is	used	as	the	type	of	the	append(_:)
method’s	item	parameter	and	the	return	type	of	the	subscript.	Swift	can	therefore
infer	that	Element	is	the	appropriate	type	to	use	as	the	Item	for	this	particular
container.

Extending	an	Existing	Type	to	Specify	an	Associated	Type
You	can	extend	an	existing	type	to	add	conformance	to	a	protocol,	as	described
in	Adding	Protocol	Conformance	with	an	Extension.	This	includes	a	protocol
with	an	associated	type.

Swift’s	Array	type	already	provides	an	append(_:)	method,	a	count	property,	and
a	subscript	with	an	Int	index	to	retrieve	its	elements.	These	three	capabilities
match	the	requirements	of	the	Container	protocol.	This	means	that	you	can
extend	Array	to	conform	to	the	Container	protocol	simply	by	declaring	that
Array	adopts	the	protocol.	You	do	this	with	an	empty	extension,	as	described	in
Declaring	Protocol	Adoption	with	an	Extension:

	 extension	Array:	Container	{}

Array’s	existing	append(_:)	method	and	subscript	enable	Swift	to	infer	the
appropriate	type	to	use	for	Item,	just	as	for	the	generic	Stack	type	above.	After
defining	this	extension,	you	can	use	any	Array	as	a	Container.

Adding	Constraints	to	an	Associated	Type
You	can	add	type	constraints	to	an	associated	type	in	a	protocol	to	require	that
conforming	types	satisfy	those	constraints.	For	example,	the	following	code
defines	a	version	of	Container	that	requires	the	items	in	the	container	to	be
equatable.

1 protocol	Container	{

2 				associatedtype	Item:	Equatable

3 				mutating	func	append(_	item:	Item)

4 				var	count:	Int	{	get	}

5 				subscript(i:	Int)	->	Item	{	get	}

6 }

To	conform	to	this	version	of	Container,	the	container’s	Item	type	has	to
conform	to	the	Equatable	protocol.

Using	a	Protocol	in	Its	Associated	Type’s	Constraints
A	protocol	can	appear	as	part	of	its	own	requirements.	For	example,	here’s	a
protocol	that	refines	the	Container	protocol,	adding	the	requirement	of	a
suffix(_:)	method.	The	suffix(_:)	method	returns	a	given	number	of	elements
from	the	end	of	the	container,	storing	them	in	an	instance	of	the	Suffix	type.

1 protocol	SuffixableContainer:	Container	{

2 				associatedtype	Suffix:	SuffixableContainer	where	

Suffix.Item	==	Item

3 				func	suffix(_	size:	Int)	->	Suffix

4 }

In	this	protocol,	Suffix	is	an	associated	type,	like	the	Item	type	in	the	Container
example	above.	Suffix	has	two	constraints:	It	must	conform	to	the
SuffixableContainer	protocol	(the	protocol	currently	being	defined),	and	its
Item	type	must	be	the	same	as	the	container’s	Item	type.	The	constraint	on	Item

is	a	generic	where	clause,	which	is	discussed	in	Associated	Types	with	a	Generic
Where	Clause	below.

Here’s	an	extension	of	the	Stack	type	from	Generic	Types	above	that	adds
conformance	to	the	SuffixableContainer	protocol:

1 extension	Stack:	SuffixableContainer	{

2 				func	suffix(_	size:	Int)	->	Stack	{

3 								var	result	=	Stack()

4 								for	index	in	(count-size)..<count	{

5 												result.append(self[index])

6 								}

7 								return	result

8 				}

9 				//	Inferred	that	Suffix	is	Stack.

10 }

11 var	stackOfInts	=	Stack<Int>()

12 stackOfInts.append(10)

13 stackOfInts.append(20)

14 stackOfInts.append(30)

15 let	suffix	=	stackOfInts.suffix(2)

16 //	suffix	contains	20	and	30

In	the	example	above,	the	Suffix	associated	type	for	Stack	is	also	Stack,	so	the
suffix	operation	on	Stack	returns	another	Stack.	Alternatively,	a	type	that
conforms	to	SuffixableContainer	can	have	a	Suffix	type	that’s	different	from
itself—meaning	the	suffix	operation	can	return	a	different	type.	For	example,
here’s	an	extension	to	the	nongeneric	IntStack	type	that	adds
SuffixableContainer	conformance,	using	Stack<Int>	as	its	suffix	type	instead	of
IntStack:

1 extension	IntStack:	SuffixableContainer	{

2 				func	suffix(_	size:	Int)	->	Stack<Int>	{

3 								var	result	=	Stack<Int>()

4 								for	index	in	(count-size)..<count	{

5 												result.append(self[index])

6 								}

7 								return	result

8 				}

9 				//	Inferred	that	Suffix	is	Stack<Int>.

10 }

Generic	Where	Clauses

Type	constraints,	as	described	in	Type	Constraints,	enable	you	to	define
requirements	on	the	type	parameters	associated	with	a	generic	function,
subscript,	or	type.

It	can	also	be	useful	to	define	requirements	for	associated	types.	You	do	this	by
defining	a	generic	where	clause.	A	generic	where	clause	enables	you	to	require
that	an	associated	type	must	conform	to	a	certain	protocol,	or	that	certain	type
parameters	and	associated	types	must	be	the	same.	A	generic	where	clause	starts
with	the	where	keyword,	followed	by	constraints	for	associated	types	or	equality
relationships	between	types	and	associated	types.	You	write	a	generic	where
clause	right	before	the	opening	curly	brace	of	a	type	or	function’s	body.

The	example	below	defines	a	generic	function	called	allItemsMatch,	which
checks	to	see	if	two	Container	instances	contain	the	same	items	in	the	same
order.	The	function	returns	a	Boolean	value	of	true	if	all	items	match	and	a
value	of	false	if	they	don’t.

The	two	containers	to	be	checked	don’t	have	to	be	the	same	type	of	container
(although	they	can	be),	but	they	do	have	to	hold	the	same	type	of	items.	This
requirement	is	expressed	through	a	combination	of	type	constraints	and	a	generic
where	clause:

1 func	allItemsMatch<C1:	Container,	C2:	Container>

2 				(_	someContainer:	C1,	_	anotherContainer:	C2)	->	Bool

3 				where	C1.Item	==	C2.Item,	C1.Item:	Equatable	{

4

5 								//	Check	that	both	containers	contain	the	same	number	

of	items.

6 								if	someContainer.count	!=	anotherContainer.count	{

7 												return	false

8 								}

9

10 								//	Check	each	pair	of	items	to	see	if	they're	

equivalent.

11 								for	i	in	0..<someContainer.count	{

12 												if	someContainer[i]	!=	anotherContainer[i]	{

13 																return	false

14 												}

15 								}

16

17 								//	All	items	match,	so	return	true.

18 								return	true

19 }

This	function	takes	two	arguments	called	someContainer	and	anotherContainer.
The	someContainer	argument	is	of	type	C1,	and	the	anotherContainer	argument
is	of	type	C2.	Both	C1	and	C2	are	type	parameters	for	two	container	types	to	be
determined	when	the	function	is	called.

The	following	requirements	are	placed	on	the	function’s	two	type	parameters:

C1	must	conform	to	the	Container	protocol	(written	as	C1:	Container).

C2	must	also	conform	to	the	Container	protocol	(written	as	C2:	Container).

The	Item	for	C1	must	be	the	same	as	the	Item	for	C2	(written	as	C1.Item	==
C2.Item).

The	Item	for	C1	must	conform	to	the	Equatable	protocol	(written	as
C1.Item:	Equatable).

The	first	and	second	requirements	are	defined	in	the	function’s	type	parameter
list,	and	the	third	and	fourth	requirements	are	defined	in	the	function’s	generic
where	clause.

These	requirements	mean:

someContainer	is	a	container	of	type	C1.

anotherContainer	is	a	container	of	type	C2.

someContainer	and	anotherContainer	contain	the	same	type	of	items.

The	items	in	someContainer	can	be	checked	with	the	not	equal	operator	(!=)
to	see	if	they’re	different	from	each	other.

The	third	and	fourth	requirements	combine	to	mean	that	the	items	in
anotherContainer	can	also	be	checked	with	the	!=	operator,	because	they’re
exactly	the	same	type	as	the	items	in	someContainer.

These	requirements	enable	the	allItemsMatch(_:_:)	function	to	compare	the
two	containers,	even	if	they’re	of	a	different	container	type.

The	allItemsMatch(_:_:)	function	starts	by	checking	that	both	containers
contain	the	same	number	of	items.	If	they	contain	a	different	number	of	items,
there’s	no	way	that	they	can	match,	and	the	function	returns	false.

After	making	this	check,	the	function	iterates	over	all	of	the	items	in
someContainer	with	a	for-in	loop	and	the	half-open	range	operator	(..<).	For
each	item,	the	function	checks	whether	the	item	from	someContainer	isn’t	equal
to	the	corresponding	item	in	anotherContainer.	If	the	two	items	aren’t	equal,
then	the	two	containers	don’t	match,	and	the	function	returns	false.

If	the	loop	finishes	without	finding	a	mismatch,	the	two	containers	match,	and

the	function	returns	true.

Here’s	how	the	allItemsMatch(_:_:)	function	looks	in	action:

1 var	stackOfStrings	=	Stack<String>()

2 stackOfStrings.push("uno")

3 stackOfStrings.push("dos")

4 stackOfStrings.push("tres")

5

6 var	arrayOfStrings	=	["uno",	"dos",	"tres"]

7

8 if	allItemsMatch(stackOfStrings,	arrayOfStrings)	{

9 				print("All	items	match.")

10 }	else	{

11 				print("Not	all	items	match.")

12 }

13 //	Prints	"All	items	match."

The	example	above	creates	a	Stack	instance	to	store	String	values,	and	pushes
three	strings	onto	the	stack.	The	example	also	creates	an	Array	instance
initialized	with	an	array	literal	containing	the	same	three	strings	as	the	stack.
Even	though	the	stack	and	the	array	are	of	a	different	type,	they	both	conform	to
the	Container	protocol,	and	both	contain	the	same	type	of	values.	You	can
therefore	call	the	allItemsMatch(_:_:)	function	with	these	two	containers	as	its
arguments.	In	the	example	above,	the	allItemsMatch(_:_:)	function	correctly
reports	that	all	of	the	items	in	the	two	containers	match.

Extensions	with	a	Generic	Where	Clause

You	can	also	use	a	generic	where	clause	as	part	of	an	extension.	The	example
below	extends	the	generic	Stack	structure	from	the	previous	examples	to	add	an
isTop(_:)	method.

1 extension	Stack	where	Element:	Equatable	{

2 				func	isTop(_	item:	Element)	->	Bool	{

3 								guard	let	topItem	=	items.last	else	{

4 												return	false

5 								}

6 								return	topItem	==	item

7 				}

8 }

This	new	isTop(_:)	method	first	checks	that	the	stack	isn’t	empty,	and	then
compares	the	given	item	against	the	stack’s	topmost	item.	If	you	tried	to	do	this
without	a	generic	where	clause,	you	would	have	a	problem:	The	implementation
of	isTop(_:)	uses	the	==	operator,	but	the	definition	of	Stack	doesn’t	require	its
items	to	be	equatable,	so	using	the	==	operator	results	in	a	compile-time	error.
Using	a	generic	where	clause	lets	you	add	a	new	requirement	to	the	extension,	so
that	the	extension	adds	the	isTop(_:)	method	only	when	the	items	in	the	stack
are	equatable.

Here’s	how	the	isTop(_:)	method	looks	in	action:

1 if	stackOfStrings.isTop("tres")	{

2 				print("Top	element	is	tres.")

3 }	else	{

4 				print("Top	element	is	something	else.")

5 }

6 //	Prints	"Top	element	is	tres."

If	you	try	to	call	the	isTop(_:)	method	on	a	stack	whose	elements	aren’t
equatable,	you’ll	get	a	compile-time	error.

1 struct	NotEquatable	{	}

2 var	notEquatableStack	=	Stack<NotEquatable>()

3 let	notEquatableValue	=	NotEquatable()

4 notEquatableStack.push(notEquatableValue)

5 notEquatableStack.isTop(notEquatableValue)		//	Error

You	can	use	a	generic	where	clause	with	extensions	to	a	protocol.	The	example
below	extends	the	Container	protocol	from	the	previous	examples	to	add	a
startsWith(_:)	method.

1 extension	Container	where	Item:	Equatable	{

2 				func	startsWith(_	item:	Item)	->	Bool	{

3 								return	count	>=	1	&&	self[0]	==	item

4 				}

5 }

The	startsWith(_:)	method	first	makes	sure	that	the	container	has	at	least	one
item,	and	then	it	checks	whether	the	first	item	in	the	container	matches	the	given
item.	This	new	startsWith(_:)	method	can	be	used	with	any	type	that	conforms
to	the	Container	protocol,	including	the	stacks	and	arrays	used	above,	as	long	as
the	container’s	items	are	equatable.

1 if	[9,	9,	9].startsWith(42)	{

2 				print("Starts	with	42.")

3 }	else	{

4 				print("Starts	with	something	else.")

5 }

6 //	Prints	"Starts	with	something	else."

The	generic	where	clause	in	the	example	above	requires	Item	to	conform	to	a
protocol,	but	you	can	also	write	a	generic	where	clauses	that	require	Item	to	be	a
specific	type.	For	example:

1 extension	Container	where	Item	==	Double	{

2 				func	average()	->	Double	{

3 								var	sum	=	0.0

4 								for	index	in	0..<count	{

5 												sum	+=	self[index]

6 								}

7 								return	sum	/	Double(count)

8 				}

9 }

10 print([1260.0,	1200.0,	98.6,	37.0].average())

11 //	Prints	"648.9"

This	example	adds	an	average()	method	to	containers	whose	Item	type	is
Double.	It	iterates	over	the	items	in	the	container	to	add	them	up,	and	divides	by
the	container’s	count	to	compute	the	average.	It	explicitly	converts	the	count
from	Int	to	Double	to	be	able	to	do	floating-point	division.

You	can	include	multiple	requirements	in	a	generic	where	clause	that	is	part	of	an
extension,	just	like	you	can	for	a	generic	where	clause	that	you	write	elsewhere.
Separate	each	requirement	in	the	list	with	a	comma.

Associated	Types	with	a	Generic	Where	Clause

You	can	include	a	generic	where	clause	on	an	associated	type.	For	example,
suppose	you	want	to	make	a	version	of	Container	that	includes	an	iterator,	like
what	the	Sequence	protocol	uses	in	the	standard	library.	Here’s	how	you	write
that:

1 protocol	Container	{

2 				associatedtype	Item

3 				mutating	func	append(_	item:	Item)

4 				var	count:	Int	{	get	}

5 				subscript(i:	Int)	->	Item	{	get	}

6

7 				associatedtype	Iterator:	IteratorProtocol	where	

Iterator.Element	==	Item

8 				func	makeIterator()	->	Iterator

9 }

The	generic	where	clause	on	Iterator	requires	that	the	iterator	must	traverse
over	elements	of	the	same	item	type	as	the	container’s	items,	regardless	of	the
iterator’s	type.	The	makeIterator()	function	provides	access	to	a	container’s
iterator.

For	a	protocol	that	inherits	from	another	protocol,	you	add	a	constraint	to	an
inherited	associated	type	by	including	the	generic	where	clause	in	the	protocol
declaration.	For	example,	the	following	code	declares	a	ComparableContainer
protocol	that	requires	Item	to	conform	to	Comparable:

	 protocol	ComparableContainer:	Container	where	Item:	Comparable	

{	}

Generic	Subscripts

Subscripts	can	be	generic,	and	they	can	include	generic	where	clauses.	You	write
the	placeholder	type	name	inside	angle	brackets	after	subscript,	and	you	write	a
generic	where	clause	right	before	the	opening	curly	brace	of	the	subscript’s	body.
For	example:

1 extension	Container	{

2 				subscript<Indices:	Sequence>(indices:	Indices)	->	[Item]

3 								where	Indices.Iterator.Element	==	Int	{

4 												var	result	=	[Item]()

5 												for	index	in	indices	{

6 																result.append(self[index])

7 												}

8 												return	result

9 				}

10 }

This	extension	to	the	Container	protocol	adds	a	subscript	that	takes	a	sequence
of	indices	and	returns	an	array	containing	the	items	at	each	given	index.	This
generic	subscript	is	constrained	as	follows:

The	generic	parameter	Indices	in	angle	brackets	has	to	be	a	type	that
conforms	to	the	Sequence	protocol	from	the	standard	library.

The	subscript	takes	a	single	parameter,	indices,	which	is	an	instance	of	that
Indices	type.

The	generic	where	clause	requires	that	the	iterator	for	the	sequence	must
traverse	over	elements	of	type	Int.	This	ensures	that	the	indices	in	the
sequence	are	the	same	type	as	the	indices	used	for	a	container.

Taken	together,	these	constraints	mean	that	the	value	passed	for	the	indices
parameter	is	a	sequence	of	integers.

Opaque	Types

A	function	or	method	with	an	opaque	return	type	hides	its	return	value’s	type
information.	Instead	of	providing	a	concrete	type	as	the	function’s	return	type,
the	return	value	is	described	in	terms	of	the	protocols	it	supports.	Hiding	type
information	is	useful	at	boundaries	between	a	module	and	code	that	calls	into	the
module,	because	the	underlying	type	of	the	return	value	can	remain	private.
Unlike	returning	a	value	whose	type	is	a	protocol	type,	opaque	types	preserve
type	identity—the	compiler	has	access	to	the	type	information,	but	clients	of	the
module	don’t.

The	Problem	That	Opaque	Types	Solve

For	example,	suppose	you’re	writing	a	module	that	draws	ASCII	art	shapes.	The
basic	characteristic	of	an	ASCII	art	shape	is	a	draw()	function	that	returns	the
string	representation	of	that	shape,	which	you	can	use	as	the	requirement	for	the
Shape	protocol:

1 protocol	Shape	{

2 				func	draw()	->	String

3 }

4

5 struct	Triangle:	Shape	{

6 				var	size:	Int

7 				func	draw()	->	String	{

8 								var	result	=	[String]()

9 								for	length	in	1...size	{

10 												result.append(String(repeating:	"*",	count:	

length))

11 								}

12 								return	result.joined(separator:	"\n")

13 				}

14 }

15 let	smallTriangle	=	Triangle(size:	3)

16 print(smallTriangle.draw())

17 //	*

18 //	**

19 //	***

You	could	use	generics	to	implement	operations	like	flipping	a	shape	vertically,
as	shown	in	the	code	below.	However,	there’s	an	important	limitation	to	this
approach:	The	flipped	result	exposes	the	exact	generic	types	that	were	used	to
create	it.

1 struct	FlippedShape<T:	Shape>:	Shape	{

2 				var	shape:	T

3 				func	draw()	->	String	{

4 								let	lines	=	shape.draw().split(separator:	"\n")

5 								return	lines.reversed().joined(separator:	"\n")

6 				}

7 }

8 let	flippedTriangle	=	FlippedShape(shape:	smallTriangle)

9 print(flippedTriangle.draw())

10 //	***

11 //	**

12 //	*

This	approach	to	defining	a	JoinedShape<T:	Shape,	U:	Shape>	structure	that
joins	two	shapes	together	vertically,	like	the	code	below	shows,	results	in	types
like	JoinedShape<FlippedShape<Triangle>,	Triangle>	from	joining	a	flipped
triangle	with	another	triangle.

1 struct	JoinedShape<T:	Shape,	U:	Shape>:	Shape	{

2 				var	top:	T

3 				var	bottom:	U

4 				func	draw()	->	String	{

5 								return	top.draw()	+	"\n"	+	bottom.draw()

6 				}

7 }

8 let	joinedTriangles	=	JoinedShape(top:	smallTriangle,	bottom:	

flippedTriangle)

9 print(joinedTriangles.draw())

10 //	*

11 //	**

12 //	***

13 //	***

14 //	**

15 //	*

Exposing	detailed	information	about	the	creation	of	a	shape	allows	types	that
aren’t	meant	to	be	part	of	the	ASCII	art	module’s	public	interface	to	leak	out
because	of	the	need	to	state	the	full	return	type.	The	code	inside	the	module
could	build	up	the	same	shape	in	a	variety	of	ways,	and	other	code	outside	the
module	that	uses	the	shape	shouldn’t	have	to	account	for	the	implementation
details	about	the	list	of	transformations.	Wrapper	types	like	JoinedShape	and
FlippedShape	don’t	matter	to	the	module’s	users,	and	they	shouldn’t	be	visible.
The	module’s	public	interface	consists	of	operations	like	joining	and	flipping	a
shape,	and	those	operations	return	another	Shape	value.

Returning	an	Opaque	Type

You	can	think	of	an	opaque	type	like	being	the	reverse	of	a	generic	type.	Generic
types	let	the	code	that	calls	a	function	pick	the	type	for	that	function’s

parameters	and	return	value	in	a	way	that’s	abstracted	away	from	the	function
implementation.	For	example,	the	function	in	the	following	code	returns	a	type
that	depends	on	its	caller:

	 func	max<T>(_	x:	T,	_	y:	T)	->	T	where	T:	Comparable	{	...	}

The	code	that	calls	max(_:_:)	chooses	the	values	for	x	and	y,	and	the	type	of
those	values	determines	the	concrete	type	of	T.	The	calling	code	can	use	any	type
that	conforms	to	the	Comparable	protocol.	The	code	inside	the	function	is	written
in	a	general	way	so	it	can	handle	whatever	type	the	caller	provides.	The
implementation	of	max(_:_:)	uses	only	functionality	that	all	Comparable	types
share.

Those	roles	are	reversed	for	a	function	with	an	opaque	return	type.	An	opaque
type	lets	the	function	implementation	pick	the	type	for	the	value	it	returns	in	a
way	that’s	abstracted	away	from	the	code	that	calls	the	function.	For	example,
the	function	in	the	following	example	returns	a	trapezoid	without	exposing	the
underlying	type	of	that	shape.

1 struct	Square:	Shape	{

2 				var	size:	Int

3 				func	draw()	->	String	{

4 								let	line	=	String(repeating:	"*",	count:	size)

5 								let	result	=	Array<String>(repeating:	line,	count:	

size)

6 								return	result.joined(separator:	"\n")

7 				}

8 }

9

10 func	makeTrapezoid()	->	some	Shape	{

11 				let	top	=	Triangle(size:	2)

12 				let	middle	=	Square(size:	2)

13 				let	bottom	=	FlippedShape(shape:	top)

14 				let	trapezoid	=	JoinedShape(

15 								top:	top,

16 								bottom:	JoinedShape(top:	middle,	bottom:	bottom)

17)

18 				return	trapezoid

19 }

20 let	trapezoid	=	makeTrapezoid()

21 print(trapezoid.draw())

22 //	*

23 //	**

24 //	**

25 //	**

26 //	**

27 //	*

The	makeTrapezoid()	function	in	this	example	declares	its	return	type	as	some
Shape;	as	a	result,	the	function	returns	a	value	of	some	given	type	that	conforms
to	the	Shape	protocol,	without	specifying	any	particular	concrete	type.	Writing
makeTrapezoid()	this	way	lets	it	express	the	fundamental	aspect	of	its	public
interface—the	value	it	returns	is	a	shape—without	making	the	specific	types	that
the	shape	is	made	from	a	part	of	its	public	interface.	This	implementation	uses
two	triangles	and	a	square,	but	the	function	could	be	rewritten	to	draw	a
trapezoid	in	a	variety	of	other	ways	without	changing	its	return	type.

This	example	highlights	the	way	that	an	opaque	return	type	is	like	the	reverse	of
a	generic	type.	The	code	inside	makeTrapezoid()	can	return	any	type	it	needs	to,
as	long	as	that	type	conforms	to	the	Shape	protocol,	like	the	calling	code	does	for
a	generic	function.	The	code	that	calls	the	function	needs	to	be	written	in	a
general	way,	like	the	implementation	of	a	generic	function,	so	that	it	can	work
with	any	Shape	value	that’s	returned	by	makeTrapezoid().

You	can	also	combine	opaque	return	types	with	generics.	The	functions	in	the
following	code	both	return	a	value	of	some	type	that	conforms	to	the	Shape
protocol.

1 func	flip<T:	Shape>(_	shape:	T)	->	some	Shape	{

2 				return	FlippedShape(shape:	shape)

3 }

4 func	join<T:	Shape,	U:	Shape>(_	top:	T,	_	bottom:	U)	->	some	

Shape	{

5 				JoinedShape(top:	top,	bottom:	bottom)

6 }

7

8 let	opaqueJoinedTriangles	=	join(smallTriangle,	

flip(smallTriangle))

9 print(opaqueJoinedTriangles.draw())

10 //	*

11 //	**

12 //	***

13 //	***

14 //	**

15 //	*

The	value	of	opaqueJoinedTriangles	in	this	example	is	the	same	as
joinedTriangles	in	the	generics	example	in	the	The	Problem	That	Opaque	Types
Solve	section	earlier	in	this	chapter.	However,	unlike	the	value	in	that	example,
flip(_:)	and	join(_:_:)	wrap	the	underlying	types	that	the	generic	shape
operations	return	in	an	opaque	return	type,	which	prevents	those	types	from
being	visible.	Both	functions	are	generic	because	the	types	they	rely	on	are
generic,	and	the	type	parameters	to	the	function	pass	along	the	type	information
needed	by	FlippedShape	and	JoinedShape.

If	a	function	with	an	opaque	return	type	returns	from	multiple	places,	all	of	the
possible	return	values	must	have	the	same	type.	For	a	generic	function,	that
return	type	can	use	the	function’s	generic	type	parameters,	but	it	must	still	be	a
single	type.	For	example,	here’s	an	invalid	version	of	the	shape-flipping	function
that	includes	a	special	case	for	squares:

1 func	invalidFlip<T:	Shape>(_	shape:	T)	->	some	Shape	{

2 				if	shape	is	Square	{

3 								return	shape	//	Error:	return	types	don't	match

4 				}

5 				return	FlippedShape(shape:	shape)	//	Error:	return	types	

don't	match

6 }

If	you	call	this	function	with	a	Square,	it	returns	a	Square;	otherwise,	it	returns	a
FlippedShape.	This	violates	the	requirement	to	return	values	of	only	one	type
and	makes	invalidFlip(_:)	invalid	code.	One	way	to	fix	invalidFlip(_:)	is	to
move	the	special	case	for	squares	into	the	implementation	of	FlippedShape,
which	lets	this	function	always	return	a	FlippedShape	value:

1 struct	FlippedShape<T:	Shape>:	Shape	{

2 				var	shape:	T

3 				func	draw()	->	String	{

4 								if	shape	is	Square	{

5 												return	shape.draw()

6 								}

7 								let	lines	=	shape.draw().split(separator:	"\n")

8 								return	lines.reversed().joined(separator:	"\n")

9 				}

10 }

The	requirement	to	always	return	a	single	type	doesn’t	prevent	you	from	using
generics	in	an	opaque	return	type.	Here’s	an	example	of	a	function	that
incorporates	its	type	parameter	into	the	underlying	type	of	the	value	it	returns:

1 func	`repeat`<T:	Shape>(shape:	T,	count:	Int)	->	some	

Collection	{

2 				return	Array<T>(repeating:	shape,	count:	count)

3 }

In	this	case,	the	underlying	type	of	the	return	value	varies	depending	on	T:
Whatever	shape	is	passed	it,	repeat(shape:count:)	creates	and	returns	an	array
of	that	shape.	Nevertheless,	the	return	value	always	has	the	same	underlying	type
of	[T],	so	it	follows	the	requirement	that	functions	with	opaque	return	types	must
return	values	of	only	a	single	type.

Differences	Between	Opaque	Types	and	Protocol	Types

Returning	an	opaque	type	looks	very	similar	to	using	a	protocol	type	as	the
return	type	of	a	function,	but	these	two	kinds	of	return	type	differ	in	whether
they	preserve	type	identity.	An	opaque	type	refers	to	one	specific	type,	although
the	caller	of	the	function	isn’t	able	to	see	which	type;	a	protocol	type	can	refer	to
any	type	that	conforms	to	the	protocol.	Generally	speaking,	protocol	types	give
you	more	flexibility	about	the	underlying	types	of	the	values	they	store,	and
opaque	types	let	you	make	stronger	guarantees	about	those	underlying	types.

For	example,	here’s	a	version	of	flip(_:)	that	returns	a	value	of	protocol	type
instead	of	using	an	opaque	return	type:

1 func	protoFlip<T:	Shape>(_	shape:	T)	->	Shape	{

2 				return	FlippedShape(shape:	shape)

3 }

This	version	of	protoFlip(_:)	has	the	same	body	as	flip(_:),	and	it	always
returns	a	value	of	the	same	type.	Unlike	flip(_:),	the	value	that	protoFlip(_:)
returns	isn’t	required	to	always	have	the	same	type—it	just	has	to	conform	to	the
Shape	protocol.	Put	another	way,	protoFlip(_:)	makes	a	much	looser	API
contract	with	its	caller	than	flip(_:)	makes.	It	reserves	the	flexibility	to	return
values	of	multiple	types:

1 func	protoFlip<T:	Shape>(_	shape:	T)	->	Shape	{

2 				if	shape	is	Square	{

3 								return	shape

4 				}

5

6 				return	FlippedShape(shape:	shape)

7 }

The	revised	version	of	the	code	returns	an	instance	of	Square	or	an	instance	of
FlippedShape,	depending	on	what	shape	is	passed	in.	Two	flipped	shapes
returned	by	this	function	might	have	completely	different	types.	Other	valid
versions	of	this	function	could	return	values	of	different	types	when	flipping
multiple	instances	of	the	same	shape.	The	less	specific	return	type	information
from	protoFlip(_:)	means	that	many	operations	that	depend	on	type
information	aren’t	available	on	the	returned	value.	For	example,	it’s	not	possible
to	write	an	==	operator	comparing	results	returned	by	this	function.

1 let	protoFlippedTriangle	=	protoFlip(smallTriangle)

2 let	sameThing	=	protoFlip(smallTriangle)

3 protoFlippedTriangle	==	sameThing		//	Error

The	error	on	the	last	line	of	the	example	occurs	for	several	reasons.	The
immediate	issue	is	that	the	Shape	doesn’t	include	an	==	operator	as	part	of	its
protocol	requirements.	If	you	try	adding	one,	the	next	issue	you’ll	encounter	is
that	the	==	operator	needs	to	know	the	types	of	its	left-hand	and	right-hand
arguments.	This	sort	of	operator	usually	takes	arguments	of	type	Self,	matching
whatever	concrete	type	adopts	the	protocol,	but	adding	a	Self	requirement	to	the
protocol	doesn’t	allow	for	the	type	erasure	that	happens	when	you	use	the
protocol	as	a	type.

Using	a	protocol	type	as	the	return	type	for	a	function	gives	you	the	flexibility	to
return	any	type	that	conforms	to	the	protocol.	However,	the	cost	of	that
flexibility	is	that	some	operations	aren’t	possible	on	the	returned	values.	The
example	shows	how	the	==	operator	isn’t	available—it	depends	on	specific	type
information	that	isn’t	preserved	by	using	a	protocol	type.

Another	problem	with	this	approach	is	that	the	shape	transformations	don’t	nest.

The	result	of	flipping	a	triangle	is	a	value	of	type	Shape,	and	the	protoFlip(_:)
function	takes	an	argument	of	some	type	that	conforms	to	the	Shape	protocol.
However,	a	value	of	a	protocol	type	doesn’t	conform	to	that	protocol;	the	value
returned	by	protoFlip(_:)	doesn’t	conform	to	Shape.	This	means	code	like
protoFlip(protoFlip(smallTriange))	that	applies	multiple	transformations	is
invalid	because	the	flipped	shape	isn’t	a	valid	argument	to	protoFlip(_:).

In	contrast,	opaque	types	preserve	the	identity	of	the	underlying	type.	Swift	can
infer	associated	types,	which	lets	you	use	an	opaque	return	value	in	places	where
a	protocol	type	can’t	be	used	as	a	return	value.	For	example,	here’s	a	version	of
the	Container	protocol	from	Generics:

1 protocol	Container	{

2 				associatedtype	Item

3 				var	count:	Int	{	get	}

4 				subscript(i:	Int)	->	Item	{	get	}

5 }

6 extension	Array:	Container	{	}

You	can’t	use	Container	as	the	return	type	of	a	function	because	that	protocol
has	an	associated	type.	You	also	can’t	use	it	as	constraint	a	generic	return	type
because	there	isn’t	enough	information	outside	the	function	body	to	infer	what
the	generic	type	needs	to	be.

1 //	Error:	Protocol	with	associated	types	can't	be	used	as	a	

return	type.

2 func	makeProtocolContainer<T>(item:	T)	->	Container	{

3 				return	[item]

4 }

5

6 //	Error:	Not	enough	information	to	infer	C.

7 func	makeProtocolContainer<T,	C:	Container>(item:	T)	->	C	{

8 				return	[item]

9 }

Using	the	opaque	type	some	Container	as	a	return	type	expresses	the	desired	API
contract—the	function	returns	a	container,	but	declines	to	specify	the	container’s
type:

1 func	makeOpaqueContainer<T>(item:	T)	->	some	Container	{

2 				return	[item]

3 }

4 let	opaqueContainer	=	makeOpaqueContainer(item:	12)

5 let	twelve	=	opaqueContainer[0]

6 print(type(of:	twelve))

7 //	Prints	"Int"

The	type	of	twelve	is	inferred	to	be	Int,	which	illustrates	the	fact	that	type
inference	works	with	opaque	types.	In	the	implementation	of
makeOpaqueContainer(item:),	the	underlying	type	of	the	opaque	container	is	[T].
In	this	case,	T	is	Int,	so	the	return	value	is	an	array	of	integers	and	the	Item
associated	type	is	inferred	to	be	Int.	The	subscript	on	Container	returns	Item,
which	means	that	the	type	of	twelve	is	also	inferred	to	be	Int.

Automatic	Reference	Counting

Swift	uses	Automatic	Reference	Counting	(ARC)	to	track	and	manage	your	app’s
memory	usage.	In	most	cases,	this	means	that	memory	management	“just	works”
in	Swift,	and	you	do	not	need	to	think	about	memory	management	yourself.
ARC	automatically	frees	up	the	memory	used	by	class	instances	when	those
instances	are	no	longer	needed.

However,	in	a	few	cases	ARC	requires	more	information	about	the	relationships
between	parts	of	your	code	in	order	to	manage	memory	for	you.	This	chapter
describes	those	situations	and	shows	how	you	enable	ARC	to	manage	all	of	your
app’s	memory.	Using	ARC	in	Swift	is	very	similar	to	the	approach	described	in
Transitioning	to	ARC	Release	Notes	for	using	ARC	with	Objective-C.

Reference	counting	applies	only	to	instances	of	classes.	Structures	and
enumerations	are	value	types,	not	reference	types,	and	are	not	stored	and	passed
by	reference.

How	ARC	Works

Every	time	you	create	a	new	instance	of	a	class,	ARC	allocates	a	chunk	of
memory	to	store	information	about	that	instance.	This	memory	holds
information	about	the	type	of	the	instance,	together	with	the	values	of	any	stored
properties	associated	with	that	instance.

Additionally,	when	an	instance	is	no	longer	needed,	ARC	frees	up	the	memory
used	by	that	instance	so	that	the	memory	can	be	used	for	other	purposes	instead.
This	ensures	that	class	instances	do	not	take	up	space	in	memory	when	they	are
no	longer	needed.

However,	if	ARC	were	to	deallocate	an	instance	that	was	still	in	use,	it	would	no
longer	be	possible	to	access	that	instance’s	properties,	or	call	that	instance’s
methods.	Indeed,	if	you	tried	to	access	the	instance,	your	app	would	most	likely
crash.

https://developer.apple.com/library/content/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html

To	make	sure	that	instances	don’t	disappear	while	they	are	still	needed,	ARC
tracks	how	many	properties,	constants,	and	variables	are	currently	referring	to
each	class	instance.	ARC	will	not	deallocate	an	instance	as	long	as	at	least	one
active	reference	to	that	instance	still	exists.

To	make	this	possible,	whenever	you	assign	a	class	instance	to	a	property,
constant,	or	variable,	that	property,	constant,	or	variable	makes	a	strong
reference	to	the	instance.	The	reference	is	called	a	“strong”	reference	because	it
keeps	a	firm	hold	on	that	instance,	and	does	not	allow	it	to	be	deallocated	for	as
long	as	that	strong	reference	remains.

ARC	in	Action

Here’s	an	example	of	how	Automatic	Reference	Counting	works.	This	example
starts	with	a	simple	class	called	Person,	which	defines	a	stored	constant	property
called	name:

1 class	Person	{

2 				let	name:	String

3 				init(name:	String)	{

4 								self.name	=	name

5 								print("\(name)	is	being	initialized")

6 				}

7 				deinit	{

8 								print("\(name)	is	being	deinitialized")

9 				}

10 }

The	Person	class	has	an	initializer	that	sets	the	instance’s	name	property	and
prints	a	message	to	indicate	that	initialization	is	underway.	The	Person	class	also
has	a	deinitializer	that	prints	a	message	when	an	instance	of	the	class	is
deallocated.

The	next	code	snippet	defines	three	variables	of	type	Person?,	which	are	used	to
set	up	multiple	references	to	a	new	Person	instance	in	subsequent	code	snippets.
Because	these	variables	are	of	an	optional	type	(Person?,	not	Person),	they	are
automatically	initialized	with	a	value	of	nil,	and	do	not	currently	reference	a
Person	instance.

1 var	reference1:	Person?

2 var	reference2:	Person?

3 var	reference3:	Person?

You	can	now	create	a	new	Person	instance	and	assign	it	to	one	of	these	three
variables:

1 reference1	=	Person(name:	"John	Appleseed")

2 //	Prints	"John	Appleseed	is	being	initialized"

Note	that	the	message	"John	Appleseed	is	being	initialized"	is	printed	at	the
point	that	you	call	the	Person	class’s	initializer.	This	confirms	that	initialization
has	taken	place.

Because	the	new	Person	instance	has	been	assigned	to	the	reference1	variable,
there	is	now	a	strong	reference	from	reference1	to	the	new	Person	instance.
Because	there	is	at	least	one	strong	reference,	ARC	makes	sure	that	this	Person
is	kept	in	memory	and	is	not	deallocated.

If	you	assign	the	same	Person	instance	to	two	more	variables,	two	more	strong
references	to	that	instance	are	established:

1 reference2	=	reference1

2 reference3	=	reference1

There	are	now	three	strong	references	to	this	single	Person	instance.

If	you	break	two	of	these	strong	references	(including	the	original	reference)	by
assigning	nil	to	two	of	the	variables,	a	single	strong	reference	remains,	and	the
Person	instance	is	not	deallocated:

1 reference1	=	nil

2 reference2	=	nil

ARC	does	not	deallocate	the	Person	instance	until	the	third	and	final	strong
reference	is	broken,	at	which	point	it’s	clear	that	you	are	no	longer	using	the
Person	instance:

1 reference3	=	nil

2 //	Prints	"John	Appleseed	is	being	deinitialized"

Strong	Reference	Cycles	Between	Class	Instances

In	the	examples	above,	ARC	is	able	to	track	the	number	of	references	to	the	new
Person	instance	you	create	and	to	deallocate	that	Person	instance	when	it’s	no
longer	needed.

However,	it’s	possible	to	write	code	in	which	an	instance	of	a	class	never	gets	to
a	point	where	it	has	zero	strong	references.	This	can	happen	if	two	class
instances	hold	a	strong	reference	to	each	other,	such	that	each	instance	keeps	the
other	alive.	This	is	known	as	a	strong	reference	cycle.

You	resolve	strong	reference	cycles	by	defining	some	of	the	relationships
between	classes	as	weak	or	unowned	references	instead	of	as	strong	references.
This	process	is	described	in	Resolving	Strong	Reference	Cycles	Between	Class
Instances.	However,	before	you	learn	how	to	resolve	a	strong	reference	cycle,
it’s	useful	to	understand	how	such	a	cycle	is	caused.

Here’s	an	example	of	how	a	strong	reference	cycle	can	be	created	by	accident.
This	example	defines	two	classes	called	Person	and	Apartment,	which	model	a
block	of	apartments	and	its	residents:

1 class	Person	{

2 				let	name:	String

3 				init(name:	String)	{	self.name	=	name	}

4 				var	apartment:	Apartment?

5 				deinit	{	print("\(name)	is	being	deinitialized")	}

6 }

7

8 class	Apartment	{

9 				let	unit:	String

10 				init(unit:	String)	{	self.unit	=	unit	}

11 				var	tenant:	Person?

12 				deinit	{	print("Apartment	\(unit)	is	being	deinitialized")	

}

13 }

Every	Person	instance	has	a	name	property	of	type	String	and	an	optional
apartment	property	that	is	initially	nil.	The	apartment	property	is	optional,
because	a	person	may	not	always	have	an	apartment.

Similarly,	every	Apartment	instance	has	a	unit	property	of	type	String	and	has
an	optional	tenant	property	that	is	initially	nil.	The	tenant	property	is	optional
because	an	apartment	may	not	always	have	a	tenant.

Both	of	these	classes	also	define	a	deinitializer,	which	prints	the	fact	that	an
instance	of	that	class	is	being	deinitialized.	This	enables	you	to	see	whether
instances	of	Person	and	Apartment	are	being	deallocated	as	expected.

This	next	code	snippet	defines	two	variables	of	optional	type	called	john	and
unit4A,	which	will	be	set	to	a	specific	Apartment	and	Person	instance	below.
Both	of	these	variables	have	an	initial	value	of	nil,	by	virtue	of	being	optional:

1 var	john:	Person?

2 var	unit4A:	Apartment?

You	can	now	create	a	specific	Person	instance	and	Apartment	instance	and	assign
these	new	instances	to	the	john	and	unit4A	variables:

1 john	=	Person(name:	"John	Appleseed")

2 unit4A	=	Apartment(unit:	"4A")

Here’s	how	the	strong	references	look	after	creating	and	assigning	these	two
instances.	The	john	variable	now	has	a	strong	reference	to	the	new	Person
instance,	and	the	unit4A	variable	has	a	strong	reference	to	the	new	Apartment
instance:

You	can	now	link	the	two	instances	together	so	that	the	person	has	an	apartment,
and	the	apartment	has	a	tenant.	Note	that	an	exclamation	mark	(!)	is	used	to
unwrap	and	access	the	instances	stored	inside	the	john	and	unit4A	optional
variables,	so	that	the	properties	of	those	instances	can	be	set:

1 john!.apartment	=	unit4A

2 unit4A!.tenant	=	john

Here’s	how	the	strong	references	look	after	you	link	the	two	instances	together:

Unfortunately,	linking	these	two	instances	creates	a	strong	reference	cycle

between	them.	The	Person	instance	now	has	a	strong	reference	to	the	Apartment
instance,	and	the	Apartment	instance	has	a	strong	reference	to	the	Person
instance.	Therefore,	when	you	break	the	strong	references	held	by	the	john	and
unit4A	variables,	the	reference	counts	do	not	drop	to	zero,	and	the	instances	are
not	deallocated	by	ARC:

1 john	=	nil

2 unit4A	=	nil

Note	that	neither	deinitializer	was	called	when	you	set	these	two	variables	to	nil.
The	strong	reference	cycle	prevents	the	Person	and	Apartment	instances	from
ever	being	deallocated,	causing	a	memory	leak	in	your	app.

Here’s	how	the	strong	references	look	after	you	set	the	john	and	unit4A	variables
to	nil:

The	strong	references	between	the	Person	instance	and	the	Apartment	instance
remain	and	cannot	be	broken.

Resolving	Strong	Reference	Cycles	Between	Class	Instances

Swift	provides	two	ways	to	resolve	strong	reference	cycles	when	you	work	with
properties	of	class	type:	weak	references	and	unowned	references.

Weak	and	unowned	references	enable	one	instance	in	a	reference	cycle	to	refer
to	the	other	instance	without	keeping	a	strong	hold	on	it.	The	instances	can	then

refer	to	each	other	without	creating	a	strong	reference	cycle.

Use	a	weak	reference	when	the	other	instance	has	a	shorter	lifetime—that	is,
when	the	other	instance	can	be	deallocated	first.	In	the	Apartment	example
above,	it’s	appropriate	for	an	apartment	to	be	able	to	have	no	tenant	at	some
point	in	its	lifetime,	and	so	a	weak	reference	is	an	appropriate	way	to	break	the
reference	cycle	in	this	case.	In	contrast,	use	an	unowned	reference	when	the
other	instance	has	the	same	lifetime	or	a	longer	lifetime.

Weak	References
A	weak	reference	is	a	reference	that	does	not	keep	a	strong	hold	on	the	instance
it	refers	to,	and	so	does	not	stop	ARC	from	disposing	of	the	referenced	instance.
This	behavior	prevents	the	reference	from	becoming	part	of	a	strong	reference
cycle.	You	indicate	a	weak	reference	by	placing	the	weak	keyword	before	a
property	or	variable	declaration.

Because	a	weak	reference	does	not	keep	a	strong	hold	on	the	instance	it	refers	to,
it’s	possible	for	that	instance	to	be	deallocated	while	the	weak	reference	is	still
referring	to	it.	Therefore,	ARC	automatically	sets	a	weak	reference	to	nil	when
the	instance	that	it	refers	to	is	deallocated.	And,	because	weak	references	need	to
allow	their	value	to	be	changed	to	nil	at	runtime,	they	are	always	declared	as
variables,	rather	than	constants,	of	an	optional	type.

You	can	check	for	the	existence	of	a	value	in	the	weak	reference,	just	like	any
other	optional	value,	and	you	will	never	end	up	with	a	reference	to	an	invalid
instance	that	no	longer	exists.

NOTE

Property	observers	aren’t	called	when	ARC	sets	a	weak	reference	to	nil.

The	example	below	is	identical	to	the	Person	and	Apartment	example	from
above,	with	one	important	difference.	This	time	around,	the	Apartment	type’s
tenant	property	is	declared	as	a	weak	reference:

1 class	Person	{

2 				let	name:	String

3 				init(name:	String)	{	self.name	=	name	}

4 				var	apartment:	Apartment?

5 				deinit	{	print("\(name)	is	being	deinitialized")	}

6 }

7

8 class	Apartment	{

9 				let	unit:	String

10 				init(unit:	String)	{	self.unit	=	unit	}

11 				weak	var	tenant:	Person?

12 				deinit	{	print("Apartment	\(unit)	is	being	deinitialized")	

}

13 }

The	strong	references	from	the	two	variables	(john	and	unit4A)	and	the	links
between	the	two	instances	are	created	as	before:

1 var	john:	Person?

2 var	unit4A:	Apartment?

3

4 john	=	Person(name:	"John	Appleseed")

5 unit4A	=	Apartment(unit:	"4A")

6

7 john!.apartment	=	unit4A

8 unit4A!.tenant	=	john

Here’s	how	the	references	look	now	that	you’ve	linked	the	two	instances
together:

The	Person	instance	still	has	a	strong	reference	to	the	Apartment	instance,	but	the
Apartment	instance	now	has	a	weak	reference	to	the	Person	instance.	This	means
that	when	you	break	the	strong	reference	held	by	the	john	variable	by	setting	it
to	nil,	there	are	no	more	strong	references	to	the	Person	instance:

1 john	=	nil

2 //	Prints	"John	Appleseed	is	being	deinitialized"

Because	there	are	no	more	strong	references	to	the	Person	instance,	it’s
deallocated	and	the	tenant	property	is	set	to	nil:

The	only	remaining	strong	reference	to	the	Apartment	instance	is	from	the	unit4A
variable.	If	you	break	that	strong	reference,	there	are	no	more	strong	references
to	the	Apartment	instance:

1 unit4A	=	nil

2 //	Prints	"Apartment	4A	is	being	deinitialized"

Because	there	are	no	more	strong	references	to	the	Apartment	instance,	it	too	is

deallocated:

NOTE

In	systems	that	use	garbage	collection,	weak	pointers	are	sometimes	used	to	implement	a	simple
caching	mechanism	because	objects	with	no	strong	references	are	deallocated	only	when	memory
pressure	triggers	garbage	collection.	However,	with	ARC,	values	are	deallocated	as	soon	as	their	last
strong	reference	is	removed,	making	weak	references	unsuitable	for	such	a	purpose.

Unowned	References
Like	a	weak	reference,	an	unowned	reference	does	not	keep	a	strong	hold	on	the
instance	it	refers	to.	Unlike	a	weak	reference,	however,	an	unowned	reference	is
used	when	the	other	instance	has	the	same	lifetime	or	a	longer	lifetime.	You
indicate	an	unowned	reference	by	placing	the	unowned	keyword	before	a	property
or	variable	declaration.

An	unowned	reference	is	expected	to	always	have	a	value.	As	a	result,	ARC
never	sets	an	unowned	reference’s	value	to	nil,	which	means	that	unowned
references	are	defined	using	non-optional	types.

IMPORTANT

Use	an	unowned	reference	only	when	you	are	sure	that	the	reference	always	refers	to	an	instance	that
has	not	been	deallocated.

If	you	try	to	access	the	value	of	an	unowned	reference	after	that	instance	has	been	deallocated,	you’ll
get	a	runtime	error.

The	following	example	defines	two	classes,	Customer	and	CreditCard,	which
model	a	bank	customer	and	a	possible	credit	card	for	that	customer.	These	two

classes	each	store	an	instance	of	the	other	class	as	a	property.	This	relationship
has	the	potential	to	create	a	strong	reference	cycle.

The	relationship	between	Customer	and	CreditCard	is	slightly	different	from	the
relationship	between	Apartment	and	Person	seen	in	the	weak	reference	example
above.	In	this	data	model,	a	customer	may	or	may	not	have	a	credit	card,	but	a
credit	card	will	always	be	associated	with	a	customer.	A	CreditCard	instance
never	outlives	the	Customer	that	it	refers	to.	To	represent	this,	the	Customer	class
has	an	optional	card	property,	but	the	CreditCard	class	has	an	unowned	(and
non-optional)	customer	property.

Furthermore,	a	new	CreditCard	instance	can	only	be	created	by	passing	a	number
value	and	a	customer	instance	to	a	custom	CreditCard	initializer.	This	ensures
that	a	CreditCard	instance	always	has	a	customer	instance	associated	with	it
when	the	CreditCard	instance	is	created.

Because	a	credit	card	will	always	have	a	customer,	you	define	its	customer
property	as	an	unowned	reference,	to	avoid	a	strong	reference	cycle:

1 class	Customer	{

2 				let	name:	String

3 				var	card:	CreditCard?

4 				init(name:	String)	{

5 								self.name	=	name

6 				}

7 				deinit	{	print("\(name)	is	being	deinitialized")	}

8 }

9

10 class	CreditCard	{

11 				let	number:	UInt64

12 				unowned	let	customer:	Customer

13 				init(number:	UInt64,	customer:	Customer)	{

14 								self.number	=	number

15 								self.customer	=	customer

16 				}

17 				deinit	{	print("Card	#\(number)	is	being	deinitialized")	}

18 }

NOTE

The	number	property	of	the	CreditCard	class	is	defined	with	a	type	of	UInt64	rather	than	Int,
to	ensure	that	the	number	property’s	capacity	is	large	enough	to	store	a	16-digit	card	number	on
both	32-bit	and	64-bit	systems.

This	next	code	snippet	defines	an	optional	Customer	variable	called	john,	which
will	be	used	to	store	a	reference	to	a	specific	customer.	This	variable	has	an
initial	value	of	nil,	by	virtue	of	being	optional:

	 var	john:	Customer?

You	can	now	create	a	Customer	instance,	and	use	it	to	initialize	and	assign	a	new
CreditCard	instance	as	that	customer’s	card	property:

1 john	=	Customer(name:	"John	Appleseed")

2 john!.card	=	CreditCard(number:	1234_5678_9012_3456,	customer:	

john!)

Here’s	how	the	references	look,	now	that	you’ve	linked	the	two	instances:

The	Customer	instance	now	has	a	strong	reference	to	the	CreditCard	instance,
and	the	CreditCard	instance	has	an	unowned	reference	to	the	Customer	instance.

Because	of	the	unowned	customer	reference,	when	you	break	the	strong
reference	held	by	the	john	variable,	there	are	no	more	strong	references	to	the
Customer	instance:

Because	there	are	no	more	strong	references	to	the	Customer	instance,	it’s
deallocated.	After	this	happens,	there	are	no	more	strong	references	to	the
CreditCard	instance,	and	it	too	is	deallocated:

1 john	=	nil

2 //	Prints	"John	Appleseed	is	being	deinitialized"

3 //	Prints	"Card	#1234567890123456	is	being	deinitialized"

The	final	code	snippet	above	shows	that	the	deinitializers	for	the	Customer
instance	and	CreditCard	instance	both	print	their	“deinitialized”	messages	after
the	john	variable	is	set	to	nil.

NOTE

The	examples	above	show	how	to	use	safe	unowned	references.	Swift	also	provides	unsafe	unowned
references	for	cases	where	you	need	to	disable	runtime	safety	checks—for	example,	for	performance
reasons.	As	with	all	unsafe	operations,	you	take	on	the	responsibility	for	checking	that	code	for
safety.

You	indicate	an	unsafe	unowned	reference	by	writing	unowned(unsafe).	If	you	try	to	access	an
unsafe	unowned	reference	after	the	instance	that	it	refers	to	is	deallocated,	your	program	will	try	to
access	the	memory	location	where	the	instance	used	to	be,	which	is	an	unsafe	operation.

Unowned	References	and	Implicitly	Unwrapped	Optional

Properties
The	examples	for	weak	and	unowned	references	above	cover	two	of	the	more
common	scenarios	in	which	it’s	necessary	to	break	a	strong	reference	cycle.

The	Person	and	Apartment	example	shows	a	situation	where	two	properties,	both
of	which	are	allowed	to	be	nil,	have	the	potential	to	cause	a	strong	reference
cycle.	This	scenario	is	best	resolved	with	a	weak	reference.

The	Customer	and	CreditCard	example	shows	a	situation	where	one	property	that
is	allowed	to	be	nil	and	another	property	that	cannot	be	nil	have	the	potential	to
cause	a	strong	reference	cycle.	This	scenario	is	best	resolved	with	an	unowned
reference.

However,	there	is	a	third	scenario,	in	which	both	properties	should	always	have	a
value,	and	neither	property	should	ever	be	nil	once	initialization	is	complete.	In
this	scenario,	it’s	useful	to	combine	an	unowned	property	on	one	class	with	an
implicitly	unwrapped	optional	property	on	the	other	class.

This	enables	both	properties	to	be	accessed	directly	(without	optional
unwrapping)	once	initialization	is	complete,	while	still	avoiding	a	reference
cycle.	This	section	shows	you	how	to	set	up	such	a	relationship.

The	example	below	defines	two	classes,	Country	and	City,	each	of	which	stores
an	instance	of	the	other	class	as	a	property.	In	this	data	model,	every	country
must	always	have	a	capital	city,	and	every	city	must	always	belong	to	a	country.
To	represent	this,	the	Country	class	has	a	capitalCity	property,	and	the	City
class	has	a	country	property:

1 class	Country	{

2 				let	name:	String

3 				var	capitalCity:	City!

4 				init(name:	String,	capitalName:	String)	{

5 								self.name	=	name

6 								self.capitalCity	=	City(name:	capitalName,	country:	

self)

7 				}

8 }

9

10 class	City	{

11 				let	name:	String

12 				unowned	let	country:	Country

13 				init(name:	String,	country:	Country)	{

14 								self.name	=	name

15 								self.country	=	country

16 				}

17 }

To	set	up	the	interdependency	between	the	two	classes,	the	initializer	for	City
takes	a	Country	instance,	and	stores	this	instance	in	its	country	property.

The	initializer	for	City	is	called	from	within	the	initializer	for	Country.	However,
the	initializer	for	Country	cannot	pass	self	to	the	City	initializer	until	a	new
Country	instance	is	fully	initialized,	as	described	in	Two-Phase	Initialization.

To	cope	with	this	requirement,	you	declare	the	capitalCity	property	of	Country
as	an	implicitly	unwrapped	optional	property,	indicated	by	the	exclamation	mark
at	the	end	of	its	type	annotation	(City!).	This	means	that	the	capitalCity
property	has	a	default	value	of	nil,	like	any	other	optional,	but	can	be	accessed
without	the	need	to	unwrap	its	value	as	described	in	Implicitly	Unwrapped
Optionals.

Because	capitalCity	has	a	default	nil	value,	a	new	Country	instance	is
considered	fully	initialized	as	soon	as	the	Country	instance	sets	its	name	property
within	its	initializer.	This	means	that	the	Country	initializer	can	start	to	reference
and	pass	around	the	implicit	self	property	as	soon	as	the	name	property	is	set.
The	Country	initializer	can	therefore	pass	self	as	one	of	the	parameters	for	the
City	initializer	when	the	Country	initializer	is	setting	its	own	capitalCity
property.

All	of	this	means	that	you	can	create	the	Country	and	City	instances	in	a	single
statement,	without	creating	a	strong	reference	cycle,	and	the	capitalCity

property	can	be	accessed	directly,	without	needing	to	use	an	exclamation	mark	to
unwrap	its	optional	value:

1 var	country	=	Country(name:	"Canada",	capitalName:	"Ottawa")

2 print("\(country.name)'s	capital	city	is	called	\

(country.capitalCity.name)")

3 //	Prints	"Canada's	capital	city	is	called	Ottawa"

In	the	example	above,	the	use	of	an	implicitly	unwrapped	optional	means	that	all
of	the	two-phase	class	initializer	requirements	are	satisfied.	The	capitalCity
property	can	be	used	and	accessed	like	a	non-optional	value	once	initialization	is
complete,	while	still	avoiding	a	strong	reference	cycle.

Strong	Reference	Cycles	for	Closures

You	saw	above	how	a	strong	reference	cycle	can	be	created	when	two	class
instance	properties	hold	a	strong	reference	to	each	other.	You	also	saw	how	to
use	weak	and	unowned	references	to	break	these	strong	reference	cycles.

A	strong	reference	cycle	can	also	occur	if	you	assign	a	closure	to	a	property	of	a
class	instance,	and	the	body	of	that	closure	captures	the	instance.	This	capture
might	occur	because	the	closure’s	body	accesses	a	property	of	the	instance,	such
as	self.someProperty,	or	because	the	closure	calls	a	method	on	the	instance,
such	as	self.someMethod().	In	either	case,	these	accesses	cause	the	closure	to
“capture”	self,	creating	a	strong	reference	cycle.

This	strong	reference	cycle	occurs	because	closures,	like	classes,	are	reference
types.	When	you	assign	a	closure	to	a	property,	you	are	assigning	a	reference	to
that	closure.	In	essence,	it’s	the	same	problem	as	above—two	strong	references
are	keeping	each	other	alive.	However,	rather	than	two	class	instances,	this	time
it’s	a	class	instance	and	a	closure	that	are	keeping	each	other	alive.

Swift	provides	an	elegant	solution	to	this	problem,	known	as	a	closure	capture
list.	However,	before	you	learn	how	to	break	a	strong	reference	cycle	with	a

closure	capture	list,	it’s	useful	to	understand	how	such	a	cycle	can	be	caused.

The	example	below	shows	how	you	can	create	a	strong	reference	cycle	when
using	a	closure	that	references	self.	This	example	defines	a	class	called
HTMLElement,	which	provides	a	simple	model	for	an	individual	element	within	an
HTML	document:

1 class	HTMLElement	{

2

3 				let	name:	String

4 				let	text:	String?

5

6 				lazy	var	asHTML:	()	->	String	=	{

7 								if	let	text	=	self.text	{

8 												return	"<\(self.name)>\(text)</\(self.name)>"

9 								}	else	{

10 												return	"<\(self.name)	/>"

11 								}

12 				}

13

14 				init(name:	String,	text:	String?	=	nil)	{

15 								self.name	=	name

16 								self.text	=	text

17 				}

18

19 				deinit	{

20 								print("\(name)	is	being	deinitialized")

21 				}

22

23 }

The	HTMLElement	class	defines	a	name	property,	which	indicates	the	name	of	the
element,	such	as	"h1"	for	a	heading	element,	"p"	for	a	paragraph	element,	or
"br"	for	a	line	break	element.	HTMLElement	also	defines	an	optional	text
property,	which	you	can	set	to	a	string	that	represents	the	text	to	be	rendered
within	that	HTML	element.

In	addition	to	these	two	simple	properties,	the	HTMLElement	class	defines	a	lazy
property	called	asHTML.	This	property	references	a	closure	that	combines	name
and	text	into	an	HTML	string	fragment.	The	asHTML	property	is	of	type	()	->
String,	or	“a	function	that	takes	no	parameters,	and	returns	a	String	value”.

By	default,	the	asHTML	property	is	assigned	a	closure	that	returns	a	string
representation	of	an	HTML	tag.	This	tag	contains	the	optional	text	value	if	it
exists,	or	no	text	content	if	text	does	not	exist.	For	a	paragraph	element,	the
closure	would	return	"<p>some	text</p>"	or	"<p	/>",	depending	on	whether	the
text	property	equals	"some	text"	or	nil.

The	asHTML	property	is	named	and	used	somewhat	like	an	instance	method.
However,	because	asHTML	is	a	closure	property	rather	than	an	instance	method,
you	can	replace	the	default	value	of	the	asHTML	property	with	a	custom	closure,	if
you	want	to	change	the	HTML	rendering	for	a	particular	HTML	element.

For	example,	the	asHTML	property	could	be	set	to	a	closure	that	defaults	to	some
text	if	the	text	property	is	nil,	in	order	to	prevent	the	representation	from
returning	an	empty	HTML	tag:

1 let	heading	=	HTMLElement(name:	"h1")

2 let	defaultText	=	"some	default	text"

3 heading.asHTML	=	{

4 				return	"<\(heading.name)>\(heading.text	??	defaultText)</\

(heading.name)>"

5 }

6 print(heading.asHTML())

7 //	Prints	"<h1>some	default	text</h1>"

NOTE

The	asHTML	property	is	declared	as	a	lazy	property,	because	it’s	only	needed	if	and	when	the
element	actually	needs	to	be	rendered	as	a	string	value	for	some	HTML	output	target.	The	fact	that
asHTML	is	a	lazy	property	means	that	you	can	refer	to	self	within	the	default	closure,	because	the
lazy	property	will	not	be	accessed	until	after	initialization	has	been	completed	and	self	is	known	to
exist.

The	HTMLElement	class	provides	a	single	initializer,	which	takes	a	name	argument
and	(if	desired)	a	text	argument	to	initialize	a	new	element.	The	class	also
defines	a	deinitializer,	which	prints	a	message	to	show	when	an	HTMLElement
instance	is	deallocated.

Here’s	how	you	use	the	HTMLElement	class	to	create	and	print	a	new	instance:

1 var	paragraph:	HTMLElement?	=	HTMLElement(name:	"p",	text:	

"hello,	world")

2 print(paragraph!.asHTML())

3 //	Prints	"<p>hello,	world</p>"

NOTE

The	paragraph	variable	above	is	defined	as	an	optional	HTMLElement,	so	that	it	can	be	set	to
nil	below	to	demonstrate	the	presence	of	a	strong	reference	cycle.

Unfortunately,	the	HTMLElement	class,	as	written	above,	creates	a	strong	reference
cycle	between	an	HTMLElement	instance	and	the	closure	used	for	its	default
asHTML	value.	Here’s	how	the	cycle	looks:

The	instance’s	asHTML	property	holds	a	strong	reference	to	its	closure.	However,
because	the	closure	refers	to	self	within	its	body	(as	a	way	to	reference
self.name	and	self.text),	the	closure	captures	self,	which	means	that	it	holds	a
strong	reference	back	to	the	HTMLElement	instance.	A	strong	reference	cycle	is
created	between	the	two.	(For	more	information	about	capturing	values	in	a
closure,	see	Capturing	Values.)

NOTE

Even	though	the	closure	refers	to	self	multiple	times,	it	only	captures	one	strong	reference	to	the
HTMLElement	instance.

If	you	set	the	paragraph	variable	to	nil	and	break	its	strong	reference	to	the
HTMLElement	instance,	neither	the	HTMLElement	instance	nor	its	closure	are
deallocated,	because	of	the	strong	reference	cycle:

	 paragraph	=	nil

Note	that	the	message	in	the	HTMLElement	deinitializer	is	not	printed,	which
shows	that	the	HTMLElement	instance	is	not	deallocated.

Resolving	Strong	Reference	Cycles	for	Closures

You	resolve	a	strong	reference	cycle	between	a	closure	and	a	class	instance	by
defining	a	capture	list	as	part	of	the	closure’s	definition.	A	capture	list	defines
the	rules	to	use	when	capturing	one	or	more	reference	types	within	the	closure’s
body.	As	with	strong	reference	cycles	between	two	class	instances,	you	declare
each	captured	reference	to	be	a	weak	or	unowned	reference	rather	than	a	strong
reference.	The	appropriate	choice	of	weak	or	unowned	depends	on	the
relationships	between	the	different	parts	of	your	code.

NOTE

Swift	requires	you	to	write	self.someProperty	or	self.someMethod()	(rather	than	just
someProperty	or	someMethod())	whenever	you	refer	to	a	member	of	self	within	a	closure.
This	helps	you	remember	that	it’s	possible	to	capture	self	by	accident.

Defining	a	Capture	List
Each	item	in	a	capture	list	is	a	pairing	of	the	weak	or	unowned	keyword	with	a
reference	to	a	class	instance	(such	as	self)	or	a	variable	initialized	with	some
value	(such	as	delegate	=	self.delegate).	These	pairings	are	written	within	a
pair	of	square	braces,	separated	by	commas.

Place	the	capture	list	before	a	closure’s	parameter	list	and	return	type	if	they	are
provided:

1 lazy	var	someClosure	=	{

2 				[unowned	self,	weak	delegate	=	self.delegate]

3 				(index:	Int,	stringToProcess:	String)	->	String	in

4 				//	closure	body	goes	here

5 }

If	a	closure	does	not	specify	a	parameter	list	or	return	type	because	they	can	be
inferred	from	context,	place	the	capture	list	at	the	very	start	of	the	closure,
followed	by	the	in	keyword:

1 lazy	var	someClosure	=	{

2 				[unowned	self,	weak	delegate	=	self.delegate]	in

3 				//	closure	body	goes	here

4 }

Weak	and	Unowned	References
Define	a	capture	in	a	closure	as	an	unowned	reference	when	the	closure	and	the
instance	it	captures	will	always	refer	to	each	other,	and	will	always	be
deallocated	at	the	same	time.

Conversely,	define	a	capture	as	a	weak	reference	when	the	captured	reference
may	become	nil	at	some	point	in	the	future.	Weak	references	are	always	of	an
optional	type,	and	automatically	become	nil	when	the	instance	they	reference	is
deallocated.	This	enables	you	to	check	for	their	existence	within	the	closure’s

body.

NOTE

If	the	captured	reference	will	never	become	nil,	it	should	always	be	captured	as	an	unowned
reference,	rather	than	a	weak	reference.

An	unowned	reference	is	the	appropriate	capture	method	to	use	to	resolve	the
strong	reference	cycle	in	the	HTMLElement	example	from	Strong	Reference
Cycles	for	Closures	above.	Here’s	how	you	write	the	HTMLElement	class	to	avoid
the	cycle:

1 class	HTMLElement	{

2

3 				let	name:	String

4 				let	text:	String?

5

6 				lazy	var	asHTML:	()	->	String	=	{

7 								[unowned	self]	in

8 								if	let	text	=	self.text	{

9 												return	"<\(self.name)>\(text)</\(self.name)>"

10 								}	else	{

11 												return	"<\(self.name)	/>"

12 								}

13 				}

14

15 				init(name:	String,	text:	String?	=	nil)	{

16 								self.name	=	name

17 								self.text	=	text

18 				}

19

20 				deinit	{

21 								print("\(name)	is	being	deinitialized")

22 				}

23

24 }

This	implementation	of	HTMLElement	is	identical	to	the	previous	implementation,
apart	from	the	addition	of	a	capture	list	within	the	asHTML	closure.	In	this	case,
the	capture	list	is	[unowned	self],	which	means	“capture	self	as	an	unowned
reference	rather	than	a	strong	reference”.

You	can	create	and	print	an	HTMLElement	instance	as	before:

1 var	paragraph:	HTMLElement?	=	HTMLElement(name:	"p",	text:	

"hello,	world")

2 print(paragraph!.asHTML())

3 //	Prints	"<p>hello,	world</p>"

Here’s	how	the	references	look	with	the	capture	list	in	place:

This	time,	the	capture	of	self	by	the	closure	is	an	unowned	reference,	and	does
not	keep	a	strong	hold	on	the	HTMLElement	instance	it	has	captured.	If	you	set	the
strong	reference	from	the	paragraph	variable	to	nil,	the	HTMLElement	instance	is
deallocated,	as	can	be	seen	from	the	printing	of	its	deinitializer	message	in	the
example	below:

1 paragraph	=	nil

2 //	Prints	"p	is	being	deinitialized"

For	more	information	about	capture	lists,	see	Capture	Lists.

Memory	Safety

By	default,	Swift	prevents	unsafe	behavior	from	happening	in	your	code.	For
example,	Swift	ensures	that	variables	are	initialized	before	they’re	used,	memory
isn’t	accessed	after	it’s	been	deallocated,	and	array	indices	are	checked	for	out-
of-bounds	errors.

Swift	also	makes	sure	that	multiple	accesses	to	the	same	area	of	memory	don’t
conflict,	by	requiring	code	that	modifies	a	location	in	memory	to	have	exclusive
access	to	that	memory.	Because	Swift	manages	memory	automatically,	most	of
the	time	you	don’t	have	to	think	about	accessing	memory	at	all.	However,	it’s
important	to	understand	where	potential	conflicts	can	occur,	so	you	can	avoid
writing	code	that	has	conflicting	access	to	memory.	If	your	code	does	contain
conflicts,	you’ll	get	a	compile-time	or	runtime	error.

Understanding	Conflicting	Access	to	Memory

Access	to	memory	happens	in	your	code	when	you	do	things	like	set	the	value	of
a	variable	or	pass	an	argument	to	a	function.	For	example,	the	following	code
contains	both	a	read	access	and	a	write	access:

1 //	A	write	access	to	the	memory	where	one	is	stored.

2 var	one	=	1

3

4 //	A	read	access	from	the	memory	where	one	is	stored.

5 print("We're	number	\(one)!")

A	conflicting	access	to	memory	can	occur	when	different	parts	of	your	code	are
trying	to	access	the	same	location	in	memory	at	the	same	time.	Multiple	accesses
to	a	location	in	memory	at	the	same	time	can	produce	unpredictable	or
inconsistent	behavior.	In	Swift,	there	are	ways	to	modify	a	value	that	span
several	lines	of	code,	making	it	possible	to	attempt	to	access	a	value	in	the

middle	of	its	own	modification.

You	can	see	a	similar	problem	by	thinking	about	how	you	update	a	budget	that’s
written	on	a	piece	of	paper.	Updating	the	budget	is	a	two-step	process:	First	you
add	the	items’	names	and	prices,	and	then	you	change	the	total	amount	to	reflect
the	items	currently	on	the	list.	Before	and	after	the	update,	you	can	read	any
information	from	the	budget	and	get	a	correct	answer,	as	shown	in	the	figure
below.

While	you’re	adding	items	to	the	budget,	it’s	in	a	temporary,	invalid	state
because	the	total	amount	hasn’t	been	updated	to	reflect	the	newly	added	items.
Reading	the	total	amount	during	the	process	of	adding	an	item	gives	you
incorrect	information.

This	example	also	demonstrates	a	challenge	you	may	encounter	when	fixing
conflicting	access	to	memory:	There	are	sometimes	multiple	ways	to	fix	the
conflict	that	produce	different	answers,	and	it’s	not	always	obvious	which
answer	is	correct.	In	this	example,	depending	on	whether	you	wanted	the
original	total	amount	or	the	updated	total	amount,	either	$5	or	$320	could	be	the
correct	answer.	Before	you	can	fix	the	conflicting	access,	you	have	to	determine
what	it	was	intended	to	do.

NOTE

If	you’ve	written	concurrent	or	multithreaded	code,	conflicting	access	to	memory	might	be	a	familiar
problem.	However,	the	conflicting	access	discussed	here	can	happen	on	a	single	thread	and	doesn’t
involve	concurrent	or	multithreaded	code.

If	you	have	conflicting	access	to	memory	from	within	a	single	thread,	Swift	guarantees	that	you’ll	get
an	error	at	either	compile	time	or	runtime.	For	multithreaded	code,	use	Thread	Sanitizer	to	help	detect
conflicting	access	across	threads.

https://developer.apple.com/documentation/code_diagnostics/thread_sanitizer

Characteristics	of	Memory	Access
There	are	three	characteristics	of	memory	access	to	consider	in	the	context	of
conflicting	access:	whether	the	access	is	a	read	or	a	write,	the	duration	of	the
access,	and	the	location	in	memory	being	accessed.	Specifically,	a	conflict
occurs	if	you	have	two	accesses	that	meet	all	of	the	following	conditions:

At	least	one	is	a	write	access.

They	access	the	same	location	in	memory.

Their	durations	overlap.

The	difference	between	a	read	and	write	access	is	usually	obvious:	a	write	access
changes	the	location	in	memory,	but	a	read	access	doesn’t.	The	location	in
memory	refers	to	what	is	being	accessed—for	example,	a	variable,	constant,	or
property.	The	duration	of	a	memory	access	is	either	instantaneous	or	long-term.

An	access	is	instantaneous	if	it’s	not	possible	for	other	code	to	run	after	that
access	starts	but	before	it	ends.	By	their	nature,	two	instantaneous	accesses	can’t
happen	at	the	same	time.	Most	memory	access	is	instantaneous.	For	example,	all
the	read	and	write	accesses	in	the	code	listing	below	are	instantaneous:

1 func	oneMore(than	number:	Int)	->	Int	{

2 				return	number	+	1

3 }

4

5 var	myNumber	=	1

6 myNumber	=	oneMore(than:	myNumber)

7 print(myNumber)

8 //	Prints	"2"

However,	there	are	several	ways	to	access	memory,	called	long-term	accesses,
that	span	the	execution	of	other	code.	The	difference	between	instantaneous
access	and	long-term	access	is	that	it’s	possible	for	other	code	to	run	after	a
long-term	access	starts	but	before	it	ends,	which	is	called	overlap.	A	long-term
access	can	overlap	with	other	long-term	accesses	and	instantaneous	accesses.

Overlapping	accesses	appear	primarily	in	code	that	uses	in-out	parameters	in
functions	and	methods	or	mutating	methods	of	a	structure.	The	specific	kinds	of
Swift	code	that	use	long-term	accesses	are	discussed	in	the	sections	below.

Conflicting	Access	to	In-Out	Parameters

A	function	has	long-term	write	access	to	all	of	its	in-out	parameters.	The	write
access	for	an	in-out	parameter	starts	after	all	of	the	non-in-out	parameters	have
been	evaluated	and	lasts	for	the	entire	duration	of	that	function	call.	If	there	are
multiple	in-out	parameters,	the	write	accesses	start	in	the	same	order	as	the
parameters	appear.

One	consequence	of	this	long-term	write	access	is	that	you	can’t	access	the
original	variable	that	was	passed	as	in-out,	even	if	scoping	rules	and	access
control	would	otherwise	permit	it—any	access	to	the	original	creates	a	conflict.
For	example:

1 var	stepSize	=	1

2

3 func	increment(_	number:	inout	Int)	{

4 				number	+=	stepSize

5 }

6

7 increment(&stepSize)

8 //	Error:	conflicting	accesses	to	stepSize

In	the	code	above,	stepSize	is	a	global	variable,	and	it	is	normally	accessible
from	within	increment(_:).	However,	the	read	access	to	stepSize	overlaps	with
the	write	access	to	number.	As	shown	in	the	figure	below,	both	number	and
stepSize	refer	to	the	same	location	in	memory.	The	read	and	write	accesses	refer
to	the	same	memory	and	they	overlap,	producing	a	conflict.

One	way	to	solve	this	conflict	is	to	make	an	explicit	copy	of	stepSize:

1 //	Make	an	explicit	copy.

2 var	copyOfStepSize	=	stepSize

3 increment(©OfStepSize)

4

5 //	Update	the	original.

6 stepSize	=	copyOfStepSize

7 //	stepSize	is	now	2

When	you	make	a	copy	of	stepSize	before	calling	increment(_:),	it’s	clear	that
the	value	of	copyOfStepSize	is	incremented	by	the	current	step	size.	The	read
access	ends	before	the	write	access	starts,	so	there	isn’t	a	conflict.

Another	consequence	of	long-term	write	access	to	in-out	parameters	is	that
passing	a	single	variable	as	the	argument	for	multiple	in-out	parameters	of	the
same	function	produces	a	conflict.	For	example:

1 func	balance(_	x:	inout	Int,	_	y:	inout	Int)	{

2 				let	sum	=	x	+	y

3 				x	=	sum	/	2

4 				y	=	sum	-	x

5 }

6 var	playerOneScore	=	42

7 var	playerTwoScore	=	30

8 balance(&playerOneScore,	&playerTwoScore)		//	OK

9 balance(&playerOneScore,	&playerOneScore)

10 //	Error:	conflicting	accesses	to	playerOneScore

The	balance(_:_:)	function	above	modifies	its	two	parameters	to	divide	the	total
value	evenly	between	them.	Calling	it	with	playerOneScore	and	playerTwoScore
as	arguments	doesn’t	produce	a	conflict—there	are	two	write	accesses	that
overlap	in	time,	but	they	access	different	locations	in	memory.	In	contrast,
passing	playerOneScore	as	the	value	for	both	parameters	produces	a	conflict
because	it	tries	to	perform	two	write	accesses	to	the	same	location	in	memory	at
the	same	time.

NOTE

Because	operators	are	functions,	they	can	also	have	long-term	accesses	to	their	in-out	parameters.	For
example,	if	balance(_:_:)	was	an	operator	function	named	<^>,	writing	playerOneScore
<^>	playerOneScore	would	result	in	the	same	conflict	as	balance(&playerOneScore,
&playerOneScore).

Conflicting	Access	to	self	in	Methods

A	mutating	method	on	a	structure	has	write	access	to	self	for	the	duration	of	the
method	call.	For	example,	consider	a	game	where	each	player	has	a	health
amount,	which	decreases	when	taking	damage,	and	an	energy	amount,	which
decreases	when	using	special	abilities.

1 struct	Player	{

2 				var	name:	String

3 				var	health:	Int

4 				var	energy:	Int

5

6 				static	let	maxHealth	=	10

7 				mutating	func	restoreHealth()	{

8 								health	=	Player.maxHealth

9 				}

10 }

In	the	restoreHealth()	method	above,	a	write	access	to	self	starts	at	the
beginning	of	the	method	and	lasts	until	the	method	returns.	In	this	case,	there’s
no	other	code	inside	restoreHealth()	that	could	have	an	overlapping	access	to
the	properties	of	a	Player	instance.	The	shareHealth(with:)	method	below	takes
another	Player	instance	as	an	in-out	parameter,	creating	the	possibility	of
overlapping	accesses.

1 extension	Player	{

2 				mutating	func	shareHealth(with	teammate:	inout	Player)	{

3 								balance(&teammate.health,	&health)

4 				}

5 }

6

7 var	oscar	=	Player(name:	"Oscar",	health:	10,	energy:	10)

8 var	maria	=	Player(name:	"Maria",	health:	5,	energy:	10)

9 oscar.shareHealth(with:	&maria)		//	OK

In	the	example	above,	calling	the	shareHealth(with:)	method	for	Oscar’s	player
to	share	health	with	Maria’s	player	doesn’t	cause	a	conflict.	There’s	a	write
access	to	oscar	during	the	method	call	because	oscar	is	the	value	of	self	in	a
mutating	method,	and	there’s	a	write	access	to	maria	for	the	same	duration
because	maria	was	passed	as	an	in-out	parameter.	As	shown	in	the	figure	below,
they	access	different	locations	in	memory.	Even	though	the	two	write	accesses
overlap	in	time,	they	don’t	conflict.

However,	if	you	pass	oscar	as	the	argument	to	shareHealth(with:),	there’s	a
conflict:

1 oscar.shareHealth(with:	&oscar)

2 //	Error:	conflicting	accesses	to	oscar

The	mutating	method	needs	write	access	to	self	for	the	duration	of	the	method,
and	the	in-out	parameter	needs	write	access	to	teammate	for	the	same	duration.
Within	the	method,	both	self	and	teammate	refer	to	the	same	location	in	memory
—as	shown	in	the	figure	below.	The	two	write	accesses	refer	to	the	same
memory	and	they	overlap,	producing	a	conflict.

Conflicting	Access	to	Properties

Types	like	structures,	tuples,	and	enumerations	are	made	up	of	individual
constituent	values,	such	as	the	properties	of	a	structure	or	the	elements	of	a	tuple.
Because	these	are	value	types,	mutating	any	piece	of	the	value	mutates	the	whole
value,	meaning	read	or	write	access	to	one	of	the	properties	requires	read	or
write	access	to	the	whole	value.	For	example,	overlapping	write	accesses	to	the
elements	of	a	tuple	produces	a	conflict:

1 var	playerInformation	=	(health:	10,	energy:	20)

2 balance(&playerInformation.health,	&playerInformation.energy)

3 //	Error:	conflicting	access	to	properties	of	playerInformation

In	the	example	above,	calling	balance(_:_:)	on	the	elements	of	a	tuple	produces

a	conflict	because	there	are	overlapping	write	accesses	to	playerInformation.
Both	playerInformation.health	and	playerInformation.energy	are	passed	as
in-out	parameters,	which	means	balance(_:_:)	needs	write	access	to	them	for
the	duration	of	the	function	call.	In	both	cases,	a	write	access	to	the	tuple
element	requires	a	write	access	to	the	entire	tuple.	This	means	there	are	two
write	accesses	to	playerInformation	with	durations	that	overlap,	causing	a
conflict.

The	code	below	shows	that	the	same	error	appears	for	overlapping	write
accesses	to	the	properties	of	a	structure	that’s	stored	in	a	global	variable.

1 var	holly	=	Player(name:	"Holly",	health:	10,	energy:	10)

2 balance(&holly.health,	&holly.energy)		//	Error

In	practice,	most	access	to	the	properties	of	a	structure	can	overlap	safely.	For
example,	if	the	variable	holly	in	the	example	above	is	changed	to	a	local
variable	instead	of	a	global	variable,	the	compiler	can	prove	that	overlapping
access	to	stored	properties	of	the	structure	is	safe:

1 func	someFunction()	{

2 				var	oscar	=	Player(name:	"Oscar",	health:	10,	energy:	10)

3 				balance(&oscar.health,	&oscar.energy)		//	OK

4 }

In	the	example	above,	Oscar’s	health	and	energy	are	passed	as	the	two	in-out
parameters	to	balance(_:_:).	The	compiler	can	prove	that	memory	safety	is
preserved	because	the	two	stored	properties	don’t	interact	in	any	way.

The	restriction	against	overlapping	access	to	properties	of	a	structure	isn’t
always	necessary	to	preserve	memory	safety.	Memory	safety	is	the	desired
guarantee,	but	exclusive	access	is	a	stricter	requirement	than	memory	safety—
which	means	some	code	preserves	memory	safety,	even	though	it	violates
exclusive	access	to	memory.	Swift	allows	this	memory-safe	code	if	the	compiler
can	prove	that	the	nonexclusive	access	to	memory	is	still	safe.	Specifically,	it	can
prove	that	overlapping	access	to	properties	of	a	structure	is	safe	if	the	following
conditions	apply:

You’re	accessing	only	stored	properties	of	an	instance,	not	computed
properties	or	class	properties.

The	structure	is	the	value	of	a	local	variable,	not	a	global	variable.

The	structure	is	either	not	captured	by	any	closures,	or	it’s	captured	only	by
nonescaping	closures.

If	the	compiler	can’t	prove	the	access	is	safe,	it	doesn’t	allow	the	access.

Access	Control

Access	control	restricts	access	to	parts	of	your	code	from	code	in	other	source
files	and	modules.	This	feature	enables	you	to	hide	the	implementation	details	of
your	code,	and	to	specify	a	preferred	interface	through	which	that	code	can	be
accessed	and	used.

You	can	assign	specific	access	levels	to	individual	types	(classes,	structures,	and
enumerations),	as	well	as	to	properties,	methods,	initializers,	and	subscripts
belonging	to	those	types.	Protocols	can	be	restricted	to	a	certain	context,	as	can
global	constants,	variables,	and	functions.

In	addition	to	offering	various	levels	of	access	control,	Swift	reduces	the	need	to
specify	explicit	access	control	levels	by	providing	default	access	levels	for
typical	scenarios.	Indeed,	if	you	are	writing	a	single-target	app,	you	may	not
need	to	specify	explicit	access	control	levels	at	all.

NOTE

The	various	aspects	of	your	code	that	can	have	access	control	applied	to	them	(properties,	types,
functions,	and	so	on)	are	referred	to	as	“entities”	in	the	sections	below,	for	brevity.

Modules	and	Source	Files

Swift’s	access	control	model	is	based	on	the	concept	of	modules	and	source	files.

A	module	is	a	single	unit	of	code	distribution—a	framework	or	application	that
is	built	and	shipped	as	a	single	unit	and	that	can	be	imported	by	another	module
with	Swift’s	import	keyword.

Each	build	target	(such	as	an	app	bundle	or	framework)	in	Xcode	is	treated	as	a
separate	module	in	Swift.	If	you	group	together	aspects	of	your	app’s	code	as	a
stand-alone	framework—perhaps	to	encapsulate	and	reuse	that	code	across
multiple	applications—then	everything	you	define	within	that	framework	will	be

part	of	a	separate	module	when	it’s	imported	and	used	within	an	app,	or	when
it’s	used	within	another	framework.

A	source	file	is	a	single	Swift	source	code	file	within	a	module	(in	effect,	a
single	file	within	an	app	or	framework).	Although	it’s	common	to	define
individual	types	in	separate	source	files,	a	single	source	file	can	contain
definitions	for	multiple	types,	functions,	and	so	on.

Access	Levels

Swift	provides	five	different	access	levels	for	entities	within	your	code.	These
access	levels	are	relative	to	the	source	file	in	which	an	entity	is	defined,	and	also
relative	to	the	module	that	source	file	belongs	to.

Open	access	and	public	access	enable	entities	to	be	used	within	any	source
file	from	their	defining	module,	and	also	in	a	source	file	from	another
module	that	imports	the	defining	module.	You	typically	use	open	or	public
access	when	specifying	the	public	interface	to	a	framework.	The	difference
between	open	and	public	access	is	described	below.

Internal	access	enables	entities	to	be	used	within	any	source	file	from	their
defining	module,	but	not	in	any	source	file	outside	of	that	module.	You
typically	use	internal	access	when	defining	an	app’s	or	a	framework’s
internal	structure.

File-private	access	restricts	the	use	of	an	entity	to	its	own	defining	source
file.	Use	file-private	access	to	hide	the	implementation	details	of	a	specific
piece	of	functionality	when	those	details	are	used	within	an	entire	file.

Private	access	restricts	the	use	of	an	entity	to	the	enclosing	declaration,	and
to	extensions	of	that	declaration	that	are	in	the	same	file.	Use	private	access
to	hide	the	implementation	details	of	a	specific	piece	of	functionality	when
those	details	are	used	only	within	a	single	declaration.

Open	access	is	the	highest	(least	restrictive)	access	level	and	private	access	is	the
lowest	(most	restrictive)	access	level.

Open	access	applies	only	to	classes	and	class	members,	and	it	differs	from	public
access	by	allowing	code	outside	the	module	to	subclass	and	override,	as
discussed	below	in	Subclassing.	Marking	a	class	as	open	explicitly	indicates	that
you’ve	considered	the	impact	of	code	from	other	modules	using	that	class	as	a
superclass,	and	that	you’ve	designed	your	class’s	code	accordingly.

Guiding	Principle	of	Access	Levels
Access	levels	in	Swift	follow	an	overall	guiding	principle:	No	entity	can	be
defined	in	terms	of	another	entity	that	has	a	lower	(more	restrictive)	access	level.

For	example:

A	public	variable	can’t	be	defined	as	having	an	internal,	file-private,	or
private	type,	because	the	type	might	not	be	available	everywhere	that	the
public	variable	is	used.

A	function	can’t	have	a	higher	access	level	than	its	parameter	types	and
return	type,	because	the	function	could	be	used	in	situations	where	its
constituent	types	are	unavailable	to	the	surrounding	code.

The	specific	implications	of	this	guiding	principle	for	different	aspects	of	the
language	are	covered	in	detail	below.

Default	Access	Levels
All	entities	in	your	code	(with	a	few	specific	exceptions,	as	described	later	in
this	chapter)	have	a	default	access	level	of	internal	if	you	don’t	specify	an
explicit	access	level	yourself.	As	a	result,	in	many	cases	you	don’t	need	to
specify	an	explicit	access	level	in	your	code.

Access	Levels	for	Single-Target	Apps
When	you	write	a	simple	single-target	app,	the	code	in	your	app	is	typically	self-
contained	within	the	app	and	doesn’t	need	to	be	made	available	outside	of	the

app’s	module.	The	default	access	level	of	internal	already	matches	this
requirement.	Therefore,	you	don’t	need	to	specify	a	custom	access	level.	You
may,	however,	want	to	mark	some	parts	of	your	code	as	file	private	or	private	in
order	to	hide	their	implementation	details	from	other	code	within	the	app’s
module.

Access	Levels	for	Frameworks
When	you	develop	a	framework,	mark	the	public-facing	interface	to	that
framework	as	open	or	public	so	that	it	can	be	viewed	and	accessed	by	other
modules,	such	as	an	app	that	imports	the	framework.	This	public-facing	interface
is	the	application	programming	interface	(or	API)	for	the	framework.

NOTE

Any	internal	implementation	details	of	your	framework	can	still	use	the	default	access	level	of
internal,	or	can	be	marked	as	private	or	file	private	if	you	want	to	hide	them	from	other	parts	of	the
framework’s	internal	code.	You	need	to	mark	an	entity	as	open	or	public	only	if	you	want	it	to
become	part	of	your	framework’s	API.

Access	Levels	for	Unit	Test	Targets
When	you	write	an	app	with	a	unit	test	target,	the	code	in	your	app	needs	to	be
made	available	to	that	module	in	order	to	be	tested.	By	default,	only	entities
marked	as	open	or	public	are	accessible	to	other	modules.	However,	a	unit	test
target	can	access	any	internal	entity,	if	you	mark	the	import	declaration	for	a
product	module	with	the	@testable	attribute	and	compile	that	product	module
with	testing	enabled.

Access	Control	Syntax

Define	the	access	level	for	an	entity	by	placing	one	of	the	open,	public,
internal,	fileprivate,	or	private	modifiers	at	the	beginning	of	the	entity’s
declaration.

1 public	class	SomePublicClass	{}

2 internal	class	SomeInternalClass	{}

3 fileprivate	class	SomeFilePrivateClass	{}

4 private	class	SomePrivateClass	{}

5

6 public	var	somePublicVariable	=	0

7 internal	let	someInternalConstant	=	0

8 fileprivate	func	someFilePrivateFunction()	{}

9 private	func	somePrivateFunction()	{}

Unless	otherwise	specified,	the	default	access	level	is	internal,	as	described	in
Default	Access	Levels.	This	means	that	SomeInternalClass	and
someInternalConstant	can	be	written	without	an	explicit	access-level	modifier,
and	will	still	have	an	access	level	of	internal:

1 class	SomeInternalClass	{}														//	implicitly	internal

2 let	someInternalConstant	=	0												//	implicitly	internal

Custom	Types

If	you	want	to	specify	an	explicit	access	level	for	a	custom	type,	do	so	at	the
point	that	you	define	the	type.	The	new	type	can	then	be	used	wherever	its
access	level	permits.	For	example,	if	you	define	a	file-private	class,	that	class
can	only	be	used	as	the	type	of	a	property,	or	as	a	function	parameter	or	return
type,	in	the	source	file	in	which	the	file-private	class	is	defined.

The	access	control	level	of	a	type	also	affects	the	default	access	level	of	that
type’s	members	(its	properties,	methods,	initializers,	and	subscripts).	If	you
define	a	type’s	access	level	as	private	or	file	private,	the	default	access	level	of
its	members	will	also	be	private	or	file	private.	If	you	define	a	type’s	access	level
as	internal	or	public	(or	use	the	default	access	level	of	internal	without
specifying	an	access	level	explicitly),	the	default	access	level	of	the	type’s

members	will	be	internal.

IMPORTANT

A	public	type	defaults	to	having	internal	members,	not	public	members.	If	you	want	a	type	member
to	be	public,	you	must	explicitly	mark	it	as	such.	This	requirement	ensures	that	the	public-facing	API
for	a	type	is	something	you	opt	in	to	publishing,	and	avoids	presenting	the	internal	workings	of	a	type
as	public	API	by	mistake.

1 public	class	SomePublicClass	{																		//	explicitly	

public	class

2 				public	var	somePublicProperty	=	0												//	explicitly	

public	class	member

3 				var	someInternalProperty	=	0																	//	implicitly	

internal	class	member

4 				fileprivate	func	someFilePrivateMethod()	{}		//	explicitly	

file-private	class	member

5 				private	func	somePrivateMethod()	{}										//	explicitly	

private	class	member

6 }

7

8 class	SomeInternalClass	{																							//	implicitly	

internal	class

9 				var	someInternalProperty	=	0																	//	implicitly	

internal	class	member

10 				fileprivate	func	someFilePrivateMethod()	{}		//	explicitly	

file-private	class	member

11 				private	func	somePrivateMethod()	{}										//	explicitly	

private	class	member

12 }

13

14 fileprivate	class	SomeFilePrivateClass	{								//	explicitly	

file-private	class

15 				func	someFilePrivateMethod()	{}														//	implicitly	

file-private	class	member

16 				private	func	somePrivateMethod()	{}										//	explicitly	

private	class	member

17 }

18

19 private	class	SomePrivateClass	{																//	explicitly	

private	class

20 				func	somePrivateMethod()	{}																		//	implicitly	

private	class	member

21 }

Tuple	Types
The	access	level	for	a	tuple	type	is	the	most	restrictive	access	level	of	all	types
used	in	that	tuple.	For	example,	if	you	compose	a	tuple	from	two	different	types,
one	with	internal	access	and	one	with	private	access,	the	access	level	for	that
compound	tuple	type	will	be	private.

NOTE

Tuple	types	don’t	have	a	standalone	definition	in	the	way	that	classes,	structures,	enumerations,	and
functions	do.	A	tuple	type’s	access	level	is	determined	automatically	from	the	types	that	make	up	the
tuple	type,	and	can’t	be	specified	explicitly.

Function	Types
The	access	level	for	a	function	type	is	calculated	as	the	most	restrictive	access
level	of	the	function’s	parameter	types	and	return	type.	You	must	specify	the
access	level	explicitly	as	part	of	the	function’s	definition	if	the	function’s
calculated	access	level	doesn’t	match	the	contextual	default.

The	example	below	defines	a	global	function	called	someFunction(),	without
providing	a	specific	access-level	modifier	for	the	function	itself.	You	might
expect	this	function	to	have	the	default	access	level	of	“internal”,	but	this	isn’t
the	case.	In	fact,	someFunction()	won’t	compile	as	written	below:

1 func	someFunction()	->	(SomeInternalClass,	SomePrivateClass)	{

2 				//	function	implementation	goes	here

3 }

The	function’s	return	type	is	a	tuple	type	composed	from	two	of	the	custom
classes	defined	above	in	Custom	Types.	One	of	these	classes	is	defined	as
internal,	and	the	other	is	defined	as	private.	Therefore,	the	overall	access	level	of
the	compound	tuple	type	is	private	(the	minimum	access	level	of	the	tuple’s
constituent	types).

Because	the	function’s	return	type	is	private,	you	must	mark	the	function’s
overall	access	level	with	the	private	modifier	for	the	function	declaration	to	be
valid:

1 private	func	someFunction()	->	(SomeInternalClass,	

SomePrivateClass)	{

2 				//	function	implementation	goes	here

3 }

It’s	not	valid	to	mark	the	definition	of	someFunction()	with	the	public	or
internal	modifiers,	or	to	use	the	default	setting	of	internal,	because	public	or
internal	users	of	the	function	might	not	have	appropriate	access	to	the	private
class	used	in	the	function’s	return	type.

Enumeration	Types
The	individual	cases	of	an	enumeration	automatically	receive	the	same	access
level	as	the	enumeration	they	belong	to.	You	can’t	specify	a	different	access
level	for	individual	enumeration	cases.

In	the	example	below,	the	CompassPoint	enumeration	has	an	explicit	access	level
of	public.	The	enumeration	cases	north,	south,	east,	and	west	therefore	also
have	an	access	level	of	public:

1 public	enum	CompassPoint	{

2 				case	north

3 				case	south

4 				case	east

5 				case	west

6 }

Raw	Values	and	Associated	Values

The	types	used	for	any	raw	values	or	associated	values	in	an	enumeration
definition	must	have	an	access	level	at	least	as	high	as	the	enumeration’s	access
level.	For	example,	you	can’t	use	a	private	type	as	the	raw-value	type	of	an
enumeration	with	an	internal	access	level.

Nested	Types
The	access	level	of	a	nested	type	is	the	same	as	its	containing	type,	unless	the
containing	type	is	public.	Nested	types	defined	within	a	public	type	have	an
automatic	access	level	of	internal.	If	you	want	a	nested	type	within	a	public	type
to	be	publicly	available,	you	must	explicitly	declare	the	nested	type	as	public.

Subclassing

You	can	subclass	any	class	that	can	be	accessed	in	the	current	access	context	and
that’s	defined	in	the	same	module	as	the	subclass.	You	can	also	subclass	any
open	class	that’s	defined	in	a	different	module.	A	subclass	can’t	have	a	higher
access	level	than	its	superclass—for	example,	you	can’t	write	a	public	subclass
of	an	internal	superclass.

In	addition,	for	classes	that	are	defined	in	the	same	module,	you	can	override	any
class	member	(method,	property,	initializer,	or	subscript)	that’s	visible	in	a
certain	access	context.	For	classes	that	are	defined	in	another	module,	you	can
override	any	open	class	member.

An	override	can	make	an	inherited	class	member	more	accessible	than	its
superclass	version.	In	the	example	below,	class	A	is	a	public	class	with	a	file-
private	method	called	someMethod().	Class	B	is	a	subclass	of	A,	with	a	reduced
access	level	of	“internal”.	Nonetheless,	class	B	provides	an	override	of
someMethod()	with	an	access	level	of	“internal”,	which	is	higher	than	the	original
implementation	of	someMethod():

1 public	class	A	{

2 				fileprivate	func	someMethod()	{}

3 }

4

5 internal	class	B:	A	{

6 				override	internal	func	someMethod()	{}

7 }

It’s	even	valid	for	a	subclass	member	to	call	a	superclass	member	that	has	lower
access	permissions	than	the	subclass	member,	as	long	as	the	call	to	the
superclass’s	member	takes	place	within	an	allowed	access	level	context	(that	is,
within	the	same	source	file	as	the	superclass	for	a	file-private	member	call,	or
within	the	same	module	as	the	superclass	for	an	internal	member	call):

1 public	class	A	{

2 				fileprivate	func	someMethod()	{}

3 }

4

5 internal	class	B:	A	{

6 				override	internal	func	someMethod()	{

7 								super.someMethod()

8 				}

9 }

Because	superclass	A	and	subclass	B	are	defined	in	the	same	source	file,	it’s	valid
for	the	B	implementation	of	someMethod()	to	call	super.someMethod().

Constants,	Variables,	Properties,	and	Subscripts

A	constant,	variable,	or	property	can’t	be	more	public	than	its	type.	It’s	not	valid
to	write	a	public	property	with	a	private	type,	for	example.	Similarly,	a	subscript
can’t	be	more	public	than	either	its	index	type	or	return	type.

If	a	constant,	variable,	property,	or	subscript	makes	use	of	a	private	type,	the
constant,	variable,	property,	or	subscript	must	also	be	marked	as	private:

	 private	var	privateInstance	=	SomePrivateClass()

Getters	and	Setters
Getters	and	setters	for	constants,	variables,	properties,	and	subscripts
automatically	receive	the	same	access	level	as	the	constant,	variable,	property,	or
subscript	they	belong	to.

You	can	give	a	setter	a	lower	access	level	than	its	corresponding	getter,	to	restrict
the	read-write	scope	of	that	variable,	property,	or	subscript.	You	assign	a	lower
access	level	by	writing	fileprivate(set),	private(set),	or	internal(set)
before	the	var	or	subscript	introducer.

NOTE

This	rule	applies	to	stored	properties	as	well	as	computed	properties.	Even	though	you	don’t	write	an
explicit	getter	and	setter	for	a	stored	property,	Swift	still	synthesizes	an	implicit	getter	and	setter	for
you	to	provide	access	to	the	stored	property’s	backing	storage.	Use	fileprivate(set),
private(set),	and	internal(set)	to	change	the	access	level	of	this	synthesized	setter	in
exactly	the	same	way	as	for	an	explicit	setter	in	a	computed	property.

The	example	below	defines	a	structure	called	TrackedString,	which	keeps	track
of	the	number	of	times	a	string	property	is	modified:

1 struct	TrackedString	{

2 				private(set)	var	numberOfEdits	=	0

3 				var	value:	String	=	""	{

4 								didSet	{

5 												numberOfEdits	+=	1

6 								}

7 				}

8 }

The	TrackedString	structure	defines	a	stored	string	property	called	value,	with
an	initial	value	of	""	(an	empty	string).	The	structure	also	defines	a	stored
integer	property	called	numberOfEdits,	which	is	used	to	track	the	number	of
times	that	value	is	modified.	This	modification	tracking	is	implemented	with	a
didSet	property	observer	on	the	value	property,	which	increments	numberOfEdits
every	time	the	value	property	is	set	to	a	new	value.

The	TrackedString	structure	and	the	value	property	don’t	provide	an	explicit
access-level	modifier,	and	so	they	both	receive	the	default	access	level	of
internal.	However,	the	access	level	for	the	numberOfEdits	property	is	marked
with	a	private(set)	modifier	to	indicate	that	the	property’s	getter	still	has	the
default	access	level	of	internal,	but	the	property	is	settable	only	from	within	code
that’s	part	of	the	TrackedString	structure.	This	enables	TrackedString	to	modify
the	numberOfEdits	property	internally,	but	to	present	the	property	as	a	read-only
property	when	it’s	used	outside	the	structure’s	definition.

If	you	create	a	TrackedString	instance	and	modify	its	string	value	a	few	times,
you	can	see	the	numberOfEdits	property	value	update	to	match	the	number	of
modifications:

1 var	stringToEdit	=	TrackedString()

2 stringToEdit.value	=	"This	string	will	be	tracked."

3 stringToEdit.value	+=	"	This	edit	will	increment	

numberOfEdits."

4 stringToEdit.value	+=	"	So	will	this	one."

5 print("The	number	of	edits	is	\(stringToEdit.numberOfEdits)")

6 //	Prints	"The	number	of	edits	is	3"

Although	you	can	query	the	current	value	of	the	numberOfEdits	property	from
within	another	source	file,	you	can’t	modify	the	property	from	another	source
file.	This	restriction	protects	the	implementation	details	of	the	TrackedString
edit-tracking	functionality,	while	still	providing	convenient	access	to	an	aspect	of
that	functionality.

Note	that	you	can	assign	an	explicit	access	level	for	both	a	getter	and	a	setter	if
required.	The	example	below	shows	a	version	of	the	TrackedString	structure	in
which	the	structure	is	defined	with	an	explicit	access	level	of	public.	The
structure’s	members	(including	the	numberOfEdits	property)	therefore	have	an
internal	access	level	by	default.	You	can	make	the	structure’s	numberOfEdits
property	getter	public,	and	its	property	setter	private,	by	combining	the	public
and	private(set)	access-level	modifiers:

1 public	struct	TrackedString	{

2 				public	private(set)	var	numberOfEdits	=	0

3 				public	var	value:	String	=	""	{

4 								didSet	{

5 												numberOfEdits	+=	1

6 								}

7 				}

8 				public	init()	{}

9 }

Initializers

Custom	initializers	can	be	assigned	an	access	level	less	than	or	equal	to	the	type

that	they	initialize.	The	only	exception	is	for	required	initializers	(as	defined	in
Required	Initializers).	A	required	initializer	must	have	the	same	access	level	as
the	class	it	belongs	to.

As	with	function	and	method	parameters,	the	types	of	an	initializer’s	parameters
can’t	be	more	private	than	the	initializer’s	own	access	level.

Default	Initializers
As	described	in	Default	Initializers,	Swift	automatically	provides	a	default
initializer	without	any	arguments	for	any	structure	or	base	class	that	provides
default	values	for	all	of	its	properties	and	doesn’t	provide	at	least	one	initializer
itself.

A	default	initializer	has	the	same	access	level	as	the	type	it	initializes,	unless	that
type	is	defined	as	public.	For	a	type	that	is	defined	as	public,	the	default
initializer	is	considered	internal.	If	you	want	a	public	type	to	be	initializable	with
a	no-argument	initializer	when	used	in	another	module,	you	must	explicitly
provide	a	public	no-argument	initializer	yourself	as	part	of	the	type’s	definition.

Default	Memberwise	Initializers	for	Structure	Types
The	default	memberwise	initializer	for	a	structure	type	is	considered	private	if
any	of	the	structure’s	stored	properties	are	private.	Likewise,	if	any	of	the
structure’s	stored	properties	are	file	private,	the	initializer	is	file	private.
Otherwise,	the	initializer	has	an	access	level	of	internal.

As	with	the	default	initializer	above,	if	you	want	a	public	structure	type	to	be
initializable	with	a	memberwise	initializer	when	used	in	another	module,	you
must	provide	a	public	memberwise	initializer	yourself	as	part	of	the	type’s
definition.

Protocols

If	you	want	to	assign	an	explicit	access	level	to	a	protocol	type,	do	so	at	the	point
that	you	define	the	protocol.	This	enables	you	to	create	protocols	that	can	only
be	adopted	within	a	certain	access	context.

The	access	level	of	each	requirement	within	a	protocol	definition	is
automatically	set	to	the	same	access	level	as	the	protocol.	You	can’t	set	a
protocol	requirement	to	a	different	access	level	than	the	protocol	it	supports.
This	ensures	that	all	of	the	protocol’s	requirements	will	be	visible	on	any	type
that	adopts	the	protocol.

NOTE

If	you	define	a	public	protocol,	the	protocol’s	requirements	require	a	public	access	level	for	those
requirements	when	they’re	implemented.	This	behavior	is	different	from	other	types,	where	a	public
type	definition	implies	an	access	level	of	internal	for	the	type’s	members.

Protocol	Inheritance
If	you	define	a	new	protocol	that	inherits	from	an	existing	protocol,	the	new
protocol	can	have	at	most	the	same	access	level	as	the	protocol	it	inherits	from.
For	example,	you	can’t	write	a	public	protocol	that	inherits	from	an	internal
protocol.

Protocol	Conformance
A	type	can	conform	to	a	protocol	with	a	lower	access	level	than	the	type	itself.
For	example,	you	can	define	a	public	type	that	can	be	used	in	other	modules,	but
whose	conformance	to	an	internal	protocol	can	only	be	used	within	the	internal
protocol’s	defining	module.

The	context	in	which	a	type	conforms	to	a	particular	protocol	is	the	minimum	of
the	type’s	access	level	and	the	protocol’s	access	level.	For	example,	if	a	type	is
public,	but	a	protocol	it	conforms	to	is	internal,	the	type’s	conformance	to	that
protocol	is	also	internal.

When	you	write	or	extend	a	type	to	conform	to	a	protocol,	you	must	ensure	that

the	type’s	implementation	of	each	protocol	requirement	has	at	least	the	same
access	level	as	the	type’s	conformance	to	that	protocol.	For	example,	if	a	public
type	conforms	to	an	internal	protocol,	the	type’s	implementation	of	each	protocol
requirement	must	be	at	least	internal.

NOTE

In	Swift,	as	in	Objective-C,	protocol	conformance	is	global—it	isn’t	possible	for	a	type	to	conform	to
a	protocol	in	two	different	ways	within	the	same	program.

Extensions

You	can	extend	a	class,	structure,	or	enumeration	in	any	access	context	in	which
the	class,	structure,	or	enumeration	is	available.	Any	type	members	added	in	an
extension	have	the	same	default	access	level	as	type	members	declared	in	the
original	type	being	extended.	If	you	extend	a	public	or	internal	type,	any	new
type	members	you	add	have	a	default	access	level	of	internal.	If	you	extend	a
file-private	type,	any	new	type	members	you	add	have	a	default	access	level	of
file	private.	If	you	extend	a	private	type,	any	new	type	members	you	add	have	a
default	access	level	of	private.

Alternatively,	you	can	mark	an	extension	with	an	explicit	access-level	modifier
(for	example,	private)	to	set	a	new	default	access	level	for	all	members	defined
within	the	extension.	This	new	default	can	still	be	overridden	within	the
extension	for	individual	type	members.

You	can’t	provide	an	explicit	access-level	modifier	for	an	extension	if	you’re
using	that	extension	to	add	protocol	conformance.	Instead,	the	protocol’s	own
access	level	is	used	to	provide	the	default	access	level	for	each	protocol
requirement	implementation	within	the	extension.

Private	Members	in	Extensions
Extensions	that	are	in	the	same	file	as	the	class,	structure,	or	enumeration	that
they	extend	behave	as	if	the	code	in	the	extension	had	been	written	as	part	of	the

original	type’s	declaration.	As	a	result,	you	can:

Declare	a	private	member	in	the	original	declaration,	and	access	that
member	from	extensions	in	the	same	file.

Declare	a	private	member	in	one	extension,	and	access	that	member	from
another	extension	in	the	same	file.

Declare	a	private	member	in	an	extension,	and	access	that	member	from	the
original	declaration	in	the	same	file.

This	behavior	means	you	can	use	extensions	in	the	same	way	to	organize	your
code,	whether	or	not	your	types	have	private	entities.	For	example,	given	the
following	simple	protocol:

1 protocol	SomeProtocol	{

2 				func	doSomething()

3 }

You	can	use	an	extension	to	add	protocol	conformance,	like	this:

1 struct	SomeStruct	{

2 				private	var	privateVariable	=	12

3 }

4

5 extension	SomeStruct:	SomeProtocol	{

6 				func	doSomething()	{

7 								print(privateVariable)

8 				}

9 }

Generics

The	access	level	for	a	generic	type	or	generic	function	is	the	minimum	of	the
access	level	of	the	generic	type	or	function	itself	and	the	access	level	of	any	type
constraints	on	its	type	parameters.

Type	Aliases

Any	type	aliases	you	define	are	treated	as	distinct	types	for	the	purposes	of
access	control.	A	type	alias	can	have	an	access	level	less	than	or	equal	to	the
access	level	of	the	type	it	aliases.	For	example,	a	private	type	alias	can	alias	a
private,	file-private,	internal,	public,	or	open	type,	but	a	public	type	alias	can’t
alias	an	internal,	file-private,	or	private	type.

NOTE

This	rule	also	applies	to	type	aliases	for	associated	types	used	to	satisfy	protocol	conformances.

Advanced	Operators

In	addition	to	the	operators	described	in	Basic	Operators,	Swift	provides	several
advanced	operators	that	perform	more	complex	value	manipulation.	These
include	all	of	the	bitwise	and	bit	shifting	operators	you	will	be	familiar	with
from	C	and	Objective-C.

Unlike	arithmetic	operators	in	C,	arithmetic	operators	in	Swift	do	not	overflow
by	default.	Overflow	behavior	is	trapped	and	reported	as	an	error.	To	opt	in	to
overflow	behavior,	use	Swift’s	second	set	of	arithmetic	operators	that	overflow
by	default,	such	as	the	overflow	addition	operator	(&+).	All	of	these	overflow
operators	begin	with	an	ampersand	(&).

When	you	define	your	own	structures,	classes,	and	enumerations,	it	can	be
useful	to	provide	your	own	implementations	of	the	standard	Swift	operators	for
these	custom	types.	Swift	makes	it	easy	to	provide	tailored	implementations	of
these	operators	and	to	determine	exactly	what	their	behavior	should	be	for	each
type	you	create.

You’re	not	limited	to	the	predefined	operators.	Swift	gives	you	the	freedom	to
define	your	own	custom	infix,	prefix,	postfix,	and	assignment	operators,	with
custom	precedence	and	associativity	values.	These	operators	can	be	used	and
adopted	in	your	code	like	any	of	the	predefined	operators,	and	you	can	even
extend	existing	types	to	support	the	custom	operators	you	define.

Bitwise	Operators

Bitwise	operators	enable	you	to	manipulate	the	individual	raw	data	bits	within	a
data	structure.	They	are	often	used	in	low-level	programming,	such	as	graphics
programming	and	device	driver	creation.	Bitwise	operators	can	also	be	useful
when	you	work	with	raw	data	from	external	sources,	such	as	encoding	and
decoding	data	for	communication	over	a	custom	protocol.

Swift	supports	all	of	the	bitwise	operators	found	in	C,	as	described	below.

Bitwise	NOT	Operator
The	bitwise	NOT	operator	(~)	inverts	all	bits	in	a	number:

The	bitwise	NOT	operator	is	a	prefix	operator,	and	appears	immediately	before
the	value	it	operates	on,	without	any	white	space:

1 let	initialBits:	UInt8	=	0b00001111

2 let	invertedBits	=	~initialBits		//	equals	11110000

UInt8	integers	have	eight	bits	and	can	store	any	value	between	0	and	255.	This
example	initializes	a	UInt8	integer	with	the	binary	value	00001111,	which	has	its
first	four	bits	set	to	0,	and	its	second	four	bits	set	to	1.	This	is	equivalent	to	a
decimal	value	of	15.

The	bitwise	NOT	operator	is	then	used	to	create	a	new	constant	called
invertedBits,	which	is	equal	to	initialBits,	but	with	all	of	the	bits	inverted.
Zeros	become	ones,	and	ones	become	zeros.	The	value	of	invertedBits	is
11110000,	which	is	equal	to	an	unsigned	decimal	value	of	240.

Bitwise	AND	Operator
The	bitwise	AND	operator	(&)	combines	the	bits	of	two	numbers.	It	returns	a
new	number	whose	bits	are	set	to	1	only	if	the	bits	were	equal	to	1	in	both	input
numbers:

In	the	example	below,	the	values	of	firstSixBits	and	lastSixBits	both	have
four	middle	bits	equal	to	1.	The	bitwise	AND	operator	combines	them	to	make
the	number	00111100,	which	is	equal	to	an	unsigned	decimal	value	of	60:

1 let	firstSixBits:	UInt8	=	0b11111100

2 let	lastSixBits:	UInt8		=	0b00111111

3 let	middleFourBits	=	firstSixBits	&	lastSixBits		//	equals	

00111100

Bitwise	OR	Operator
The	bitwise	OR	operator	(|)	compares	the	bits	of	two	numbers.	The	operator
returns	a	new	number	whose	bits	are	set	to	1	if	the	bits	are	equal	to	1	in	either
input	number:

In	the	example	below,	the	values	of	someBits	and	moreBits	have	different	bits	set

to	1.	The	bitwise	OR	operator	combines	them	to	make	the	number	11111110,
which	equals	an	unsigned	decimal	of	254:

1 let	someBits:	UInt8	=	0b10110010

2 let	moreBits:	UInt8	=	0b01011110

3 let	combinedbits	=	someBits	|	moreBits		//	equals	11111110

Bitwise	XOR	Operator
The	bitwise	XOR	operator,	or	“exclusive	OR	operator”	(^),	compares	the	bits	of
two	numbers.	The	operator	returns	a	new	number	whose	bits	are	set	to	1	where
the	input	bits	are	different	and	are	set	to	0	where	the	input	bits	are	the	same:

In	the	example	below,	the	values	of	firstBits	and	otherBits	each	have	a	bit	set
to	1	in	a	location	that	the	other	does	not.	The	bitwise	XOR	operator	sets	both	of
these	bits	to	1	in	its	output	value.	All	of	the	other	bits	in	firstBits	and
otherBits	match	and	are	set	to	0	in	the	output	value:

1 let	firstBits:	UInt8	=	0b00010100

2 let	otherBits:	UInt8	=	0b00000101

3 let	outputBits	=	firstBits	^	otherBits		//	equals	00010001

Bitwise	Left	and	Right	Shift	Operators

The	bitwise	left	shift	operator	(<<)	and	bitwise	right	shift	operator	(>>)	move	all
bits	in	a	number	to	the	left	or	the	right	by	a	certain	number	of	places,	according
to	the	rules	defined	below.

Bitwise	left	and	right	shifts	have	the	effect	of	multiplying	or	dividing	an	integer
by	a	factor	of	two.	Shifting	an	integer’s	bits	to	the	left	by	one	position	doubles	its
value,	whereas	shifting	it	to	the	right	by	one	position	halves	its	value.

Shifting	Behavior	for	Unsigned	Integers

The	bit-shifting	behavior	for	unsigned	integers	is	as	follows:

1.	 Existing	bits	are	moved	to	the	left	or	right	by	the	requested	number	of
places.

2.	 Any	bits	that	are	moved	beyond	the	bounds	of	the	integer’s	storage	are
discarded.

3.	 Zeros	are	inserted	in	the	spaces	left	behind	after	the	original	bits	are	moved
to	the	left	or	right.

This	approach	is	known	as	a	logical	shift.

The	illustration	below	shows	the	results	of	11111111	<<	1	(which	is	11111111
shifted	to	the	left	by	1	place),	and	11111111	>>	1	(which	is	11111111	shifted	to
the	right	by	1	place).	Blue	numbers	are	shifted,	gray	numbers	are	discarded,	and
orange	zeros	are	inserted:

Here’s	how	bit	shifting	looks	in	Swift	code:

1 let	shiftBits:	UInt8	=	4			//	00000100	in	binary

2 shiftBits	<<	1													//	00001000

3 shiftBits	<<	2													//	00010000

4 shiftBits	<<	5													//	10000000

5 shiftBits	<<	6													//	00000000

6 shiftBits	>>	2													//	00000001

You	can	use	bit	shifting	to	encode	and	decode	values	within	other	data	types:

1 let	pink:	UInt32	=	0xCC6699

2 let	redComponent	=	(pink	&	0xFF0000)	>>	16				//	redComponent	

is	0xCC,	or	204

3 let	greenComponent	=	(pink	&	0x00FF00)	>>	8			//	greenComponent	

is	0x66,	or	102

4 let	blueComponent	=	pink	&	0x0000FF											//	blueComponent	

is	0x99,	or	153

This	example	uses	a	UInt32	constant	called	pink	to	store	a	Cascading	Style
Sheets	color	value	for	the	color	pink.	The	CSS	color	value	#CC6699	is	written	as
0xCC6699	in	Swift’s	hexadecimal	number	representation.	This	color	is	then
decomposed	into	its	red	(CC),	green	(66),	and	blue	(99)	components	by	the
bitwise	AND	operator	(&)	and	the	bitwise	right	shift	operator	(>>).

The	red	component	is	obtained	by	performing	a	bitwise	AND	between	the
numbers	0xCC6699	and	0xFF0000.	The	zeros	in	0xFF0000	effectively	“mask”	the
second	and	third	bytes	of	0xCC6699,	causing	the	6699	to	be	ignored	and	leaving
0xCC0000	as	the	result.

This	number	is	then	shifted	16	places	to	the	right	(>>	16).	Each	pair	of	characters
in	a	hexadecimal	number	uses	8	bits,	so	a	move	16	places	to	the	right	will
convert	0xCC0000	into	0x0000CC.	This	is	the	same	as	0xCC,	which	has	a	decimal
value	of	204.

Similarly,	the	green	component	is	obtained	by	performing	a	bitwise	AND
between	the	numbers	0xCC6699	and	0x00FF00,	which	gives	an	output	value	of
0x006600.	This	output	value	is	then	shifted	eight	places	to	the	right,	giving	a

value	of	0x66,	which	has	a	decimal	value	of	102.

Finally,	the	blue	component	is	obtained	by	performing	a	bitwise	AND	between
the	numbers	0xCC6699	and	0x0000FF,	which	gives	an	output	value	of	0x000099.
There’s	no	need	to	shift	this	to	the	right,	as	0x000099	already	equals	0x99,	which
has	a	decimal	value	of	153.

Shifting	Behavior	for	Signed	Integers

The	shifting	behavior	is	more	complex	for	signed	integers	than	for	unsigned
integers,	because	of	the	way	signed	integers	are	represented	in	binary.	(The
examples	below	are	based	on	8-bit	signed	integers	for	simplicity,	but	the	same
principles	apply	for	signed	integers	of	any	size.)

Signed	integers	use	their	first	bit	(known	as	the	sign	bit)	to	indicate	whether	the
integer	is	positive	or	negative.	A	sign	bit	of	0	means	positive,	and	a	sign	bit	of	1
means	negative.

The	remaining	bits	(known	as	the	value	bits)	store	the	actual	value.	Positive
numbers	are	stored	in	exactly	the	same	way	as	for	unsigned	integers,	counting
upwards	from	0.	Here’s	how	the	bits	inside	an	Int8	look	for	the	number	4:

The	sign	bit	is	0	(meaning	“positive”),	and	the	seven	value	bits	are	just	the
number	4,	written	in	binary	notation.

Negative	numbers,	however,	are	stored	differently.	They	are	stored	by
subtracting	their	absolute	value	from	2	to	the	power	of	n,	where	n	is	the	number
of	value	bits.	An	eight-bit	number	has	seven	value	bits,	so	this	means	2	to	the
power	of	7,	or	128.

Here’s	how	the	bits	inside	an	Int8	look	for	the	number	-4:

This	time,	the	sign	bit	is	1	(meaning	“negative”),	and	the	seven	value	bits	have	a
binary	value	of	124	(which	is	128	-	4):

This	encoding	for	negative	numbers	is	known	as	a	two’s	complement
representation.	It	may	seem	an	unusual	way	to	represent	negative	numbers,	but	it
has	several	advantages.

First,	you	can	add	-1	to	-4,	simply	by	performing	a	standard	binary	addition	of
all	eight	bits	(including	the	sign	bit),	and	discarding	anything	that	doesn’t	fit	in
the	eight	bits	once	you’re	done:

Second,	the	two’s	complement	representation	also	lets	you	shift	the	bits	of
negative	numbers	to	the	left	and	right	like	positive	numbers,	and	still	end	up
doubling	them	for	every	shift	you	make	to	the	left,	or	halving	them	for	every
shift	you	make	to	the	right.	To	achieve	this,	an	extra	rule	is	used	when	signed
integers	are	shifted	to	the	right:	When	you	shift	signed	integers	to	the	right,
apply	the	same	rules	as	for	unsigned	integers,	but	fill	any	empty	bits	on	the	left
with	the	sign	bit,	rather	than	with	a	zero.

This	action	ensures	that	signed	integers	have	the	same	sign	after	they	are	shifted
to	the	right,	and	is	known	as	an	arithmetic	shift.

Because	of	the	special	way	that	positive	and	negative	numbers	are	stored,
shifting	either	of	them	to	the	right	moves	them	closer	to	zero.	Keeping	the	sign
bit	the	same	during	this	shift	means	that	negative	integers	remain	negative	as
their	value	moves	closer	to	zero.

Overflow	Operators

If	you	try	to	insert	a	number	into	an	integer	constant	or	variable	that	cannot	hold
that	value,	by	default	Swift	reports	an	error	rather	than	allowing	an	invalid	value
to	be	created.	This	behavior	gives	extra	safety	when	you	work	with	numbers	that
are	too	large	or	too	small.

For	example,	the	Int16	integer	type	can	hold	any	signed	integer	between	-32768
and	32767.	Trying	to	set	an	Int16	constant	or	variable	to	a	number	outside	of	this
range	causes	an	error:

1 var	potentialOverflow	=	Int16.max

2 //	potentialOverflow	equals	32767,	which	is	the	maximum	value	

an	Int16	can	hold

3 potentialOverflow	+=	1

4 //	this	causes	an	error

Providing	error	handling	when	values	get	too	large	or	too	small	gives	you	much
more	flexibility	when	coding	for	boundary	value	conditions.

However,	when	you	specifically	want	an	overflow	condition	to	truncate	the
number	of	available	bits,	you	can	opt	in	to	this	behavior	rather	than	triggering	an
error.	Swift	provides	three	arithmetic	overflow	operators	that	opt	in	to	the
overflow	behavior	for	integer	calculations.	These	operators	all	begin	with	an
ampersand	(&):

Overflow	addition	(&+)

Overflow	subtraction	(&-)

Overflow	multiplication	(&*)

Value	Overflow
Numbers	can	overflow	in	both	the	positive	and	negative	direction.

Here’s	an	example	of	what	happens	when	an	unsigned	integer	is	allowed	to
overflow	in	the	positive	direction,	using	the	overflow	addition	operator	(&+):

1 var	unsignedOverflow	=	UInt8.max

2 //	unsignedOverflow	equals	255,	which	is	the	maximum	value	a	

UInt8	can	hold

3 unsignedOverflow	=	unsignedOverflow	&+	1

4 //	unsignedOverflow	is	now	equal	to	0

The	variable	unsignedOverflow	is	initialized	with	the	maximum	value	a	UInt8
can	hold	(255,	or	11111111	in	binary).	It	is	then	incremented	by	1	using	the
overflow	addition	operator	(&+).	This	pushes	its	binary	representation	just	over
the	size	that	a	UInt8	can	hold,	causing	it	to	overflow	beyond	its	bounds,	as
shown	in	the	diagram	below.	The	value	that	remains	within	the	bounds	of	the
UInt8	after	the	overflow	addition	is	00000000,	or	zero.

Something	similar	happens	when	an	unsigned	integer	is	allowed	to	overflow	in
the	negative	direction.	Here’s	an	example	using	the	overflow	subtraction
operator	(&-):

1 var	unsignedOverflow	=	UInt8.min

2 //	unsignedOverflow	equals	0,	which	is	the	minimum	value	a	

UInt8	can	hold

3 unsignedOverflow	=	unsignedOverflow	&-	1

4 //	unsignedOverflow	is	now	equal	to	255

The	minimum	value	that	a	UInt8	can	hold	is	zero,	or	00000000	in	binary.	If	you
subtract	1	from	00000000	using	the	overflow	subtraction	operator	(&-),	the
number	will	overflow	and	wrap	around	to	11111111,	or	255	in	decimal.

Overflow	also	occurs	for	signed	integers.	All	addition	and	subtraction	for	signed
integers	is	performed	in	bitwise	fashion,	with	the	sign	bit	included	as	part	of	the
numbers	being	added	or	subtracted,	as	described	in	Bitwise	Left	and	Right	Shift
Operators.

1 var	signedOverflow	=	Int8.min

2 //	signedOverflow	equals	-128,	which	is	the	minimum	value	an	

Int8	can	hold

3 signedOverflow	=	signedOverflow	&-	1

4 //	signedOverflow	is	now	equal	to	127

The	minimum	value	that	an	Int8	can	hold	is	-128,	or	10000000	in	binary.
Subtracting	1	from	this	binary	number	with	the	overflow	operator	gives	a	binary
value	of	01111111,	which	toggles	the	sign	bit	and	gives	positive	127,	the
maximum	positive	value	that	an	Int8	can	hold.

For	both	signed	and	unsigned	integers,	overflow	in	the	positive	direction	wraps
around	from	the	maximum	valid	integer	value	back	to	the	minimum,	and
overflow	in	the	negative	direction	wraps	around	from	the	minimum	value	to	the
maximum.

Precedence	and	Associativity

Operator	precedence	gives	some	operators	higher	priority	than	others;	these
operators	are	applied	first.

Operator	associativity	defines	how	operators	of	the	same	precedence	are	grouped
together—either	grouped	from	the	left,	or	grouped	from	the	right.	Think	of	it	as
meaning	“they	associate	with	the	expression	to	their	left,”	or	“they	associate
with	the	expression	to	their	right.”

It	is	important	to	consider	each	operator’s	precedence	and	associativity	when
working	out	the	order	in	which	a	compound	expression	will	be	calculated.	For
example,	operator	precedence	explains	why	the	following	expression	equals	17.

1 2	+	3	%	4	*	5

2 //	this	equals	17

If	you	read	strictly	from	left	to	right,	you	might	expect	the	expression	to	be
calculated	as	follows:

2	plus	3	equals	5

5	remainder	4	equals	1

1	times	5	equals	5

However,	the	actual	answer	is	17,	not	5.	Higher-precedence	operators	are
evaluated	before	lower-precedence	ones.	In	Swift,	as	in	C,	the	remainder
operator	(%)	and	the	multiplication	operator	(*)	have	a	higher	precedence	than	the
addition	operator	(+).	As	a	result,	they	are	both	evaluated	before	the	addition	is
considered.

However,	remainder	and	multiplication	have	the	same	precedence	as	each	other.
To	work	out	the	exact	evaluation	order	to	use,	you	also	need	to	consider	their
associativity.	Remainder	and	multiplication	both	associate	with	the	expression	to
their	left.	Think	of	this	as	adding	implicit	parentheses	around	these	parts	of	the
expression,	starting	from	their	left:

	 2	+	((3	%	4)	*	5)

(3	%	4)	is	3,	so	this	is	equivalent	to:

	 2	+	(3	*	5)

(3	*	5)	is	15,	so	this	is	equivalent	to:

	 2	+	15

This	calculation	yields	the	final	answer	of	17.

For	information	about	the	operators	provided	by	the	Swift	standard	library,
including	a	complete	list	of	the	operator	precedence	groups	and	associativity
settings,	see	Operator	Declarations.

NOTE

Swift’s	operator	precedences	and	associativity	rules	are	simpler	and	more	predictable	than	those
found	in	C	and	Objective-C.	However,	this	means	that	they	are	not	exactly	the	same	as	in	C-based
languages.	Be	careful	to	ensure	that	operator	interactions	still	behave	in	the	way	you	intend	when
porting	existing	code	to	Swift.

Operator	Methods

Classes	and	structures	can	provide	their	own	implementations	of	existing
operators.	This	is	known	as	overloading	the	existing	operators.

The	example	below	shows	how	to	implement	the	arithmetic	addition	operator	(+)
for	a	custom	structure.	The	arithmetic	addition	operator	is	a	binary	operator
because	it	operates	on	two	targets	and	is	said	to	be	infix	because	it	appears	in
between	those	two	targets.

The	example	defines	a	Vector2D	structure	for	a	two-dimensional	position	vector
(x,	y),	followed	by	a	definition	of	an	operator	method	to	add	together	instances
of	the	Vector2D	structure:

1 struct	Vector2D	{

2 				var	x	=	0.0,	y	=	0.0

3 }

4

5 extension	Vector2D	{

6 				static	func	+	(left:	Vector2D,	right:	Vector2D)	->	Vector2D	

{

https://developer.apple.com/documentation/swift/operator_declarations

7 								return	Vector2D(x:	left.x	+	right.x,	y:	left.y	+	

right.y)

8 				}

9 }

The	operator	method	is	defined	as	a	type	method	on	Vector2D,	with	a	method
name	that	matches	the	operator	to	be	overloaded	(+).	Because	addition	isn’t	part
of	the	essential	behavior	for	a	vector,	the	type	method	is	defined	in	an	extension
of	Vector2D	rather	than	in	the	main	structure	declaration	of	Vector2D.	Because
the	arithmetic	addition	operator	is	a	binary	operator,	this	operator	method	takes
two	input	parameters	of	type	Vector2D	and	returns	a	single	output	value,	also	of
type	Vector2D.

In	this	implementation,	the	input	parameters	are	named	left	and	right	to
represent	the	Vector2D	instances	that	will	be	on	the	left	side	and	right	side	of	the
+	operator.	The	method	returns	a	new	Vector2D	instance,	whose	x	and	y
properties	are	initialized	with	the	sum	of	the	x	and	y	properties	from	the	two
Vector2D	instances	that	are	added	together.

The	type	method	can	be	used	as	an	infix	operator	between	existing	Vector2D
instances:

1 let	vector	=	Vector2D(x:	3.0,	y:	1.0)

2 let	anotherVector	=	Vector2D(x:	2.0,	y:	4.0)

3 let	combinedVector	=	vector	+	anotherVector

4 //	combinedVector	is	a	Vector2D	instance	with	values	of	(5.0,	

5.0)

This	example	adds	together	the	vectors	(3.0,	1.0)	and	(2.0,	4.0)	to	make	the
vector	(5.0,	5.0),	as	illustrated	below.

Prefix	and	Postfix	Operators
The	example	shown	above	demonstrates	a	custom	implementation	of	a	binary
infix	operator.	Classes	and	structures	can	also	provide	implementations	of	the
standard	unary	operators.	Unary	operators	operate	on	a	single	target.	They	are
prefix	if	they	precede	their	target	(such	as	-a)	and	postfix	operators	if	they	follow
their	target	(such	as	b!).

You	implement	a	prefix	or	postfix	unary	operator	by	writing	the	prefix	or
postfix	modifier	before	the	func	keyword	when	declaring	the	operator	method:

1 extension	Vector2D	{

2 				static	prefix	func	-	(vector:	Vector2D)	->	Vector2D	{

3 								return	Vector2D(x:	-vector.x,	y:	-vector.y)

4 				}

5 }

The	example	above	implements	the	unary	minus	operator	(-a)	for	Vector2D

instances.	The	unary	minus	operator	is	a	prefix	operator,	and	so	this	method	has
to	be	qualified	with	the	prefix	modifier.

For	simple	numeric	values,	the	unary	minus	operator	converts	positive	numbers
into	their	negative	equivalent	and	vice	versa.	The	corresponding	implementation
for	Vector2D	instances	performs	this	operation	on	both	the	x	and	y	properties:

1 let	positive	=	Vector2D(x:	3.0,	y:	4.0)

2 let	negative	=	-positive

3 //	negative	is	a	Vector2D	instance	with	values	of	(-3.0,	-4.0)

4 let	alsoPositive	=	-negative

5 //	alsoPositive	is	a	Vector2D	instance	with	values	of	(3.0,	

4.0)

Compound	Assignment	Operators
Compound	assignment	operators	combine	assignment	(=)	with	another
operation.	For	example,	the	addition	assignment	operator	(+=)	combines	addition
and	assignment	into	a	single	operation.	You	mark	a	compound	assignment
operator’s	left	input	parameter	type	as	inout,	because	the	parameter’s	value	will
be	modified	directly	from	within	the	operator	method.

The	example	below	implements	an	addition	assignment	operator	method	for
Vector2D	instances:

1 extension	Vector2D	{

2 				static	func	+=	(left:	inout	Vector2D,	right:	Vector2D)	{

3 								left	=	left	+	right

4 				}

5 }

Because	an	addition	operator	was	defined	earlier,	you	don’t	need	to	reimplement
the	addition	process	here.	Instead,	the	addition	assignment	operator	method	takes
advantage	of	the	existing	addition	operator	method,	and	uses	it	to	set	the	left

value	to	be	the	left	value	plus	the	right	value:

1 var	original	=	Vector2D(x:	1.0,	y:	2.0)

2 let	vectorToAdd	=	Vector2D(x:	3.0,	y:	4.0)

3 original	+=	vectorToAdd

4 //	original	now	has	values	of	(4.0,	6.0)

NOTE

It	isn’t	possible	to	overload	the	default	assignment	operator	(=).	Only	the	compound	assignment
operators	can	be	overloaded.	Similarly,	the	ternary	conditional	operator	(a	?	b	:	c)	can’t	be
overloaded.

Equivalence	Operators
By	default,	custom	classes	and	structures	don’t	have	an	implementation	of	the
equivalence	operators,	known	as	the	equal	to	operator	(==)	and	not	equal	to
operator	(!=).	You	usually	implement	the	==	operator,	and	use	the	standard
library’s	default	implementation	of	the	!=	operator	that	negates	the	result	of	the
==	operator.	There	are	two	ways	to	implement	the	==	operator:	You	can
implement	it	yourself,	or	for	many	types,	you	can	ask	Swift	to	synthesize	an
implementation	for	you.	In	both	cases,	you	add	conformance	to	the	standard
library’s	Equatable	protocol.

You	provide	an	implementation	of	the	==	operator	in	the	same	way	as	you
implement	other	infix	operators:

1 extension	Vector2D:	Equatable	{

2 				static	func	==	(left:	Vector2D,	right:	Vector2D)	->	Bool	{

3 								return	(left.x	==	right.x)	&&	(left.y	==	right.y)

4 				}

5 }

The	example	above	implements	an	==	operator	to	check	whether	two	Vector2D
instances	have	equivalent	values.	In	the	context	of	Vector2D,	it	makes	sense	to

consider	“equal”	as	meaning	“both	instances	have	the	same	x	values	and	y
values”,	and	so	this	is	the	logic	used	by	the	operator	implementation.

You	can	now	use	this	operator	to	check	whether	two	Vector2D	instances	are
equivalent:

1 let	twoThree	=	Vector2D(x:	2.0,	y:	3.0)

2 let	anotherTwoThree	=	Vector2D(x:	2.0,	y:	3.0)

3 if	twoThree	==	anotherTwoThree	{

4 				print("These	two	vectors	are	equivalent.")

5 }

6 //	Prints	"These	two	vectors	are	equivalent."

In	many	simple	cases,	you	can	ask	Swift	to	provide	synthesized	implementations
of	the	equivalence	operators	for	you.	Swift	provides	synthesized
implementations	for	the	following	kinds	of	custom	types:

Structures	that	have	only	stored	properties	that	conform	to	the	Equatable
protocol

Enumerations	that	have	only	associated	types	that	conform	to	the	Equatable
protocol

Enumerations	that	have	no	associated	types

To	receive	a	synthesized	implementation	of	==,	declare	Equatable	conformance
in	the	file	that	contains	the	original	declaration,	without	implementing	an	==
operator	yourself.

The	example	below	defines	a	Vector3D	structure	for	a	three-dimensional	position
vector	(x,	y,	z),	similar	to	the	Vector2D	structure.	Because	the	x,	y,	and	z
properties	are	all	of	an	Equatable	type,	Vector3D	receives	synthesized
implementations	of	the	equivalence	operators.

1 struct	Vector3D:	Equatable	{

2 				var	x	=	0.0,	y	=	0.0,	z	=	0.0

3 }

4

5 let	twoThreeFour	=	Vector3D(x:	2.0,	y:	3.0,	z:	4.0)

6 let	anotherTwoThreeFour	=	Vector3D(x:	2.0,	y:	3.0,	z:	4.0)

7 if	twoThreeFour	==	anotherTwoThreeFour	{

8 				print("These	two	vectors	are	also	equivalent.")

9 }

10 //	Prints	"These	two	vectors	are	also	equivalent."

Custom	Operators

You	can	declare	and	implement	your	own	custom	operators	in	addition	to	the
standard	operators	provided	by	Swift.	For	a	list	of	characters	that	can	be	used	to
define	custom	operators,	see	Operators.

New	operators	are	declared	at	a	global	level	using	the	operator	keyword,	and	are
marked	with	the	prefix,	infix	or	postfix	modifiers:

	 prefix	operator	+++

The	example	above	defines	a	new	prefix	operator	called	+++.	This	operator	does
not	have	an	existing	meaning	in	Swift,	and	so	it	is	given	its	own	custom	meaning
below	in	the	specific	context	of	working	with	Vector2D	instances.	For	the
purposes	of	this	example,	+++	is	treated	as	a	new	“prefix	doubling”	operator.	It
doubles	the	x	and	y	values	of	a	Vector2D	instance,	by	adding	the	vector	to	itself
with	the	addition	assignment	operator	defined	earlier.	To	implement	the	+++
operator,	you	add	a	type	method	called	+++	to	Vector2D	as	follows:

1 extension	Vector2D	{

2 				static	prefix	func	+++	(vector:	inout	Vector2D)	->	Vector2D	

{

3 								vector	+=	vector

4 								return	vector

5 				}

6 }

7

8 var	toBeDoubled	=	Vector2D(x:	1.0,	y:	4.0)

9 let	afterDoubling	=	+++toBeDoubled

10 //	toBeDoubled	now	has	values	of	(2.0,	8.0)

11 //	afterDoubling	also	has	values	of	(2.0,	8.0)

Precedence	for	Custom	Infix	Operators
Custom	infix	operators	each	belong	to	a	precedence	group.	A	precedence	group
specifies	an	operator’s	precedence	relative	to	other	infix	operators,	as	well	as	the
operator’s	associativity.	See	Precedence	and	Associativity	for	an	explanation	of
how	these	characteristics	affect	an	infix	operator’s	interaction	with	other	infix
operators.

A	custom	infix	operator	that	is	not	explicitly	placed	into	a	precedence	group	is
given	a	default	precedence	group	with	a	precedence	immediately	higher	than	the
precedence	of	the	ternary	conditional	operator.

The	following	example	defines	a	new	custom	infix	operator	called	+-,	which
belongs	to	the	precedence	group	AdditionPrecedence:

1 infix	operator	+-:	AdditionPrecedence

2 extension	Vector2D	{

3 				static	func	+-	(left:	Vector2D,	right:	Vector2D)	->	

Vector2D	{

4 								return	Vector2D(x:	left.x	+	right.x,	y:	left.y	-	

right.y)

5 				}

6 }

7 let	firstVector	=	Vector2D(x:	1.0,	y:	2.0)

8 let	secondVector	=	Vector2D(x:	3.0,	y:	4.0)

9 let	plusMinusVector	=	firstVector	+-	secondVector

10 //	plusMinusVector	is	a	Vector2D	instance	with	values	of	(4.0,	

-2.0)

This	operator	adds	together	the	x	values	of	two	vectors,	and	subtracts	the	y	value
of	the	second	vector	from	the	first.	Because	it	is	in	essence	an	“additive”
operator,	it	has	been	given	the	same	precedence	group	as	additive	infix	operators
such	as	+	and	-.	For	information	about	the	operators	provided	by	the	Swift
standard	library,	including	a	complete	list	of	the	operator	precedence	groups	and
associativity	settings,	see	Operator	Declarations.	For	more	information	about
precedence	groups	and	to	see	the	syntax	for	defining	your	own	operators	and
precedence	groups,	see	Operator	Declaration.

NOTE

You	do	not	specify	a	precedence	when	defining	a	prefix	or	postfix	operator.	However,	if	you	apply
both	a	prefix	and	a	postfix	operator	to	the	same	operand,	the	postfix	operator	is	applied	first.

https://developer.apple.com/documentation/swift/operator_declarations

Language	Reference

About	the	Language	Reference

This	part	of	the	book	describes	the	formal	grammar	of	the	Swift	programming
language.	The	grammar	described	here	is	intended	to	help	you	understand	the
language	in	more	detail,	rather	than	to	allow	you	to	directly	implement	a	parser
or	compiler.

The	Swift	language	is	relatively	small,	because	many	common	types,	functions,
and	operators	that	appear	virtually	everywhere	in	Swift	code	are	actually	defined
in	the	Swift	standard	library.	Although	these	types,	functions,	and	operators	are
not	part	of	the	Swift	language	itself,	they	are	used	extensively	in	the	discussions
and	code	examples	in	this	part	of	the	book.

How	to	Read	the	Grammar

The	notation	used	to	describe	the	formal	grammar	of	the	Swift	programming
language	follows	a	few	conventions:

An	arrow	(→)	is	used	to	mark	grammar	productions	and	can	be	read	as
“can	consist	of.”

Syntactic	categories	are	indicated	by	italic	text	and	appear	on	both	sides	of
a	grammar	production	rule.

Literal	words	and	punctuation	are	indicated	by	boldface	constant	width
text	and	appear	only	on	the	right-hand	side	of	a	grammar	production	rule.

Alternative	grammar	productions	are	separated	by	vertical	bars	(|).	When
alternative	productions	are	too	long	to	read	easily,	they	are	broken	into
multiple	grammar	production	rules	on	new	lines.

In	a	few	cases,	regular	font	text	is	used	to	describe	the	right-hand	side	of	a
grammar	production	rule.

Optional	syntactic	categories	and	literals	are	marked	by	a	trailing	subscript,
opt.

As	an	example,	the	grammar	of	a	getter-setter	block	is	defined	as	follows:

GRAMMAR 	OF 	A	GETTER -SETTER 	BLOCK

getter-setter-block 	→	 { 	 getter-clause 	 setter-clause 	opt 	 } 	|	 { 	 setter-clause 	 getter-
clause 	 }

This	definition	indicates	that	a	getter-setter	block	can	consist	of	a	getter	clause
followed	by	an	optional	setter	clause,	enclosed	in	braces,	or	a	setter	clause
followed	by	a	getter	clause,	enclosed	in	braces.	The	grammar	production	above
is	equivalent	to	the	following	two	productions,	where	the	alternatives	are	spelled
out	explicitly:

GRAMMAR 	OF 	A	GETTER -SETTER 	BLOCK

getter-setter-block 	→	 { 	 getter-clause 	 setter-clause 	opt 	 }
getter-setter-block 	→	 { 	 setter-clause 	 getter-clause 	 }

Lexical	Structure

The	lexical	structure	of	Swift	describes	what	sequence	of	characters	form	valid
tokens	of	the	language.	These	valid	tokens	form	the	lowest-level	building	blocks
of	the	language	and	are	used	to	describe	the	rest	of	the	language	in	subsequent
chapters.	A	token	consists	of	an	identifier,	keyword,	punctuation,	literal,	or
operator.

In	most	cases,	tokens	are	generated	from	the	characters	of	a	Swift	source	file	by
considering	the	longest	possible	substring	from	the	input	text,	within	the
constraints	of	the	grammar	that	are	specified	below.	This	behavior	is	referred	to
as	longest	match	or	maximal	munch.

Whitespace	and	Comments

Whitespace	has	two	uses:	to	separate	tokens	in	the	source	file	and	to	help
determine	whether	an	operator	is	a	prefix	or	postfix	(see	Operators),	but	is
otherwise	ignored.	The	following	characters	are	considered	whitespace:	space
(U+0020),	line	feed	(U+000A),	carriage	return	(U+000D),	horizontal	tab
(U+0009),	vertical	tab	(U+000B),	form	feed	(U+000C)	and	null	(U+0000).

Comments	are	treated	as	whitespace	by	the	compiler.	Single	line	comments
begin	with	//	and	continue	until	a	line	feed	(U+000A)	or	carriage	return
(U+000D).	Multiline	comments	begin	with	/*	and	end	with	*/.	Nesting	multiline
comments	is	allowed,	but	the	comment	markers	must	be	balanced.

Comments	can	contain	additional	formatting	and	markup,	as	described	in
Markup	Formatting	Reference.

GRAMMAR 	OF 	WH I TESPACE

whitespace 	→	 whitespace-item 	whitespace 	opt
whitespace-item 	→	 line-break
whitespace-item 	→	 comment
whitespace-item 	→	 multiline-comment
whitespace-item 	→	 U+0000,	U+0009,	U+000B,	U+000C,	or	U+0020

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html

line-break 	→	 U+000A
line-break 	→	 U+000D
line-break 	→	 U+000D	followed	by	U+000A
comment 	→	 // 	 comment-text 	 line-break
multiline-comment 	→	 /* 	multiline-comment-text 	 */
comment-text 	→	 comment-text-item 	 comment-text 	opt
comment-text-item 	→	 Any	Unicode	scalar	value	except	U+000A	or	U+000D
multiline-comment-text 	→	 multiline-comment-text-item 	multiline-comment-text 	opt
multiline-comment-text-item 	→	 multiline-comment
multiline-comment-text-item 	→	 comment-text-item
multiline-comment-text-item 	→	 Any	Unicode	scalar	value	except	 /* 	or	 */

Identifiers

Identifiers	begin	with	an	uppercase	or	lowercase	letter	A	through	Z,	an
underscore	(_),	a	noncombining	alphanumeric	Unicode	character	in	the	Basic
Multilingual	Plane,	or	a	character	outside	the	Basic	Multilingual	Plane	that	isn’t
in	a	Private	Use	Area.	After	the	first	character,	digits	and	combining	Unicode
characters	are	also	allowed.

To	use	a	reserved	word	as	an	identifier,	put	a	backtick	(`)	before	and	after	it.	For
example,	class	is	not	a	valid	identifier,	but	`class`	is	valid.	The	backticks	aren’t
considered	part	of	the	identifier;	`x`	and	x	have	the	same	meaning.

Inside	a	closure	with	no	explicit	parameter	names,	the	parameters	are	implicitly
named	$0,	$1,	$2,	and	so	on.	These	names	are	valid	identifiers	within	the	scope
of	the	closure.

The	compiler	synthesizes	identifiers	that	begin	with	a	dollar	sign	($)	for
properties	that	have	a	property	wrapper	projection.	Your	code	can	interact	with
these	identifiers,	but	you	can’t	declare	identifiers	with	that	prefix.	For	more
information,	see	the	propertyWrapper	section	of	the	Attributes	chapter.

GRAMMAR 	OF 	AN 	 I DENT I F I ER

identifier 	→	 identifier-head 	 identifier-characters 	opt
identifier 	→	 ` 	 identifier-head 	 identifier-characters 	opt 	 `
identifier 	→	 implicit-parameter-name
identifier 	→	 property-wrapper-projection

identifier-list 	→	 identifier 	|	 identifier 	 , 	 identifier-list
identifier-head 	→	 Upper-	or	lowercase	letter	A	through	Z
identifier-head 	→	 _
identifier-head 	→	 U+00A8,	U+00AA,	U+00AD,	U+00AF,	U+00B2–U+00B5,	or	U+00B7–

U+00BA
identifier-head 	→	 U+00BC–U+00BE,	U+00C0–U+00D6,	U+00D8–U+00F6,	or	U+00F8–

U+00FF
identifier-head 	→	 U+0100–U+02FF,	U+0370–U+167F,	U+1681–U+180D,	or	U+180F–

U+1DBF
identifier-head 	→	 U+1E00–U+1FFF
identifier-head 	→	 U+200B–U+200D,	U+202A–U+202E,	U+203F–U+2040,	U+2054,	or

U+2060–U+206F
identifier-head 	→	 U+2070–U+20CF,	U+2100–U+218F,	U+2460–U+24FF,	or	U+2776–

U+2793
identifier-head 	→	 U+2C00–U+2DFF	or	U+2E80–U+2FFF
identifier-head 	→	 U+3004–U+3007,	U+3021–U+302F,	U+3031–U+303F,	or	U+3040–

U+D7FF
identifier-head 	→	 U+F900–U+FD3D,	U+FD40–U+FDCF,	U+FDF0–U+FE1F,	or	U+FE30–

U+FE44
identifier-head 	→	 U+FE47–U+FFFD
identifier-head 	→	 U+10000–U+1FFFD,	U+20000–U+2FFFD,	U+30000–U+3FFFD,	or

U+40000–U+4FFFD
identifier-head 	→	 U+50000–U+5FFFD,	U+60000–U+6FFFD,	U+70000–U+7FFFD,	or

U+80000–U+8FFFD
identifier-head 	→	 U+90000–U+9FFFD,	U+A0000–U+AFFFD,	U+B0000–U+BFFFD,	or

U+C0000–U+CFFFD
identifier-head 	→	 U+D0000–U+DFFFD	or	U+E0000–U+EFFFD
identifier-character 	→	 Digit	0	through	9
identifier-character 	→	 U+0300–U+036F,	U+1DC0–U+1DFF,	U+20D0–U+20FF,	or

U+FE20–U+FE2F
identifier-character 	→	 identifier-head
identifier-characters 	→	 identifier-character 	 identifier-characters 	opt
implicit-parameter-name 	→	 $ 	 decimal-digits
property-wrapper-projection 	→	 $ 	 identifier-characters

Keywords	and	Punctuation

The	following	keywords	are	reserved	and	can’t	be	used	as	identifiers,	unless
they’re	escaped	with	backticks,	as	described	above	in	Identifiers.	Keywords
other	than	inout,	var,	and	let	can	be	used	as	parameter	names	in	a	function
declaration	or	function	call	without	being	escaped	with	backticks.	When	a
member	has	the	same	name	as	a	keyword,	references	to	that	member	don’t	need
to	be	escaped	with	backticks,	except	when	there’s	ambiguity	between	referring

to	the	member	and	using	the	keyword—for	example,	self,	Type,	and	Protocol
have	special	meaning	in	an	explicit	member	expression,	so	they	must	be	escaped
with	backticks	in	that	context.

Keywords	used	in	declarations:	associatedtype,	class,	deinit,	enum,
extension,	fileprivate,	func,	import,	init,	inout,	internal,	let,	open,
operator,	private,	protocol,	public,	rethrows,	static,	struct,	subscript,
typealias,	and	var.

Keywords	used	in	statements:	break,	case,	continue,	default,	defer,	do,
else,	fallthrough,	for,	guard,	if,	in,	repeat,	return,	switch,	where,	and
while.

Keywords	used	in	expressions	and	types:	as,	Any,	catch,	false,	is,	nil,
super,	self,	Self,	throw,	throws,	true,	and	try.

Keywords	used	in	patterns:	_.

Keywords	that	begin	with	a	number	sign	(#):	#available,	#colorLiteral,
#column,	#else,	#elseif,	#endif,	#error,	#file,	#fileLiteral,	#function,
#if,	#imageLiteral,	#line,	#selector,	#sourceLocation,	and	#warning.

Keywords	reserved	in	particular	contexts:	associativity,	convenience,
dynamic,	didSet,	final,	get,	infix,	indirect,	lazy,	left,	mutating,	none,
nonmutating,	optional,	override,	postfix,	precedence,	prefix,	Protocol,
required,	right,	set,	Type,	unowned,	weak,	and	willSet.	Outside	the	context
in	which	they	appear	in	the	grammar,	they	can	be	used	as	identifiers.

The	following	tokens	are	reserved	as	punctuation	and	can’t	be	used	as	custom
operators:	(,),	{,	},	[,],	.,	,,	:,	;,	=,	@,	#,	&	(as	a	prefix	operator),	->,	`,	?,	and	!
(as	a	postfix	operator).

Literals

A	literal	is	the	source	code	representation	of	a	value	of	a	type,	such	as	a	number
or	string.

The	following	are	examples	of	literals:

1 42															//	Integer	literal

2 3.14159										//	Floating-point	literal

3 "Hello,	world!"		//	String	literal

4 true													//	Boolean	literal

A	literal	doesn’t	have	a	type	on	its	own.	Instead,	a	literal	is	parsed	as	having
infinite	precision	and	Swift’s	type	inference	attempts	to	infer	a	type	for	the
literal.	For	example,	in	the	declaration	let	x:	Int8	=	42,	Swift	uses	the	explicit
type	annotation	(:	Int8)	to	infer	that	the	type	of	the	integer	literal	42	is	Int8.	If
there	isn’t	suitable	type	information	available,	Swift	infers	that	the	literal’s	type
is	one	of	the	default	literal	types	defined	in	the	Swift	standard	library.	The
default	types	are	Int	for	integer	literals,	Double	for	floating-point	literals,	String
for	string	literals,	and	Bool	for	Boolean	literals.	For	example,	in	the	declaration
let	str	=	"Hello,	world",	the	default	inferred	type	of	the	string	literal	"Hello,
world"	is	String.

When	specifying	the	type	annotation	for	a	literal	value,	the	annotation’s	type
must	be	a	type	that	can	be	instantiated	from	that	literal	value.	That	is,	the	type
must	conform	to	one	of	the	following	Swift	standard	library	protocols:
ExpressibleByIntegerLiteral	for	integer	literals,	ExpressibleByFloatLiteral
for	floating-point	literals,	ExpressibleByStringLiteral	for	string	literals,
ExpressibleByBooleanLiteral	for	Boolean	literals,
ExpressibleByUnicodeScalarLiteral	for	string	literals	that	contain	only	a	single
Unicode	scalar,	and	ExpressibleByExtendedGraphemeClusterLiteral	for	string
literals	that	contain	only	a	single	extended	grapheme	cluster.	For	example,	Int8
conforms	to	the	ExpressibleByIntegerLiteral	protocol,	and	therefore	it	can	be
used	in	the	type	annotation	for	the	integer	literal	42	in	the	declaration	let	x:
Int8	=	42.

GRAMMAR 	OF 	A	 L I TERAL

literal 	→	 numeric-literal 	|	 string-literal 	|	 boolean-literal 	|	 nil-literal
numeric-literal 	→	 -opt 	 integer-literal 	|	 -opt 	 floating-point-literal
boolean-literal 	→	 true 	|	 false
nil-literal 	→	 nil

Integer	Literals
Integer	literals	represent	integer	values	of	unspecified	precision.	By	default,
integer	literals	are	expressed	in	decimal;	you	can	specify	an	alternate	base	using
a	prefix.	Binary	literals	begin	with	0b,	octal	literals	begin	with	0o,	and
hexadecimal	literals	begin	with	0x.

Decimal	literals	contain	the	digits	0	through	9.	Binary	literals	contain	0	and	1,
octal	literals	contain	0	through	7,	and	hexadecimal	literals	contain	0	through	9	as
well	as	A	through	F	in	upper-	or	lowercase.

Negative	integers	literals	are	expressed	by	prepending	a	minus	sign	(-)	to	an
integer	literal,	as	in	-42.

Underscores	(_)	are	allowed	between	digits	for	readability,	but	they’re	ignored
and	therefore	don’t	affect	the	value	of	the	literal.	Integer	literals	can	begin	with
leading	zeros	(0),	but	they’re	likewise	ignored	and	don’t	affect	the	base	or	value
of	the	literal.

Unless	otherwise	specified,	the	default	inferred	type	of	an	integer	literal	is	the
Swift	standard	library	type	Int.	The	Swift	standard	library	also	defines	types	for
various	sizes	of	signed	and	unsigned	integers,	as	described	in	Integers.

GRAMMAR 	OF 	AN 	 I NTEGER 	 L I TERAL

integer-literal 	→	 binary-literal
integer-literal 	→	 octal-literal
integer-literal 	→	 decimal-literal
integer-literal 	→	 hexadecimal-literal
binary-literal 	→	 0b 	 binary-digit 	 binary-literal-characters 	opt
binary-digit 	→	 Digit	0	or	1
binary-literal-character 	→	 binary-digit 	|	 _
binary-literal-characters 	→	 binary-literal-character 	 binary-literal-characters 	opt
octal-literal 	→	 0o 	 octal-digit 	 octal-literal-characters 	opt
octal-digit 	→	 Digit	0	through	7
octal-literal-character 	→	 octal-digit 	|	 _
octal-literal-characters 	→	 octal-literal-character 	 octal-literal-characters 	opt
decimal-literal 	→	 decimal-digit 	 decimal-literal-characters 	opt
decimal-digit 	→	 Digit	0	through	9
decimal-digits 	→	 decimal-digit 	 decimal-digits 	opt
decimal-literal-character 	→	 decimal-digit 	|	 _
decimal-literal-characters 	→	 decimal-literal-character 	 decimal-literal-characters 	opt
hexadecimal-literal 	→	 0x 	 hexadecimal-digit 	 hexadecimal-literal-characters 	opt

hexadecimal-digit 	→	 Digit	0	through	9,	a	through	f,	or	A	through	F
hexadecimal-literal-character 	→	 hexadecimal-digit 	|	 _
hexadecimal-literal-characters 	→	 hexadecimal-literal-character 	 hexadecimal-literal-

characters 	opt

Floating-Point	Literals
Floating-point	literals	represent	floating-point	values	of	unspecified	precision.

By	default,	floating-point	literals	are	expressed	in	decimal	(with	no	prefix),	but
they	can	also	be	expressed	in	hexadecimal	(with	a	0x	prefix).

Decimal	floating-point	literals	consist	of	a	sequence	of	decimal	digits	followed
by	either	a	decimal	fraction,	a	decimal	exponent,	or	both.	The	decimal	fraction
consists	of	a	decimal	point	(.)	followed	by	a	sequence	of	decimal	digits.	The
exponent	consists	of	an	upper-	or	lowercase	e	prefix	followed	by	a	sequence	of
decimal	digits	that	indicates	what	power	of	10	the	value	preceding	the	e	is
multiplied	by.	For	example,	1.25e2	represents	1.25	x	102,	which	evaluates	to
125.0.	Similarly,	1.25e-2	represents	1.25	x	10-2,	which	evaluates	to	0.0125.

Hexadecimal	floating-point	literals	consist	of	a	0x	prefix,	followed	by	an
optional	hexadecimal	fraction,	followed	by	a	hexadecimal	exponent.	The
hexadecimal	fraction	consists	of	a	decimal	point	followed	by	a	sequence	of
hexadecimal	digits.	The	exponent	consists	of	an	upper-	or	lowercase	p	prefix
followed	by	a	sequence	of	decimal	digits	that	indicates	what	power	of	2	the
value	preceding	the	p	is	multiplied	by.	For	example,	0xFp2	represents	15	x	22,
which	evaluates	to	60.	Similarly,	0xFp-2	represents	15	x	2-2,	which	evaluates	to
3.75.

Negative	floating-point	literals	are	expressed	by	prepending	a	minus	sign	(-)	to	a
floating-point	literal,	as	in	-42.5.

Underscores	(_)	are	allowed	between	digits	for	readability,	but	they’re	ignored
and	therefore	don’t	affect	the	value	of	the	literal.	Floating-point	literals	can	begin
with	leading	zeros	(0),	but	they’re	likewise	ignored	and	don’t	affect	the	base	or
value	of	the	literal.

Unless	otherwise	specified,	the	default	inferred	type	of	a	floating-point	literal	is
the	Swift	standard	library	type	Double,	which	represents	a	64-bit	floating-point
number.	The	Swift	standard	library	also	defines	a	Float	type,	which	represents	a
32-bit	floating-point	number.

GRAMMAR 	OF 	A	 F LOAT ING -PO INT 	 L I TERAL

floating-point-literal 	→	 decimal-literal 	 decimal-fraction 	opt 	 decimal-exponent 	opt
floating-point-literal 	→	 hexadecimal-literal 	 hexadecimal-fraction 	opt 	 hexadecimal-

exponent
decimal-fraction 	→	 . 	 decimal-literal
decimal-exponent 	→	 floating-point-e 	 sign 	opt 	 decimal-literal
hexadecimal-fraction 	→	 . 	 hexadecimal-digit 	 hexadecimal-literal-characters 	opt
hexadecimal-exponent 	→	 floating-point-p 	 sign 	opt 	 decimal-literal
floating-point-e 	→	 e 	|	 E
floating-point-p 	→	 p 	|	 P
sign 	→	 + 	|	 -

String	Literals
A	string	literal	is	a	sequence	of	characters	surrounded	by	quotation	marks.	A
single-line	string	literal	is	surrounded	by	double	quotation	marks	and	has	the
following	form:

	 " characters "

String	literals	can’t	contain	an	unescaped	double	quotation	mark	("),	an
unescaped	backslash	(\),	a	carriage	return,	or	a	line	feed.

A	multiline	string	literal	is	surrounded	by	three	double	quotation	marks	and	has
the	following	form:

	 """

	 characters

	 """

Unlike	a	single-line	string	literal,	a	multiline	string	literal	can	contain	unescaped
double	quotation	marks	("),	carriage	returns,	and	line	feeds.	It	can’t	contain	three

unescaped	double	quotation	marks	next	to	each	other.

The	line	break	after	the	"""	that	begins	the	multiline	string	literal	is	not	part	of
the	string.	The	line	break	before	the	"""	that	ends	the	literal	is	also	not	part	of	the
string.	To	make	a	multiline	string	literal	that	begins	or	ends	with	a	line	feed,
write	a	blank	line	as	its	first	or	last	line.

A	multiline	string	literal	can	be	indented	using	any	combination	of	spaces	and
tabs;	this	indentation	is	not	included	in	the	string.	The	"""	that	ends	the	literal
determines	the	indentation:	Every	nonblank	line	in	the	literal	must	begin	with
exactly	the	same	indentation	that	appears	before	the	closing	""";	there’s	no
conversion	between	tabs	and	spaces.	You	can	include	additional	spaces	and	tabs
after	that	indentation;	those	spaces	and	tabs	appear	in	the	string.

Line	breaks	in	a	multiline	string	literal	are	normalized	to	use	the	line	feed
character.	Even	if	your	source	file	has	a	mix	of	carriage	returns	and	line	feeds,
all	of	the	line	breaks	in	the	string	will	be	the	same.

In	a	multiline	string	literal,	writing	a	backslash	(\)	at	the	end	of	a	line	omits	that
line	break	from	the	string.	Any	whitespace	between	the	backslash	and	the	line
break	is	also	omitted.	You	can	use	this	syntax	to	hard	wrap	a	multiline	string
literal	in	your	source	code,	without	changing	the	value	of	the	resulting	string.

Special	characters	can	be	included	in	string	literals	of	both	the	single-line	and
multiline	forms	using	the	following	escape	sequences:

Null	character	(\0)

Backslash	(\\)

Horizontal	tab	(\t)

Line	feed	(\n)

Carriage	return	(\r)

Double	quotation	mark	(\")

Single	quotation	mark	(\')

Unicode	scalar	(\u{n}),	where	n	is	a	hexadecimal	number	that	has	one	to
eight	digits

The	value	of	an	expression	can	be	inserted	into	a	string	literal	by	placing	the
expression	in	parentheses	after	a	backslash	(\).	The	interpolated	expression	can
contain	a	string	literal,	but	can’t	contain	an	unescaped	backslash,	a	carriage
return,	or	a	line	feed.

For	example,	all	of	the	following	string	literals	have	the	same	value:

1 "1	2	3"

2 "1	2	\("3")"

3 "1	2	\(3)"

4 "1	2	\(1	+	2)"

5 let	x	=	3;	"1	2	\(x)"

A	string	delimited	by	extended	delimiters	is	a	sequence	of	characters	surrounded
by	quotation	marks	and	a	balanced	set	of	one	or	more	number	signs	(#).	A	string
delimited	by	extended	delimiters	has	the	following	forms:

	 #" characters "#

	

	 #"""

	 characters

	 """#

Special	characters	in	a	string	delimited	by	extended	delimiters	appear	in	the
resulting	string	as	normal	characters	rather	than	as	special	characters.	You	can
use	extended	delimiters	to	create	strings	with	characters	that	would	ordinarily
have	a	special	effect	such	as	generating	a	string	interpolation,	starting	an	escape
sequence,	or	terminating	the	string.

The	following	example	shows	a	string	literal	and	a	string	delimited	by	extended
delimiters	that	create	equivalent	string	values:

1 let	string	=	#"\(x)	\	"	\u{2603}"#

2 let	escaped	=	"\\(x)	\\	\"	\\u{2603}"

3 print(string)

4 //	Prints	"\(x)	\	"	\u{2603}"

5 print(string	==	escaped)

6 //	Prints	"true"

If	you	use	more	than	one	number	sign	to	form	a	string	delimited	by	extended
delimiters,	don’t	place	whitespace	in	between	the	number	signs:

1 print(###"Line	1\###nLine	2"###)	//	OK

2 print(#	#	#"Line	1\#	#	#nLine	2"#	#	#)	//	Error

Multiline	string	literals	that	you	create	using	extended	delimiters	have	the	same
indentation	requirements	as	regular	multiline	string	literals.

The	default	inferred	type	of	a	string	literal	is	String.	For	more	information	about
the	String	type,	see	Strings	and	Characters	and	String.

String	literals	that	are	concatenated	by	the	+	operator	are	concatenated	at	compile
time.	For	example,	the	values	of	textA	and	textB	in	the	example	below	are
identical—no	runtime	concatenation	is	performed.

1 let	textA	=	"Hello	"	+	"world"

2 let	textB	=	"Hello	world"

GRAMMAR 	OF 	A	 STR ING 	 L I TERAL

string-literal 	→	 static-string-literal 	|	 interpolated-string-literal
string-literal-opening-delimiter 	→	 extended-string-literal-delimiter 	opt 	 "
string-literal-closing-delimiter 	→	 " 	 extended-string-literal-delimiter 	opt
static-string-literal 	→	 string-literal-opening-delimiter 	 quoted-text 	opt 	 string-literal-closing-

delimiter
static-string-literal 	→	 multiline-string-literal-opening-delimiter 	multiline-quoted-text 	opt

multiline-string-literal-closing-delimiter
multiline-string-literal-opening-delimiter 	→	 extended-string-literal-delimiter 	 """
multiline-string-literal-closing-delimiter 	→	 """ 	 extended-string-literal-delimiter

https://developer.apple.com/documentation/swift/string

extended-string-literal-delimiter 	→	 # 	 extended-string-literal-delimiter 	opt
quoted-text 	→	 quoted-text-item 	 quoted-text 	opt
quoted-text-item 	→	 escaped-character
quoted-text-item 	→	 Any	Unicode	scalar	value	except	 " ,	 \ ,	U+000A,	or	U+000D
multiline-quoted-text 	→	 multiline-quoted-text-item 	multiline-quoted-text 	opt
multiline-quoted-text-item 	→	 escaped-character
multiline-quoted-text-item 	→	 Any	Unicode	scalar	value	except	 \
multiline-quoted-text-item 	→	 escaped-newline
interpolated-string-literal 	→	 string-literal-opening-delimiter 	 interpolated-text 	opt 	 string-

literal-closing-delimiter
interpolated-string-literal 	→	 multiline-string-literal-opening-delimiter 	 interpolated-text 	opt

multiline-string-literal-closing-delimiter
interpolated-text 	→	 interpolated-text-item 	 interpolated-text 	opt
interpolated-text-item 	→	 \(expression) 	|	 quoted-text-item
multiline-interpolated-text 	→	 multiline-interpolated-text-item 	multiline-interpolated-text 	opt
multiline-interpolated-text-item 	→	 \(expression) 	|	multiline-quoted-text-item
escape-sequence 	→	 \ 	 extended-string-literal-delimiter
escaped-character 	→	 escape-sequence 	 0 	|	 escape-sequence 	 \ 	|	 escape-sequence 	 t 	|

escape-sequence 	 n 	|	 escape-sequence 	 r 	|	 escape-sequence 	 " 	|	 escape-sequence
'

escaped-character 	→	 escape-sequence 	 u 	 { 	 unicode-scalar-digits 	 }
unicode-scalar-digits 	→	 Between	one	and	eight	hexadecimal	digits
escaped-newline 	→	 escape-sequence 	whitespace 	opt 	 line-break

Operators

The	Swift	standard	library	defines	a	number	of	operators	for	your	use,	many	of
which	are	discussed	in	Basic	Operators	and	Advanced	Operators.	The	present
section	describes	which	characters	can	be	used	to	define	custom	operators.

Custom	operators	can	begin	with	one	of	the	ASCII	characters	/,	=,	-,	+,	!,	*,	%,	<,
>,	&,	|,	^,	?,	or	~,	or	one	of	the	Unicode	characters	defined	in	the	grammar	below
(which	include	characters	from	the	Mathematical	Operators,	Miscellaneous
Symbols,	and	Dingbats	Unicode	blocks,	among	others).	After	the	first	character,
combining	Unicode	characters	are	also	allowed.

You	can	also	define	custom	operators	that	begin	with	a	dot	(.).	These	operators
can	contain	additional	dots.	For	example,	.+.	is	treated	as	a	single	operator.	If	an
operator	doesn’t	begin	with	a	dot,	it	can’t	contain	a	dot	elsewhere.	For	example,

+.+	is	treated	as	the	+	operator	followed	by	the	.+	operator.

Although	you	can	define	custom	operators	that	contain	a	question	mark	(?),	they
can’t	consist	of	a	single	question	mark	character	only.	Additionally,	although
operators	can	contain	an	exclamation	mark	(!),	postfix	operators	can’t	begin
with	either	a	question	mark	or	an	exclamation	mark.

NOTE

The	tokens	=,	->,	//,	/*,	*/,	.,	the	prefix	operators	<,	&,	and	?,	the	infix	operator	?,	and	the
postfix	operators	>,	!,	and	?	are	reserved.	These	tokens	can’t	be	overloaded,	nor	can	they	be	used	as
custom	operators.

The	whitespace	around	an	operator	is	used	to	determine	whether	an	operator	is
used	as	a	prefix	operator,	a	postfix	operator,	or	a	binary	operator.	This	behavior
is	summarized	in	the	following	rules:

If	an	operator	has	whitespace	around	both	sides	or	around	neither	side,	it’s
treated	as	a	binary	operator.	As	an	example,	the	+++	operator	in	a+++b	and	a
+++	b	is	treated	as	a	binary	operator.

If	an	operator	has	whitespace	on	the	left	side	only,	it’s	treated	as	a	prefix
unary	operator.	As	an	example,	the	+++	operator	in	a	+++b	is	treated	as	a
prefix	unary	operator.

If	an	operator	has	whitespace	on	the	right	side	only,	it’s	treated	as	a	postfix
unary	operator.	As	an	example,	the	+++	operator	in	a+++	b	is	treated	as	a
postfix	unary	operator.

If	an	operator	has	no	whitespace	on	the	left	but	is	followed	immediately	by
a	dot	(.),	it’s	treated	as	a	postfix	unary	operator.	As	an	example,	the	+++
operator	in	a+++.b	is	treated	as	a	postfix	unary	operator	(a+++	.b	rather	than
a	+++	.b).

For	the	purposes	of	these	rules,	the	characters	(,	[,	and	{	before	an	operator,	the
characters),],	and	}	after	an	operator,	and	the	characters	,,	;,	and	:	are	also
considered	whitespace.

There’s	one	caveat	to	the	rules	above.	If	the	!	or	?	predefined	operator	has	no

whitespace	on	the	left,	it’s	treated	as	a	postfix	operator,	regardless	of	whether	it
has	whitespace	on	the	right.	To	use	the	?	as	the	optional-chaining	operator,	it
must	not	have	whitespace	on	the	left.	To	use	it	in	the	ternary	conditional	(?	:)
operator,	it	must	have	whitespace	around	both	sides.

In	certain	constructs,	operators	with	a	leading	<	or	>	may	be	split	into	two	or
more	tokens.	The	remainder	is	treated	the	same	way	and	may	be	split	again.	As	a
result,	there’s	no	need	to	use	whitespace	to	disambiguate	between	the	closing	>
characters	in	constructs	like	Dictionary<String,	Array<Int>>.	In	this	example,
the	closing	>	characters	are	not	treated	as	a	single	token	that	may	then	be
misinterpreted	as	a	bit	shift	>>	operator.

To	learn	how	to	define	new,	custom	operators,	see	Custom	Operators	and
Operator	Declaration.	To	learn	how	to	overload	existing	operators,	see	Operator
Methods.

GRAMMAR 	OF 	OPERATORS

operator 	→	 operator-head 	 operator-characters 	opt
operator 	→	 dot-operator-head 	 dot-operator-characters
operator-head 	→	 / 	|	 = 	|	 - 	|	 + 	|	 ! 	|	 * 	|	 % 	|	 < 	|	 > 	|	 & 	|	 | 	|	 ^ 	|	 ~ 	|	 ?
operator-head 	→	 U+00A1–U+00A7
operator-head 	→	 U+00A9	or	U+00AB
operator-head 	→	 U+00AC	or	U+00AE
operator-head 	→	 U+00B0–U+00B1
operator-head 	→	 U+00B6,	U+00BB,	U+00BF,	U+00D7,	or	U+00F7
operator-head 	→	 U+2016–U+2017
operator-head 	→	 U+2020–U+2027
operator-head 	→	 U+2030–U+203E
operator-head 	→	 U+2041–U+2053
operator-head 	→	 U+2055–U+205E
operator-head 	→	 U+2190–U+23FF
operator-head 	→	 U+2500–U+2775
operator-head 	→	 U+2794–U+2BFF
operator-head 	→	 U+2E00–U+2E7F
operator-head 	→	 U+3001–U+3003
operator-head 	→	 U+3008–U+3020
operator-head 	→	 U+3030
operator-character 	→	 operator-head
operator-character 	→	 U+0300–U+036F
operator-character 	→	 U+1DC0–U+1DFF
operator-character 	→	 U+20D0–U+20FF
operator-character 	→	 U+FE00–U+FE0F
operator-character 	→	 U+FE20–U+FE2F
operator-character 	→	 U+E0100–U+E01EF

operator-characters 	→	 operator-character 	 operator-characters 	opt
dot-operator-head 	→	 .
dot-operator-character 	→	 . 	|	 operator-character
dot-operator-characters 	→	 dot-operator-character 	 dot-operator-characters 	opt
binary-operator 	→	 operator
prefix-operator 	→	 operator
postfix-operator 	→	 operator

Types

In	Swift,	there	are	two	kinds	of	types:	named	types	and	compound	types.	A
named	type	is	a	type	that	can	be	given	a	particular	name	when	it’s	defined.
Named	types	include	classes,	structures,	enumerations,	and	protocols.	For
example,	instances	of	a	user-defined	class	named	MyClass	have	the	type	MyClass.
In	addition	to	user-defined	named	types,	the	Swift	standard	library	defines	many
commonly	used	named	types,	including	those	that	represent	arrays,	dictionaries,
and	optional	values.

Data	types	that	are	normally	considered	basic	or	primitive	in	other	languages—
such	as	types	that	represent	numbers,	characters,	and	strings—are	actually
named	types,	defined	and	implemented	in	the	Swift	standard	library	using
structures.	Because	they’re	named	types,	you	can	extend	their	behavior	to	suit
the	needs	of	your	program,	using	an	extension	declaration,	discussed	in
Extensions	and	Extension	Declaration.

A	compound	type	is	a	type	without	a	name,	defined	in	the	Swift	language	itself.
There	are	two	compound	types:	function	types	and	tuple	types.	A	compound
type	may	contain	named	types	and	other	compound	types.	For	example,	the	tuple
type	(Int,	(Int,	Int))	contains	two	elements:	The	first	is	the	named	type	Int,
and	the	second	is	another	compound	type	(Int,	Int).

You	can	put	parentheses	around	a	named	type	or	a	compound	type.	However,
adding	parentheses	around	a	type	doesn’t	have	any	effect.	For	example,	(Int)	is
equivalent	to	Int.

This	chapter	discusses	the	types	defined	in	the	Swift	language	itself	and
describes	the	type	inference	behavior	of	Swift.

GRAMMAR 	OF 	A	TYPE

type 	→	 function-type
type 	→	 array-type
type 	→	 dictionary-type
type 	→	 type-identifier
type 	→	 tuple-type
type 	→	 optional-type
type 	→	 implicitly-unwrapped-optional-type

type 	→	 protocol-composition-type
type 	→	 opaque-type
type 	→	 metatype-type
type 	→	 self-type
type 	→	 Any
type 	→	 (type)

Type	Annotation

A	type	annotation	explicitly	specifies	the	type	of	a	variable	or	expression.	Type
annotations	begin	with	a	colon	(:)	and	end	with	a	type,	as	the	following
examples	show:

1 let	someTuple:	(Double,	Double)	=	(3.14159,	2.71828)

2 func	someFunction(a:	Int)	{	/*	...	*/	}

In	the	first	example,	the	expression	someTuple	is	specified	to	have	the	tuple	type
(Double,	Double).	In	the	second	example,	the	parameter	a	to	the	function
someFunction	is	specified	to	have	the	type	Int.

Type	annotations	can	contain	an	optional	list	of	type	attributes	before	the	type.

GRAMMAR 	OF 	A	TYPE 	ANNOTAT ION

type-annotation 	→	 : 	 attributes 	opt 	 inoutopt 	 type

Type	Identifier

A	type	identifier	refers	to	either	a	named	type	or	a	type	alias	of	a	named	or
compound	type.

Most	of	the	time,	a	type	identifier	directly	refers	to	a	named	type	with	the	same
name	as	the	identifier.	For	example,	Int	is	a	type	identifier	that	directly	refers	to
the	named	type	Int,	and	the	type	identifier	Dictionary<String,	Int>	directly

refers	to	the	named	type	Dictionary<String,	Int>.

There	are	two	cases	in	which	a	type	identifier	doesn’t	refer	to	a	type	with	the
same	name.	In	the	first	case,	a	type	identifier	refers	to	a	type	alias	of	a	named	or
compound	type.	For	instance,	in	the	example	below,	the	use	of	Point	in	the	type
annotation	refers	to	the	tuple	type	(Int,	Int).

1 typealias	Point	=	(Int,	Int)

2 let	origin:	Point	=	(0,	0)

In	the	second	case,	a	type	identifier	uses	dot	(.)	syntax	to	refer	to	named	types
declared	in	other	modules	or	nested	within	other	types.	For	example,	the	type
identifier	in	the	following	code	references	the	named	type	MyType	that	is	declared
in	the	ExampleModule	module.

	 var	someValue:	ExampleModule.MyType

GRAMMAR 	OF 	A	TYPE 	 I DENT I F I ER

type-identifier 	→	 type-name 	 generic-argument-clause 	opt 	|	 type-name 	 generic-argument-
clause 	opt 	 . 	 type-identifier

type-name 	→	 identifier

Tuple	Type

A	tuple	type	is	a	comma-separated	list	of	types,	enclosed	in	parentheses.

You	can	use	a	tuple	type	as	the	return	type	of	a	function	to	enable	the	function	to
return	a	single	tuple	containing	multiple	values.	You	can	also	name	the	elements
of	a	tuple	type	and	use	those	names	to	refer	to	the	values	of	the	individual
elements.	An	element	name	consists	of	an	identifier	followed	immediately	by	a
colon	(:).	For	an	example	that	demonstrates	both	of	these	features,	see	Functions
with	Multiple	Return	Values.

When	an	element	of	a	tuple	type	has	a	name,	that	name	is	part	of	the	type.

1 var	someTuple	=	(top:	10,	bottom:	12)		//	someTuple	is	of	type	

(top:	Int,	bottom:	Int)

2 someTuple	=	(top:	4,	bottom:	42)	//	OK:	names	match

3 someTuple	=	(9,	99)														//	OK:	names	are	inferred

4 someTuple	=	(left:	5,	right:	5)		//	Error:	names	don't	match

All	tuple	types	contain	two	or	more	types,	except	for	Void	which	is	a	type	alias
for	the	empty	tuple	type,	().

GRAMMAR 	OF 	A	TUPLE 	TYPE

tuple-type 	→	 () 	|	 (tuple-type-element 	 , 	 tuple-type-element-list)
tuple-type-element-list 	→	 tuple-type-element 	|	 tuple-type-element 	 , 	 tuple-type-element-

list
tuple-type-element 	→	 element-name 	 type-annotation 	|	 type
element-name 	→	 identifier

Function	Type

A	function	type	represents	the	type	of	a	function,	method,	or	closure	and	consists
of	a	parameter	and	return	type	separated	by	an	arrow	(->):

	 (parameter	type)	->	 return	type

The	parameter	type	is	comma-separated	list	of	types.	Because	the	return	type
can	be	a	tuple	type,	function	types	support	functions	and	methods	that	return
multiple	values.

A	parameter	of	the	function	type	()	->	T	(where	T	is	any	type)	can	apply	the
autoclosure	attribute	to	implicitly	create	a	closure	at	its	call	sites.	This	provides
a	syntactically	convenient	way	to	defer	the	evaluation	of	an	expression	without
needing	to	write	an	explicit	closure	when	you	call	the	function.	For	an	example
of	an	autoclosure	function	type	parameter,	see	Autoclosures.

A	function	type	can	have	a	variadic	parameter	in	its	parameter	type.
Syntactically,	a	variadic	parameter	consists	of	a	base	type	name	followed

immediately	by	three	dots	(...),	as	in	Int....	A	variadic	parameter	is	treated	as
an	array	that	contains	elements	of	the	base	type	name.	For	instance,	the	variadic
parameter	Int...	is	treated	as	[Int].	For	an	example	that	uses	a	variadic
parameter,	see	Variadic	Parameters.

To	specify	an	in-out	parameter,	prefix	the	parameter	type	with	the	inout
keyword.	You	can’t	mark	a	variadic	parameter	or	a	return	type	with	the	inout
keyword.	In-out	parameters	are	discussed	in	In-Out	Parameters.

If	a	function	type	has	only	one	parameter	and	that	parameter’s	type	is	a	tuple
type,	then	the	tuple	type	must	be	parenthesized	when	writing	the	function’s	type.
For	example,	((Int,	Int))	->	Void	is	the	type	of	a	function	that	takes	a	single
parameter	of	the	tuple	type	(Int,	Int)	and	doesn’t	return	any	value.	In	contrast,
without	parentheses,	(Int,	Int)	->	Void	is	the	type	of	a	function	that	takes	two
Int	parameters	and	doesn’t	return	any	value.	Likewise,	because	Void	is	a	type
alias	for	(),	the	function	type	(Void)	->	Void	is	the	same	as	(())	->	()—a
function	that	takes	a	single	argument	that	is	an	empty	tuple.	These	types	are	not
the	same	as	()	->	()—a	function	that	takes	no	arguments.

Argument	names	in	functions	and	methods	are	not	part	of	the	corresponding
function	type.	For	example:

1 func	someFunction(left:	Int,	right:	Int)	{}

2 func	anotherFunction(left:	Int,	right:	Int)	{}

3 func	functionWithDifferentLabels(top:	Int,	bottom:	Int)	{}

4

5 var	f	=	someFunction	//	The	type	of	f	is	(Int,	Int)	->	Void,	

not	(left:	Int,	right:	Int)	->	Void.

6 f	=	anotherFunction														//	OK

7 f	=	functionWithDifferentLabels		//	OK

8

9 func	functionWithDifferentArgumentTypes(left:	Int,	right:	

String)	{}

10 f	=	functionWithDifferentArgumentTypes					//	Error

11

12 func	functionWithDifferentNumberOfArguments(left:	Int,	right:	

Int,	top:	Int)	{}

13 f	=	functionWithDifferentNumberOfArguments	//	Error

Because	argument	labels	are	not	part	of	a	function’s	type,	you	omit	them	when
writing	a	function	type.

1 var	operation:	(lhs:	Int,	rhs:	Int)	->	Int					//	Error

2 var	operation:	(_	lhs:	Int,	_	rhs:	Int)	->	Int	//	OK

3 var	operation:	(Int,	Int)	->	Int															//	OK

If	a	function	type	includes	more	than	a	single	arrow	(->),	the	function	types	are
grouped	from	right	to	left.	For	example,	the	function	type	(Int)	->	(Int)	->
Int	is	understood	as	(Int)	->	((Int)	->	Int)—that	is,	a	function	that	takes	an
Int	and	returns	another	function	that	takes	and	returns	an	Int.

Function	types	that	can	throw	or	rethrow	an	error	must	be	marked	with	the
throws	keyword.	The	throws	keyword	is	part	of	a	function’s	type,	and
nonthrowing	functions	are	subtypes	of	throwing	functions.	As	a	result,	you	can
use	a	nonthrowing	function	in	the	same	places	as	a	throwing	one.	Throwing	and
rethrowing	functions	are	described	in	Throwing	Functions	and	Methods	and
Rethrowing	Functions	and	Methods.

Restrictions	for	Nonescaping	Closures
A	parameter	that’s	a	nonescaping	function	can’t	be	stored	in	a	property,	variable,
or	constant	of	type	Any,	because	that	might	allow	the	value	to	escape.

A	parameter	that’s	a	nonescaping	function	can’t	be	passed	as	an	argument	to
another	nonescaping	function	parameter.	This	restriction	helps	Swift	perform
more	of	its	checks	for	conflicting	access	to	memory	at	compile	time	instead	of	at
runtime.	For	example:

1 let	external:	(()	->	Void)	->	Void	=	{	_	in	()	}

2 func	takesTwoFunctions(first:	(()	->	Void)	->	Void,	second:	(()	

->	Void)	->	Void)	{

3 				first	{	first	{}	}							//	Error

4 				second	{	second	{}		}				//	Error

5

6 				first	{	second	{}	}						//	Error

7 				second	{	first	{}	}						//	Error

8

9 				first	{	external	{}	}				//	OK

10 				external	{	first	{}	}				//	OK

11 }

In	the	code	above,	both	of	the	parameters	to	takesTwoFunctions(first:second:)
are	functions.	Neither	parameter	is	marked	@escaping,	so	they’re	both
nonescaping	as	a	result.

The	four	function	calls	marked	“Error”	in	the	example	above	cause	compiler
errors.	Because	the	first	and	second	parameters	are	nonescaping	functions,	they
can’t	be	passed	as	arguments	to	another	nonescaping	function	parameter.	In
contrast,	the	two	function	calls	marked	“OK”	don’t	cause	a	compiler	error.	These
function	calls	don’t	violate	the	restriction	because	external	isn’t	one	of	the
parameters	of	takesTwoFunctions(first:second:).

If	you	need	to	avoid	this	restriction,	mark	one	of	the	parameters	as	escaping,	or
temporarily	convert	one	of	the	nonescaping	function	parameters	to	an	escaping
function	by	using	the	withoutActuallyEscaping(_:do:)	function.	For
information	about	avoiding	conflicting	access	to	memory,	see	Memory	Safety.

GRAMMAR 	OF 	A	 FUNCT ION 	TYPE

function-type 	→	 attributes 	opt 	 function-type-argument-clause 	 throwsopt 	 -> 	 type
function-type-argument-clause 	→	 ()
function-type-argument-clause 	→	 (function-type-argument-list 	 ...opt)
function-type-argument-list 	→	 function-type-argument 	|	 function-type-argument 	 ,

function-type-argument-list

function-type-argument 	→	 attributes 	opt 	 inoutopt 	 type 	|	 argument-label 	 type-
annotation

argument-label 	→	 identifier

Array	Type

The	Swift	language	provides	the	following	syntactic	sugar	for	the	Swift	standard
library	Array<Element>	type:

	 [type]

In	other	words,	the	following	two	declarations	are	equivalent:

1 let	someArray:	Array<String>	=	["Alex",	"Brian",	"Dave"]

2 let	someArray:	[String]	=	["Alex",	"Brian",	"Dave"]

In	both	cases,	the	constant	someArray	is	declared	as	an	array	of	strings.	The
elements	of	an	array	can	be	accessed	through	subscripting	by	specifying	a	valid
index	value	in	square	brackets:	someArray[0]	refers	to	the	element	at	index	0,
"Alex".

You	can	create	multidimensional	arrays	by	nesting	pairs	of	square	brackets,
where	the	name	of	the	base	type	of	the	elements	is	contained	in	the	innermost
pair	of	square	brackets.	For	example,	you	can	create	a	three-dimensional	array	of
integers	using	three	sets	of	square	brackets:

	 var	array3D:	[[[Int]]]	=	[[[1,	2],	[3,	4]],	[[5,	6],	[7,	8]]]

When	accessing	the	elements	in	a	multidimensional	array,	the	left-most	subscript
index	refers	to	the	element	at	that	index	in	the	outermost	array.	The	next
subscript	index	to	the	right	refers	to	the	element	at	that	index	in	the	array	that’s
nested	one	level	in.	And	so	on.	This	means	that	in	the	example	above,
array3D[0]	refers	to	[[1,	2],	[3,	4]],	array3D[0][1]	refers	to	[3,	4],	and
array3D[0][1][1]	refers	to	the	value	4.

For	a	detailed	discussion	of	the	Swift	standard	library	Array	type,	see	Arrays.

GRAMMAR 	OF 	AN 	ARRAY 	TYPE

array-type 	→	 [type]

Dictionary	Type

The	Swift	language	provides	the	following	syntactic	sugar	for	the	Swift	standard
library	Dictionary<Key,	Value>	type:

	 [key	type :	 value	type]

In	other	words,	the	following	two	declarations	are	equivalent:

1 let	someDictionary:	[String:	Int]	=	["Alex":	31,	"Paul":	39]

2 let	someDictionary:	Dictionary<String,	Int>	=	["Alex":	31,	

"Paul":	39]

In	both	cases,	the	constant	someDictionary	is	declared	as	a	dictionary	with
strings	as	keys	and	integers	as	values.

The	values	of	a	dictionary	can	be	accessed	through	subscripting	by	specifying
the	corresponding	key	in	square	brackets:	someDictionary["Alex"]	refers	to	the
value	associated	with	the	key	"Alex".	The	subscript	returns	an	optional	value	of
the	dictionary’s	value	type.	If	the	specified	key	isn’t	contained	in	the	dictionary,
the	subscript	returns	nil.

The	key	type	of	a	dictionary	must	conform	to	the	Swift	standard	library	Hashable
protocol.

For	a	detailed	discussion	of	the	Swift	standard	library	Dictionary	type,	see
Dictionaries.

GRAMMAR 	OF 	A	D ICT IONARY 	TYPE

dictionary-type 	→	 [type 	 : 	 type]

Optional	Type

The	Swift	language	defines	the	postfix	?	as	syntactic	sugar	for	the	named	type
Optional<Wrapped>,	which	is	defined	in	the	Swift	standard	library.	In	other
words,	the	following	two	declarations	are	equivalent:

1 var	optionalInteger:	Int?

2 var	optionalInteger:	Optional<Int>

In	both	cases,	the	variable	optionalInteger	is	declared	to	have	the	type	of	an
optional	integer.	Note	that	no	whitespace	may	appear	between	the	type	and	the	?.

The	type	Optional<Wrapped>	is	an	enumeration	with	two	cases,	none	and
some(Wrapped),	which	are	used	to	represent	values	that	may	or	may	not	be
present.	Any	type	can	be	explicitly	declared	to	be	(or	implicitly	converted	to)	an
optional	type.	If	you	don’t	provide	an	initial	value	when	you	declare	an	optional
variable	or	property,	its	value	automatically	defaults	to	nil.

If	an	instance	of	an	optional	type	contains	a	value,	you	can	access	that	value
using	the	postfix	operator	!,	as	shown	below:

1 optionalInteger	=	42

2 optionalInteger!	//	42

Using	the	!	operator	to	unwrap	an	optional	that	has	a	value	of	nil	results	in	a
runtime	error.

You	can	also	use	optional	chaining	and	optional	binding	to	conditionally	perform
an	operation	on	an	optional	expression.	If	the	value	is	nil,	no	operation	is
performed	and	therefore	no	runtime	error	is	produced.

For	more	information	and	to	see	examples	that	show	how	to	use	optional	types,

see	Optionals.

GRAMMAR 	OF 	AN 	OPT IONAL	TYPE

optional-type 	→	 type 	 ?

Implicitly	Unwrapped	Optional	Type

The	Swift	language	defines	the	postfix	!	as	syntactic	sugar	for	the	named	type
Optional<Wrapped>,	which	is	defined	in	the	Swift	standard	library,	with	the
additional	behavior	that	it’s	automatically	unwrapped	when	it’s	accessed.	If	you
try	to	use	an	implicitly	unwrapped	optional	that	has	a	value	of	nil,	you’ll	get	a
runtime	error.	With	the	exception	of	the	implicit	unwrapping	behavior,	the
following	two	declarations	are	equivalent:

1 var	implicitlyUnwrappedString:	String!

2 var	explicitlyUnwrappedString:	Optional<String>

Note	that	no	whitespace	may	appear	between	the	type	and	the	!.

Because	implicit	unwrapping	changes	the	meaning	of	the	declaration	that
contains	that	type,	optional	types	that	are	nested	inside	a	tuple	type	or	a	generic
type—such	as	the	element	types	of	a	dictionary	or	array—can’t	be	marked	as
implicitly	unwrapped.	For	example:

1 let	tupleOfImplicitlyUnwrappedElements:	(Int!,	Int!)		//	Error

2 let	implicitlyUnwrappedTuple:	(Int,	Int)!													//	OK

3

4 let	arrayOfImplicitlyUnwrappedElements:	[Int!]								//	Error

5 let	implicitlyUnwrappedArray:	[Int]!																		//	OK

Because	implicitly	unwrapped	optionals	have	the	same	Optional<Wrapped>	type
as	optional	values,	you	can	use	implicitly	unwrapped	optionals	in	all	the	same
places	in	your	code	that	you	can	use	optionals.	For	example,	you	can	assign

values	of	implicitly	unwrapped	optionals	to	variables,	constants,	and	properties
of	optionals,	and	vice	versa.

As	with	optionals,	if	you	don’t	provide	an	initial	value	when	you	declare	an
implicitly	unwrapped	optional	variable	or	property,	its	value	automatically
defaults	to	nil.

Use	optional	chaining	to	conditionally	perform	an	operation	on	an	implicitly
unwrapped	optional	expression.	If	the	value	is	nil,	no	operation	is	performed
and	therefore	no	runtime	error	is	produced.

For	more	information	about	implicitly	unwrapped	optional	types,	see	Implicitly
Unwrapped	Optionals.

GRAMMAR 	OF 	AN 	 IMPL IC I T LY 	UNWRAPPED 	OPT IONAL	TYPE

implicitly-unwrapped-optional-type 	→	 type 	 !

Protocol	Composition	Type

A	protocol	composition	type	defines	a	type	that	conforms	to	each	protocol	in	a
list	of	specified	protocols,	or	a	type	that	is	a	subclass	of	a	given	class	and
conforms	to	each	protocol	in	a	list	of	specified	protocols.	Protocol	composition
types	may	be	used	only	when	specifying	a	type	in	type	annotations,	in	generic
parameter	clauses,	and	in	generic	where	clauses.

Protocol	composition	types	have	the	following	form:

	 Protocol	1 	&	 Protocol	2

A	protocol	composition	type	allows	you	to	specify	a	value	whose	type	conforms
to	the	requirements	of	multiple	protocols	without	explicitly	defining	a	new,
named	protocol	that	inherits	from	each	protocol	you	want	the	type	to	conform	to.
For	example,	you	can	use	the	protocol	composition	type	ProtocolA	&	ProtocolB
&	ProtocolC	instead	of	declaring	a	new	protocol	that	inherits	from	ProtocolA,
ProtocolB,	and	ProtocolC.	Likewise,	you	can	use	SuperClass	&	ProtocolA

instead	of	declaring	a	new	protocol	that	is	a	subclass	of	SuperClass	and
conforms	to	ProtocolA.

Each	item	in	a	protocol	composition	list	is	one	of	the	following;	the	list	can
contain	at	most	one	class:

The	name	of	a	class

The	name	of	a	protocol

A	type	alias	whose	underlying	type	is	a	protocol	composition	type,	a
protocol,	or	a	class.

When	a	protocol	composition	type	contains	type	aliases,	it’s	possible	for	the
same	protocol	to	appear	more	than	once	in	the	definitions—duplicates	are
ignored.	For	example,	the	definition	of	PQR	in	the	code	below	is	equivalent	to	P	&
Q	&	R.

1 typealias	PQ	=	P	&	Q

2 typealias	PQR	=	PQ	&	Q	&	R

GRAMMAR 	OF 	A	 PROTOCOL	COMPOS I T ION 	TYPE

protocol-composition-type 	→	 type-identifier 	 & 	 protocol-composition-continuation
protocol-composition-continuation 	→	 type-identifier 	|	 protocol-composition-type

Opaque	Type

An	opaque	type	defines	a	type	that	conforms	to	a	protocol	or	protocol
composition,	without	specifying	the	underlying	concrete	type.

Opaque	types	appear	as	the	return	type	of	a	function	or	subscript,	or	the	type	of	a
property.	Opaque	types	can’t	appear	as	part	of	a	tuple	type	or	a	generic	type,
such	as	the	element	type	of	an	array	or	the	wrapped	type	of	an	optional.

Opaque	types	have	the	following	form:

	 some	 constraint

The	constraint	is	a	class	type,	protocol	type,	protocol	composition	type,	or	Any.
A	value	can	be	used	as	an	instance	of	the	opaque	type	only	if	it’s	an	instance	of	a
type	that	conforms	to	the	listed	protocol	or	protocol	composition,	or	inherits
from	the	listed	class.	Code	that	interacts	with	an	opaque	value	can	use	the	value
only	in	ways	that	are	part	of	the	interface	defined	by	the	constraint.

Protocol	declarations	can’t	include	opaque	types.	Classes	can’t	use	an	opaque
type	as	the	return	type	of	a	nonfinal	method.

A	function	that	uses	an	opaque	type	as	its	return	type	must	return	values	that
share	a	single	underlying	type.	The	return	type	can	include	types	that	are	part	of
the	function’s	generic	type	parameters.	For	example,	a	function	someFunction<T>
()	could	return	a	value	of	type	T	or	Dictionary<String,	T>.

GRAMMAR 	OF 	AN 	OPAQUE 	TYPE

opaque-type 	→	 some 	 type

Metatype	Type

A	metatype	type	refers	to	the	type	of	any	type,	including	class	types,	structure
types,	enumeration	types,	and	protocol	types.

The	metatype	of	a	class,	structure,	or	enumeration	type	is	the	name	of	that	type
followed	by	.Type.	The	metatype	of	a	protocol	type—not	the	concrete	type	that
conforms	to	the	protocol	at	runtime—is	the	name	of	that	protocol	followed	by
.Protocol.	For	example,	the	metatype	of	the	class	type	SomeClass	is
SomeClass.Type	and	the	metatype	of	the	protocol	SomeProtocol	is
SomeProtocol.Protocol.

You	can	use	the	postfix	self	expression	to	access	a	type	as	a	value.	For	example,
SomeClass.self	returns	SomeClass	itself,	not	an	instance	of	SomeClass.	And
SomeProtocol.self	returns	SomeProtocol	itself,	not	an	instance	of	a	type	that
conforms	to	SomeProtocol	at	runtime.	You	can	call	the	type(of:)	function	with

an	instance	of	a	type	to	access	that	instance’s	dynamic,	runtime	type	as	a	value,
as	the	following	example	shows:

1 class	SomeBaseClass	{

2 				class	func	printClassName()	{

3 								print("SomeBaseClass")

4 				}

5 }

6 class	SomeSubClass:	SomeBaseClass	{

7 				override	class	func	printClassName()	{

8 								print("SomeSubClass")

9 				}

10 }

11 let	someInstance:	SomeBaseClass	=	SomeSubClass()

12 //	The	compile-time	type	of	someInstance	is	SomeBaseClass,

13 //	and	the	runtime	type	of	someInstance	is	SomeSubClass

14 type(of:	someInstance).printClassName()

15 //	Prints	"SomeSubClass"

For	more	information,	see	type(of:)	in	the	Swift	standard	library.

Use	an	initializer	expression	to	construct	an	instance	of	a	type	from	that	type’s
metatype	value.	For	class	instances,	the	initializer	that’s	called	must	be	marked
with	the	required	keyword	or	the	entire	class	marked	with	the	final	keyword.

1 class	AnotherSubClass:	SomeBaseClass	{

2 				let	string:	String

3 				required	init(string:	String)	{

4 								self.string	=	string

5 				}

6 				override	class	func	printClassName()	{

7 								print("AnotherSubClass")

https://developer.apple.com/documentation/swift/2885064-type

8 				}

9 }

10 let	metatype:	AnotherSubClass.Type	=	AnotherSubClass.self

11 let	anotherInstance	=	metatype.init(string:	"some	string")

GRAMMAR 	OF 	A	METATYPE 	TYPE

metatype-type 	→	 type 	 . 	 Type 	|	 type 	 . 	 Protocol

Self	Type

The	Self	type	isn’t	a	specific	type,	but	rather	lets	you	conveniently	refer	to	the
current	type	without	repeating	or	knowing	that	type’s	name.

In	a	protocol	declaration	or	a	protocol	member	declaration,	the	Self	type	refers
to	the	eventual	type	that	conforms	to	the	protocol.

In	a	structure,	class,	or	enumeration	declaration,	the	Self	type	refers	to	the	type
introduced	by	the	declaration.	Inside	the	declaration	for	a	member	of	a	type,	the
Self	type	refers	to	that	type.	In	the	members	of	a	class	declaration,	Self	can
appear	as	the	return	type	of	a	method	and	in	the	body	of	a	method,	but	not	in	any
other	context.	For	example,	the	code	below	shows	an	instance	method	f	whose
return	type	is	Self.

1 class	Superclass	{

2 				func	f()	->	Self	{	return	self	}

3 }

4 let	x	=	Superclass()

5 print(type(of:	x.f()))

6 //	Prints	"Superclass"

7

8 class	Subclass:	Superclass	{	}

9 let	y	=	Subclass()

10 print(type(of:	y.f()))

11 //	Prints	"Subclass"

12

13 let	z:	Superclass	=	Subclass()

14 print(type(of:	z.f()))

15 //	Prints	"Subclass"

The	last	part	of	the	example	above	shows	that	Self	refers	to	the	runtime	type
Subclass	of	the	value	of	z,	not	the	compile-time	type	Superclass	of	the	variable
itself.

Inside	a	nested	type	declaration,	the	Self	type	refers	to	the	type	introduced	by
the	innermost	type	declaration.

The	Self	type	refers	to	the	same	type	as	the	type(of:)	function	in	the	Swift
standard	library.	Writing	Self.someStaticMember	to	access	a	member	of	the
current	type	is	the	same	as	writing	type(of:	self).someStaticMember.

GRAMMAR 	OF 	A	 SELF 	TYPE

self-type 	→	 Self

Type	Inheritance	Clause

A	type	inheritance	clause	is	used	to	specify	which	class	a	named	type	inherits
from	and	which	protocols	a	named	type	conforms	to.	A	type	inheritance	clause
begins	with	a	colon	(:),	followed	by	a	list	of	type	identifiers.

Class	types	can	inherit	from	a	single	superclass	and	conform	to	any	number	of
protocols.	When	defining	a	class,	the	name	of	the	superclass	must	appear	first	in
the	list	of	type	identifiers,	followed	by	any	number	of	protocols	the	class	must
conform	to.	If	the	class	doesn’t	inherit	from	another	class,	the	list	can	begin	with
a	protocol	instead.	For	an	extended	discussion	and	several	examples	of	class
inheritance,	see	Inheritance.

https://developer.apple.com/documentation/swift/2885064-type

Other	named	types	can	only	inherit	from	or	conform	to	a	list	of	protocols.
Protocol	types	can	inherit	from	any	number	of	other	protocols.	When	a	protocol
type	inherits	from	other	protocols,	the	set	of	requirements	from	those	other
protocols	are	aggregated	together,	and	any	type	that	inherits	from	the	current
protocol	must	conform	to	all	of	those	requirements.

A	type	inheritance	clause	in	an	enumeration	definition	can	be	either	a	list	of
protocols,	or	in	the	case	of	an	enumeration	that	assigns	raw	values	to	its	cases,	a
single,	named	type	that	specifies	the	type	of	those	raw	values.	For	an	example	of
an	enumeration	definition	that	uses	a	type	inheritance	clause	to	specify	the	type
of	its	raw	values,	see	Raw	Values.

GRAMMAR 	OF 	A	TYPE 	 I NHER I TANCE 	CLAUSE

type-inheritance-clause 	→	 : 	 type-inheritance-list
type-inheritance-list 	→	 type-identifier 	|	 type-identifier 	 , 	 type-inheritance-list

Type	Inference

Swift	uses	type	inference	extensively,	allowing	you	to	omit	the	type	or	part	of	the
type	of	many	variables	and	expressions	in	your	code.	For	example,	instead	of
writing	var	x:	Int	=	0,	you	can	write	var	x	=	0,	omitting	the	type	completely
—the	compiler	correctly	infers	that	x	names	a	value	of	type	Int.	Similarly,	you
can	omit	part	of	a	type	when	the	full	type	can	be	inferred	from	context.	For
example,	if	you	write	let	dict:	Dictionary	=	["A":	1],	the	compiler	infers
that	dict	has	the	type	Dictionary<String,	Int>.

In	both	of	the	examples	above,	the	type	information	is	passed	up	from	the	leaves
of	the	expression	tree	to	its	root.	That	is,	the	type	of	x	in	var	x:	Int	=	0	is
inferred	by	first	checking	the	type	of	0	and	then	passing	this	type	information	up
to	the	root	(the	variable	x).

In	Swift,	type	information	can	also	flow	in	the	opposite	direction—from	the	root
down	to	the	leaves.	In	the	following	example,	for	instance,	the	explicit	type
annotation	(:	Float)	on	the	constant	eFloat	causes	the	numeric	literal	2.71828	to
have	an	inferred	type	of	Float	instead	of	Double.

1 let	e	=	2.71828	//	The	type	of	e	is	inferred	to	be	Double.

2 let	eFloat:	Float	=	2.71828	//	The	type	of	eFloat	is	Float.

Type	inference	in	Swift	operates	at	the	level	of	a	single	expression	or	statement.
This	means	that	all	of	the	information	needed	to	infer	an	omitted	type	or	part	of	a
type	in	an	expression	must	be	accessible	from	type-checking	the	expression	or
one	of	its	subexpressions.

Expressions

In	Swift,	there	are	four	kinds	of	expressions:	prefix	expressions,	binary
expressions,	primary	expressions,	and	postfix	expressions.	Evaluating	an
expression	returns	a	value,	causes	a	side	effect,	or	both.

Prefix	and	binary	expressions	let	you	apply	operators	to	smaller	expressions.
Primary	expressions	are	conceptually	the	simplest	kind	of	expression,	and	they
provide	a	way	to	access	values.	Postfix	expressions,	like	prefix	and	binary
expressions,	let	you	build	up	more	complex	expressions	using	postfixes	such	as
function	calls	and	member	access.	Each	kind	of	expression	is	described	in	detail
in	the	sections	below.

GRAMMAR 	OF 	AN 	EXPRESS ION

expression 	→	 try-operator 	opt 	 prefix-expression 	 binary-expressions 	opt
expression-list 	→	 expression 	|	 expression 	 , 	 expression-list

Prefix	Expressions

Prefix	expressions	combine	an	optional	prefix	operator	with	an	expression.
Prefix	operators	take	one	argument,	the	expression	that	follows	them.

For	information	about	the	behavior	of	these	operators,	see	Basic	Operators	and
Advanced	Operators.

For	information	about	the	operators	provided	by	the	Swift	standard	library,	see
Operator	Declarations.

In	addition	to	the	standard	library	operators,	you	use	&	immediately	before	the
name	of	a	variable	that’s	being	passed	as	an	in-out	argument	to	a	function	call
expression.	For	more	information	and	to	see	an	example,	see	In-Out	Parameters.

GRAMMAR 	OF 	A	 PREF IX 	 EXPRESS ION

prefix-expression 	→	 prefix-operator 	opt 	 postfix-expression

https://developer.apple.com/documentation/swift/operator_declarations

prefix-expression 	→	 in-out-expression
in-out-expression 	→	 & 	 identifier

Try	Operator
A	try	expression	consists	of	the	try	operator	followed	by	an	expression	that	can
throw	an	error.	It	has	the	following	form:

	 try	 expression

An	optional-try	expression	consists	of	the	try?	operator	followed	by	an
expression	that	can	throw	an	error.	It	has	the	following	form:

	 try?	 expression

If	the	expression	does	not	throw	an	error,	the	value	of	the	optional-try	expression
is	an	optional	containing	the	value	of	the	expression.	Otherwise,	the	value	of	the
optional-try	expression	is	nil.

A	forced-try	expression	consists	of	the	try!	operator	followed	by	an	expression
that	can	throw	an	error.	It	has	the	following	form:

	 try!	 expression

If	the	expression	throws	an	error,	a	runtime	error	is	produced.

When	the	expression	on	the	left-hand	side	of	a	binary	operator	is	marked	with
try,	try?,	or	try!,	that	operator	applies	to	the	whole	binary	expression.	That
said,	you	can	use	parentheses	to	be	explicit	about	the	scope	of	the	operator’s
application.

1 sum	=	try	someThrowingFunction()	+	anotherThrowingFunction()			

//	try	applies	to	both	function	calls

2 sum	=	try	(someThrowingFunction()	+	anotherThrowingFunction())	

//	try	applies	to	both	function	calls

3 sum	=	(try	someThrowingFunction())	+	anotherThrowingFunction()	

//	Error:	try	applies	only	to	the	first	function	call

A	try	expression	can’t	appear	on	the	right-hand	side	of	a	binary	operator,	unless
the	binary	operator	is	the	assignment	operator	or	the	try	expression	is	enclosed
in	parentheses.

For	more	information	and	to	see	examples	of	how	to	use	try,	try?,	and	try!,	see
Error	Handling.

GRAMMAR 	OF 	A	TRY 	EXPRESS ION

try-operator 	→	 try 	|	 try 	 ? 	|	 try 	 !

Binary	Expressions

Binary	expressions	combine	an	infix	binary	operator	with	the	expression	that	it
takes	as	its	left-hand	and	right-hand	arguments.	It	has	the	following	form:

	 left-hand	argument 	 operator 	 right-hand	argument

For	information	about	the	behavior	of	these	operators,	see	Basic	Operators	and
Advanced	Operators.

For	information	about	the	operators	provided	by	the	Swift	standard	library,	see
Operator	Declarations.

NOTE

At	parse	time,	an	expression	made	up	of	binary	operators	is	represented	as	a	flat	list.	This	list	is
transformed	into	a	tree	by	applying	operator	precedence.	For	example,	the	expression	2	+	3	*	5	is
initially	understood	as	a	flat	list	of	five	items,	2,	+,	3,	*,	and	5.	This	process	transforms	it	into	the
tree	(2	+	(3	*	5)).

GRAMMAR 	OF 	A	 B INARY 	EXPRESS ION

binary-expression 	→	 binary-operator 	 prefix-expression
binary-expression 	→	 assignment-operator 	 try-operator 	opt 	 prefix-expression

https://developer.apple.com/documentation/swift/operator_declarations

binary-expression 	→	 conditional-operator 	 try-operator 	opt 	 prefix-expression
binary-expression 	→	 type-casting-operator
binary-expressions 	→	 binary-expression 	 binary-expressions 	opt

Assignment	Operator
The	assignment	operator	sets	a	new	value	for	a	given	expression.	It	has	the
following	form:

	 expression 	=	 value

The	value	of	the	expression	is	set	to	the	value	obtained	by	evaluating	the	value.
If	the	expression	is	a	tuple,	the	value	must	be	a	tuple	with	the	same	number	of
elements.	(Nested	tuples	are	allowed.)	Assignment	is	performed	from	each	part
of	the	value	to	the	corresponding	part	of	the	expression.	For	example:

1 (a,	_,	(b,	c))	=	("test",	9.45,	(12,	3))

2 //	a	is	"test",	b	is	12,	c	is	3,	and	9.45	is	ignored

The	assignment	operator	does	not	return	any	value.

GRAMMAR 	OF 	AN 	ASS IGNMENT 	OPERATOR

assignment-operator 	→	 =

Ternary	Conditional	Operator
The	ternary	conditional	operator	evaluates	to	one	of	two	given	values	based	on
the	value	of	a	condition.	It	has	the	following	form:

	 condition 	?	 expression	used	if	true 	:

	 expression	used	if	false

If	the	condition	evaluates	to	true,	the	conditional	operator	evaluates	the	first
expression	and	returns	its	value.	Otherwise,	it	evaluates	the	second	expression

and	returns	its	value.	The	unused	expression	is	not	evaluated.

For	an	example	that	uses	the	ternary	conditional	operator,	see	Ternary
Conditional	Operator.

GRAMMAR 	OF 	A	COND I T IONAL	OPERATOR

conditional-operator 	→	 ? 	 expression 	 :

Type-Casting	Operators
There	are	four	type-casting	operators:	the	is	operator,	the	as	operator,	the	as?
operator,	and	the	as!	operator.

They	have	the	following	form:

	 expression 	is	 type

	 expression 	as	 type

	 expression 	as?	 type

	 expression 	as!	 type

The	is	operator	checks	at	runtime	whether	the	expression	can	be	cast	to	the
specified	type.	It	returns	true	if	the	expression	can	be	cast	to	the	specified	type;
otherwise,	it	returns	false.

The	as	operator	performs	a	cast	when	it	is	known	at	compile	time	that	the	cast
always	succeeds,	such	as	upcasting	or	bridging.	Upcasting	lets	you	use	an
expression	as	an	instance	of	its	type’s	supertype,	without	using	an	intermediate
variable.	The	following	approaches	are	equivalent:

1 func	f(_	any:	Any)	{	print("Function	for	Any")	}

2 func	f(_	int:	Int)	{	print("Function	for	Int")	}

3 let	x	=	10

4 f(x)

5 //	Prints	"Function	for	Int"

6

7 let	y:	Any	=	x

8 f(y)

9 //	Prints	"Function	for	Any"

10

11 f(x	as	Any)

12 //	Prints	"Function	for	Any"

Bridging	lets	you	use	an	expression	of	a	Swift	standard	library	type	such	as
String	as	its	corresponding	Foundation	type	such	as	NSString	without	needing	to
create	a	new	instance.	For	more	information	on	bridging,	see	Working	with
Foundation	Types.

The	as?	operator	performs	a	conditional	cast	of	the	expression	to	the	specified
type.	The	as?	operator	returns	an	optional	of	the	specified	type.	At	runtime,	if	the
cast	succeeds,	the	value	of	expression	is	wrapped	in	an	optional	and	returned;
otherwise,	the	value	returned	is	nil.	If	casting	to	the	specified	type	is	guaranteed
to	fail	or	is	guaranteed	to	succeed,	a	compile-time	error	is	raised.

The	as!	operator	performs	a	forced	cast	of	the	expression	to	the	specified	type.
The	as!	operator	returns	a	value	of	the	specified	type,	not	an	optional	type.	If	the
cast	fails,	a	runtime	error	is	raised.	The	behavior	of	x	as!	T	is	the	same	as	the
behavior	of	(x	as?	T)!.

For	more	information	about	type	casting	and	to	see	examples	that	use	the	type-
casting	operators,	see	Type	Casting.

GRAMMAR 	OF 	A	TYPE -CAST ING 	OPERATOR

type-casting-operator 	→	 is 	 type
type-casting-operator 	→	 as 	 type
type-casting-operator 	→	 as 	 ? 	 type
type-casting-operator 	→	 as 	 ! 	 type

Primary	Expressions

https://developer.apple.com/documentation/swift/imported_c_and_objective_c_apis/working_with_foundation_types

Primary	expressions	are	the	most	basic	kind	of	expression.	They	can	be	used	as
expressions	on	their	own,	and	they	can	be	combined	with	other	tokens	to	make
prefix	expressions,	binary	expressions,	and	postfix	expressions.

GRAMMAR 	OF 	A	 PR IMARY 	EXPRESS ION

primary-expression 	→	 identifier 	 generic-argument-clause 	opt
primary-expression 	→	 literal-expression
primary-expression 	→	 self-expression
primary-expression 	→	 superclass-expression
primary-expression 	→	 closure-expression
primary-expression 	→	 parenthesized-expression
primary-expression 	→	 tuple-expression
primary-expression 	→	 implicit-member-expression
primary-expression 	→	 wildcard-expression
primary-expression 	→	 key-path-expression
primary-expression 	→	 selector-expression
primary-expression 	→	 key-path-string-expression

Literal	Expression
A	literal	expression	consists	of	either	an	ordinary	literal	(such	as	a	string	or	a
number),	an	array	or	dictionary	literal,	a	playground	literal,	or	one	of	the
following	special	literals:

Literal Type Value

#file String The	name	of	the	file	in	which	it	appears.

#line Int The	line	number	on	which	it	appears.

#column Int The	column	number	in	which	it	begins.

#function String The	name	of	the	declaration	in	which	it	appears.

#dsohandle UnsafeRawPointer The	DSO	(dynamic	shared	object)	handle	in	use
where	it	appears.

Inside	a	function,	the	value	of	#function	is	the	name	of	that	function,	inside	a
method	it	is	the	name	of	that	method,	inside	a	property	getter	or	setter	it	is	the
name	of	that	property,	inside	special	members	like	init	or	subscript	it	is	the
name	of	that	keyword,	and	at	the	top	level	of	a	file	it	is	the	name	of	the	current
module.

When	used	as	the	default	value	of	a	function	or	method	parameter,	the	special
literal’s	value	is	determined	when	the	default	value	expression	is	evaluated	at	the
call	site.

1 func	logFunctionName(string:	String	=	#function)	{

2 				print(string)

3 }

4 func	myFunction()	{

5 				logFunctionName()	//	Prints	"myFunction()".

6 }

An	array	literal	is	an	ordered	collection	of	values.	It	has	the	following	form:

	 [value	1 ,	 value	2 ,	 ...]

The	last	expression	in	the	array	can	be	followed	by	an	optional	comma.	The
value	of	an	array	literal	has	type	[T],	where	T	is	the	type	of	the	expressions
inside	it.	If	there	are	expressions	of	multiple	types,	T	is	their	closest	common
supertype.	Empty	array	literals	are	written	using	an	empty	pair	of	square
brackets	and	can	be	used	to	create	an	empty	array	of	a	specified	type.

	 var	emptyArray:	[Double]	=	[]

A	dictionary	literal	is	an	unordered	collection	of	key-value	pairs.	It	has	the
following	form:

	 [key	1 :	 value	1 ,	 key	2 :	 value	2 ,	 ...]

The	last	expression	in	the	dictionary	can	be	followed	by	an	optional	comma.	The
value	of	a	dictionary	literal	has	type	[Key:	Value],	where	Key	is	the	type	of	its
key	expressions	and	Value	is	the	type	of	its	value	expressions.	If	there	are
expressions	of	multiple	types,	Key	and	Value	are	the	closest	common	supertype
for	their	respective	values.	An	empty	dictionary	literal	is	written	as	a	colon
inside	a	pair	of	brackets	([:])	to	distinguish	it	from	an	empty	array	literal.	You
can	use	an	empty	dictionary	literal	to	create	an	empty	dictionary	literal	of
specified	key	and	value	types.

	 var	emptyDictionary:	[String:	Double]	=	[:]

A	playground	literal	is	used	by	Xcode	to	create	an	interactive	representation	of	a
color,	file,	or	image	within	the	program	editor.	Playground	literals	in	plain	text
outside	of	Xcode	are	represented	using	a	special	literal	syntax.

For	information	on	using	playground	literals	in	Xcode,	see	Add	a	color,	file,	or
image	literal	in	Xcode	Help.

GRAMMAR 	OF 	A	 L I TERAL	EXPRESS ION

literal-expression 	→	 literal
literal-expression 	→	 array-literal 	|	 dictionary-literal 	|	 playground-literal
literal-expression 	→	 #file 	|	 #line 	|	 #column 	|	 #function 	|	 #dsohandle
array-literal 	→	 [array-literal-items 	opt]
array-literal-items 	→	 array-literal-item 	 ,opt 	|	 array-literal-item 	 , 	 array-literal-items
array-literal-item 	→	 expression
dictionary-literal 	→	 [dictionary-literal-items] 	|	 [:]
dictionary-literal-items 	→	 dictionary-literal-item 	 ,opt 	|	 dictionary-literal-item 	 , 	 dictionary-

literal-items
dictionary-literal-item 	→	 expression 	 : 	 expression
playground-literal 	→	 #colorLiteral 	 (red 	 : 	 expression 	 , 	 green 	 : 	 expression

, 	 blue 	 : 	 expression 	 , 	 alpha 	 : 	 expression)
playground-literal 	→	 #fileLiteral 	 (resourceName 	 : 	 expression)
playground-literal 	→	 #imageLiteral 	 (resourceName 	 : 	 expression)

Self	Expression

https://help.apple.com/xcode/mac/current/#/dev4c60242fc

The	self	expression	is	an	explicit	reference	to	the	current	type	or	instance	of	the
type	in	which	it	occurs.	It	has	the	following	forms:

	 self

	 self. member	name

	 self[subscript	index]

	 self(initializer	arguments)

	 self.init(initializer	arguments)

In	an	initializer,	subscript,	or	instance	method,	self	refers	to	the	current	instance
of	the	type	in	which	it	occurs.	In	a	type	method,	self	refers	to	the	current	type	in
which	it	occurs.

The	self	expression	is	used	to	specify	scope	when	accessing	members,
providing	disambiguation	when	there	is	another	variable	of	the	same	name	in
scope,	such	as	a	function	parameter.	For	example:

1 class	SomeClass	{

2 				var	greeting:	String

3 				init(greeting:	String)	{

4 								self.greeting	=	greeting

5 				}

6 }

In	a	mutating	method	of	a	value	type,	you	can	assign	a	new	instance	of	that
value	type	to	self.	For	example:

1 struct	Point	{

2 				var	x	=	0.0,	y	=	0.0

3 				mutating	func	moveBy(x	deltaX:	Double,	y	deltaY:	Double)	{

4 								self	=	Point(x:	x	+	deltaX,	y:	y	+	deltaY)

5 				}

6 }

GRAMMAR 	OF 	A	 SELF 	 EXPRESS ION

self-expression 	→	 self 	|	 self-method-expression 	|	 self-subscript-expression 	|	 self-
initializer-expression

self-method-expression 	→	 self 	 . 	 identifier
self-subscript-expression 	→	 self 	 [function-call-argument-list]
self-initializer-expression 	→	 self 	 . 	 init

Superclass	Expression
A	superclass	expression	lets	a	class	interact	with	its	superclass.	It	has	one	of	the
following	forms:

	 super. member	name

	 super[subscript	index]

	 super.init(initializer	arguments)

The	first	form	is	used	to	access	a	member	of	the	superclass.	The	second	form	is
used	to	access	the	superclass’s	subscript	implementation.	The	third	form	is	used
to	access	an	initializer	of	the	superclass.

Subclasses	can	use	a	superclass	expression	in	their	implementation	of	members,
subscripting,	and	initializers	to	make	use	of	the	implementation	in	their
superclass.

GRAMMAR 	OF 	A	 SUPERCLASS 	EXPRESS ION

superclass-expression 	→	 superclass-method-expression 	|	 superclass-subscript-
expression 	|	 superclass-initializer-expression

superclass-method-expression 	→	 super 	 . 	 identifier
superclass-subscript-expression 	→	 super 	 [function-call-argument-list]
superclass-initializer-expression 	→	 super 	 . 	 init

Closure	Expression
A	closure	expression	creates	a	closure,	also	known	as	a	lambda	or	an	anonymous
function	in	other	programming	languages.	Like	a	function	declaration,	a	closure
contains	statements,	and	it	captures	constants	and	variables	from	its	enclosing

scope.	It	has	the	following	form:

	 {	(parameters)	->	 return	type 	in

	 				 statements

	 }

The	parameters	have	the	same	form	as	the	parameters	in	a	function	declaration,
as	described	in	Function	Declaration.

There	are	several	special	forms	that	allow	closures	to	be	written	more	concisely:

A	closure	can	omit	the	types	of	its	parameters,	its	return	type,	or	both.	If
you	omit	the	parameter	names	and	both	types,	omit	the	in	keyword	before
the	statements.	If	the	omitted	types	can’t	be	inferred,	a	compile-time	error	is
raised.

A	closure	may	omit	names	for	its	parameters.	Its	parameters	are	then
implicitly	named	$	followed	by	their	position:	$0,	$1,	$2,	and	so	on.

A	closure	that	consists	of	only	a	single	expression	is	understood	to	return
the	value	of	that	expression.	The	contents	of	this	expression	are	also
considered	when	performing	type	inference	on	the	surrounding	expression.

The	following	closure	expressions	are	equivalent:

1 myFunction	{	(x:	Int,	y:	Int)	->	Int	in

2 				return	x	+	y

3 }

4

5 myFunction	{	x,	y	in

6 				return	x	+	y

7 }

8

9 myFunction	{	return	$0	+	$1	}

10

11 myFunction	{	$0	+	$1	}

For	information	about	passing	a	closure	as	an	argument	to	a	function,	see
Function	Call	Expression.

Closure	expressions	can	be	used	without	being	stored	in	a	variable	or	constant,
such	as	when	you	immediately	use	a	closure	as	part	of	a	function	call.	The
closure	expressions	passed	to	myFunction	in	code	above	are	examples	of	this
kind	of	immediate	use.	As	a	result,	whether	a	closure	expression	is	escaping	or
nonescaping	depends	on	the	surrounding	context	of	the	expression.	A	closure
expression	is	nonescaping	if	it	is	called	immediately	or	passed	as	a	nonescaping
function	argument.	Otherwise,	the	closure	expression	is	escaping.

For	more	information	about	escaping	closures,	see	Escaping	Closures.

Capture	Lists

By	default,	a	closure	expression	captures	constants	and	variables	from	its
surrounding	scope	with	strong	references	to	those	values.	You	can	use	a	capture
list	to	explicitly	control	how	values	are	captured	in	a	closure.

A	capture	list	is	written	as	a	comma-separated	list	of	expressions	surrounded	by
square	brackets,	before	the	list	of	parameters.	If	you	use	a	capture	list,	you	must
also	use	the	in	keyword,	even	if	you	omit	the	parameter	names,	parameter	types,
and	return	type.

The	entries	in	the	capture	list	are	initialized	when	the	closure	is	created.	For	each
entry	in	the	capture	list,	a	constant	is	initialized	to	the	value	of	the	constant	or
variable	that	has	the	same	name	in	the	surrounding	scope.	For	example	in	the
code	below,	a	is	included	in	the	capture	list	but	b	is	not,	which	gives	them
different	behavior.

1 var	a	=	0

2 var	b	=	0

3 let	closure	=	{	[a]	in

4 				print(a,	b)

5 }

6

7 a	=	10

8 b	=	10

9 closure()

10 //	Prints	"0	10"

There	are	two	different	things	named	a,	the	variable	in	the	surrounding	scope
and	the	constant	in	the	closure’s	scope,	but	only	one	variable	named	b.	The	a	in
the	inner	scope	is	initialized	with	the	value	of	the	a	in	the	outer	scope	when	the
closure	is	created,	but	their	values	are	not	connected	in	any	special	way.	This
means	that	a	change	to	the	value	of	a	in	the	outer	scope	does	not	affect	the	value
of	a	in	the	inner	scope,	nor	does	a	change	to	a	inside	the	closure	affect	the	value
of	a	outside	the	closure.	In	contrast,	there	is	only	one	variable	named	b—the	b	in
the	outer	scope—so	changes	from	inside	or	outside	the	closure	are	visible	in
both	places.

This	distinction	is	not	visible	when	the	captured	variable’s	type	has	reference
semantics.	For	example,	there	are	two	things	named	x	in	the	code	below,	a
variable	in	the	outer	scope	and	a	constant	in	the	inner	scope,	but	they	both	refer
to	the	same	object	because	of	reference	semantics.

1 class	SimpleClass	{

2 				var	value:	Int	=	0

3 }

4 var	x	=	SimpleClass()

5 var	y	=	SimpleClass()

6 let	closure	=	{	[x]	in

7 				print(x.value,	y.value)

8 }

9

10 x.value	=	10

11 y.value	=	10

12 closure()

13 //	Prints	"10	10"

If	the	type	of	the	expression’s	value	is	a	class,	you	can	mark	the	expression	in	a
capture	list	with	weak	or	unowned	to	capture	a	weak	or	unowned	reference	to	the
expression’s	value.

1 myFunction	{	print(self.title)	}																				//	implicit	

strong	capture

2 myFunction	{	[self]	in	print(self.title)	}										//	explicit	

strong	capture

3 myFunction	{	[weak	self]	in	print(self!.title)	}				//	weak	

capture

4 myFunction	{	[unowned	self]	in	print(self.title)	}		//	unowned	

capture

You	can	also	bind	an	arbitrary	expression	to	a	named	value	in	a	capture	list.	The
expression	is	evaluated	when	the	closure	is	created,	and	the	value	is	captured
with	the	specified	strength.	For	example:

1 //	Weak	capture	of	"self.parent"	as	"parent"

2 myFunction	{	[weak	parent	=	self.parent]	in	

print(parent!.title)	}

For	more	information	and	examples	of	closure	expressions,	see	Closure
Expressions.	For	more	information	and	examples	of	capture	lists,	see	Resolving
Strong	Reference	Cycles	for	Closures.

GRAMMAR 	OF 	A	CLOSURE 	EXPRESS ION

closure-expression 	→	 { 	 closure-signature 	opt 	 statements 	opt 	 }
closure-signature 	→	 capture-list 	opt 	 closure-parameter-clause 	 throwsopt 	 function-

result 	opt 	 in
closure-signature 	→	 capture-list 	 in
closure-parameter-clause 	→	 () 	|	 (closure-parameter-list) 	|	 identifier-list
closure-parameter-list 	→	 closure-parameter 	|	 closure-parameter 	 , 	 closure-parameter-

list
closure-parameter 	→	 closure-parameter-name 	 type-annotation 	opt
closure-parameter 	→	 closure-parameter-name 	 type-annotation 	 ...
closure-parameter-name 	→	 identifier
capture-list 	→	 [capture-list-items]
capture-list-items 	→	 capture-list-item 	|	 capture-list-item 	 , 	 capture-list-items
capture-list-item 	→	 capture-specifier 	opt 	 expression
capture-specifier 	→	 weak 	|	 unowned 	|	 unowned(safe) 	|	 unowned(unsafe)

Implicit	Member	Expression
An	implicit	member	expression	is	an	abbreviated	way	to	access	a	member	of	a
type,	such	as	an	enumeration	case	or	a	type	method,	in	a	context	where	type
inference	can	determine	the	implied	type.	It	has	the	following	form:

	 . member	name

For	example:

1 var	x	=	MyEnumeration.someValue

2 x	=	.anotherValue

GRAMMAR 	OF 	A	 IMPL IC I T 	MEMBER 	EXPRESS ION

implicit-member-expression 	→	 . 	 identifier

Parenthesized	Expression
A	parenthesized	expression	consists	of	an	expression	surrounded	by	parentheses.
You	can	use	parentheses	to	specify	the	precedence	of	operations	by	explicitly
grouping	expressions.	Grouping	parentheses	don’t	change	an	expression’s	type
—for	example,	the	type	of	(1)	is	simply	Int.

GRAMMAR 	OF 	A	 PARENTHES I ZED 	EXPRESS ION

parenthesized-expression 	→	 (expression)

Tuple	Expression
A	tuple	expression	consists	of	a	comma-separated	list	of	expressions	surrounded
by	parentheses.	Each	expression	can	have	an	optional	identifier	before	it,
separated	by	a	colon	(:).	It	has	the	following	form:

	 (identifier	1 :	 expression	1 ,	 identifier	2 :	 expression	2 ,	

...)

Each	identifier	in	a	tuple	expression	must	be	unique	within	the	scope	of	the	tuple
expression.	In	a	nested	tuple	expression,	identifiers	at	the	same	level	of	nesting
must	be	unique.	For	example,	(a:	10,	a:	20)	is	invalid	because	the	label	a
appears	twice	at	the	same	level.	However,	(a:	10,	b:	(a:	1,	x:	2))	is	valid—
although	a	appears	twice,	it	appears	once	in	the	outer	tuple	and	once	in	the	inner
tuple.

A	tuple	expression	can	contain	zero	expressions,	or	it	can	contain	two	or	more
expressions.	A	single	expression	inside	parentheses	is	a	parenthesized
expression.

NOTE

Both	an	empty	tuple	expression	and	an	empty	tuple	type	are	written	()	in	Swift.	Because	Void	is	a
type	alias	for	(),	you	can	use	it	to	write	an	empty	tuple	type.	However,	like	all	type	aliases,	Void	is
always	a	type—you	can’t	use	it	to	write	an	empty	tuple	expression.

GRAMMAR 	OF 	A	TUPLE 	EXPRESS ION

tuple-expression 	→	 () 	|	 (tuple-element 	 , 	 tuple-element-list)
tuple-element-list 	→	 tuple-element 	|	 tuple-element 	 , 	 tuple-element-list
tuple-element 	→	 expression 	|	 identifier 	 : 	 expression

Wildcard	Expression
A	wildcard	expression	is	used	to	explicitly	ignore	a	value	during	an	assignment.
For	example,	in	the	following	assignment	10	is	assigned	to	x	and	20	is	ignored:

1 (x,	_)	=	(10,	20)

2 //	x	is	10,	and	20	is	ignored

GRAMMAR 	OF 	A	W I LDCARD 	EXPRESS ION

wildcard-expression 	→	 _

Key-Path	Expression
A	key-path	expression	refers	to	a	property	or	subscript	of	a	type.	You	use	key-
path	expressions	in	dynamic	programming	tasks,	such	as	key-value	observing.
They	have	the	following	form:

	 \ type	name . path

The	type	name	is	the	name	of	a	concrete	type,	including	any	generic	parameters,
such	as	String,	[Int],	or	Set<Int>.

The	path	consists	of	property	names,	subscripts,	optional-chaining	expressions,
and	forced	unwrapping	expressions.	Each	of	these	key-path	components	can	be
repeated	as	many	times	as	needed,	in	any	order.

At	compile	time,	a	key-path	expression	is	replaced	by	an	instance	of	the	KeyPath
class.

To	access	a	value	using	a	key	path,	pass	the	key	path	to	the	subscript(keyPath:)
subscript,	which	is	available	on	all	types.	For	example:

1 struct	SomeStructure	{

2 				var	someValue:	Int

3 }

4

5 let	s	=	SomeStructure(someValue:	12)

6 let	pathToProperty	=	\SomeStructure.someValue

7

8 let	value	=	s[keyPath:	pathToProperty]

https://developer.apple.com/documentation/swift/keypath

9 //	value	is	12

The	type	name	can	be	omitted	in	contexts	where	type	inference	can	determine
the	implied	type.	The	following	code	uses	\.someProperty	instead	of
\SomeClass.someProperty:

1 class	SomeClass:	NSObject	{

2 				@objc	var	someProperty:	Int

3 				init(someProperty:	Int)	{

4 								self.someProperty	=	someProperty

5 				}

6 }

7

8 let	c	=	SomeClass(someProperty:	10)

9 c.observe(\.someProperty)	{	object,	change	in

10 				//	...

11 }

The	path	can	refer	to	self	to	create	the	identity	key	path	(\.self).	The	identity
key	path	refers	to	a	whole	instance,	so	you	can	use	it	to	access	and	change	all	of
the	data	stored	in	a	variable	in	a	single	step.	For	example:

1 var	compoundValue	=	(a:	1,	b:	2)

2 //	Equivalent	to	compoundValue	=	(a:	10,	b:	20)

3 compoundValue[keyPath:	\.self]	=	(a:	10,	b:	20)

The	path	can	contain	multiple	property	names,	separated	by	periods,	to	refer	to	a
property	of	a	property’s	value.	This	code	uses	the	key	path	expression
\OuterStructure.outer.someValue	to	access	the	someValue	property	of	the
OuterStructure	type’s	outer	property:

1 struct	OuterStructure	{

2 				var	outer:	SomeStructure

3 				init(someValue:	Int)	{

4 								self.outer	=	SomeStructure(someValue:	someValue)

5 				}

6 }

7

8 let	nested	=	OuterStructure(someValue:	24)

9 let	nestedKeyPath	=	\OuterStructure.outer.someValue

10

11 let	nestedValue	=	nested[keyPath:	nestedKeyPath]

12 //	nestedValue	is	24

The	path	can	include	subscripts	using	brackets,	as	long	as	the	subscript’s
parameter	type	conforms	to	the	Hashable	protocol.	This	example	uses	a	subscript
in	a	key	path	to	access	the	second	element	of	an	array:

1 let	greetings	=	["hello",	"hola",	"bonjour",	""]

2 let	myGreeting	=	greetings[keyPath:	\[String].[1]]

3 //	myGreeting	is	'hola'

The	value	used	in	a	subscript	can	be	a	named	value	or	a	literal.	Values	are
captured	in	key	paths	using	value	semantics.	The	following	code	uses	the
variable	index	in	both	a	key-path	expression	and	in	a	closure	to	access	the	third
element	of	the	greetings	array.	When	index	is	modified,	the	key-path	expression
still	references	the	third	element,	while	the	closure	uses	the	new	index.

1 var	index	=	2

2 let	path	=	\[String].[index]

3 let	fn:	([String])	->	String	=	{	strings	in	strings[index]	}

4

5 print(greetings[keyPath:	path])

6 //	Prints	"bonjour"

7 print(fn(greetings))

8 //	Prints	"bonjour"

9

10 //	Setting	'index'	to	a	new	value	doesn't	affect	'path'

11 index	+=	1

12 print(greetings[keyPath:	path])

13 //	Prints	"bonjour"

14

15 //	Because	'fn'	closes	over	'index',	it	uses	the	new	value

16 print(fn(greetings))

17 //	Prints	""

The	path	can	use	optional	chaining	and	forced	unwrapping.	This	code	uses
optional	chaining	in	a	key	path	to	access	a	property	of	an	optional	string:

1 let	firstGreeting:	String?	=	greetings.first

2 print(firstGreeting?.count	as	Any)

3 //	Prints	"Optional(5)"

4

5 //	Do	the	same	thing	using	a	key	path.

6 let	count	=	greetings[keyPath:	\[String].first?.count]

7 print(count	as	Any)

8 //	Prints	"Optional(5)"

You	can	mix	and	match	components	of	key	paths	to	access	values	that	are	deeply
nested	within	a	type.	The	following	code	accesses	different	values	and	properties
of	a	dictionary	of	arrays	by	using	key-path	expressions	that	combine	these
components.

1 let	interestingNumbers	=	["prime":	[2,	3,	5,	7,	11,	13,	17],

2 																										"triangular":	[1,	3,	6,	10,	15,	21,	

28],

3 																										"hexagonal":	[1,	6,	15,	28,	45,	66,	

91]]

4 print(interestingNumbers[keyPath:	\[String:	[Int]].["prime"]]	

as	Any)

5 //	Prints	"Optional([2,	3,	5,	7,	11,	13,	17])"

6 print(interestingNumbers[keyPath:	\[String:	[Int]].["prime"]!

[0]])

7 //	Prints	"2"

8 print(interestingNumbers[keyPath:	\[String:	[Int]].

["hexagonal"]!.count])

9 //	Prints	"7"

10 print(interestingNumbers[keyPath:	\[String:	[Int]].

["hexagonal"]!.count.bitWidth])

11 //	Prints	"64"

For	more	information	about	using	key	paths	in	code	that	interacts	with
Objective-C	APIs,	see	Using	Objective-C	Runtime	Features	in	Swift.	For
information	about	key-value	coding	and	key-value	observing,	see	Key-Value
Coding	Programming	Guide	and	Key-Value	Observing	Programming	Guide.

GRAMMAR 	OF 	A	 KEY-PATH 	EXPRESS ION

key-path-expression 	→	 \ 	 type 	opt 	 . 	 key-path-components
key-path-components 	→	 key-path-component 	|	 key-path-component 	 . 	 key-path-

components
key-path-component 	→	 identifier 	 key-path-postfixes 	opt 	|	 key-path-postfixes
key-path-postfixes 	→	 key-path-postfix 	 key-path-postfixes 	opt
key-path-postfix 	→	 ? 	|	 ! 	|	 self 	|	 [function-call-argument-list]

Selector	Expression
A	selector	expression	lets	you	access	the	selector	used	to	refer	to	a	method	or	to
a	property’s	getter	or	setter	in	Objective-C.	It	has	the	following	form:

	 #selector(method	name)

https://developer.apple.com/documentation/swift/using_objective_c_runtime_features_in_swift
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueCoding/index.html#//apple_ref/doc/uid/10000107i
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueObserving/KeyValueObserving.html#//apple_ref/doc/uid/10000177i

	 #selector(getter:	 property	name)

	 #selector(setter:	 property	name)

The	method	name	and	property	name	must	be	a	reference	to	a	method	or	a
property	that	is	available	in	the	Objective-C	runtime.	The	value	of	a	selector
expression	is	an	instance	of	the	Selector	type.	For	example:

1 class	SomeClass:	NSObject	{

2 				@objc	let	property:	String

3 				@objc(doSomethingWithInt:)

4 				func	doSomething(_	x:	Int)	{}

5

6 				init(property:	String)	{

7 								self.property	=	property

8 				}

9 }

10 let	selectorForMethod	=	#selector(SomeClass.doSomething(_:))

11 let	selectorForPropertyGetter	=	#selector(getter:	

SomeClass.property)

When	creating	a	selector	for	a	property’s	getter,	the	property	name	can	be	a
reference	to	a	variable	or	constant	property.	In	contrast,	when	creating	a	selector
for	a	property’s	setter,	the	property	name	must	be	a	reference	to	a	variable
property	only.

The	method	name	can	contain	parentheses	for	grouping,	as	well	the	as	operator
to	disambiguate	between	methods	that	share	a	name	but	have	different	type
signatures.	For	example:

1 extension	SomeClass	{

2 				@objc(doSomethingWithString:)

3 				func	doSomething(_	x:	String)	{	}

4 }

5 let	anotherSelector	=	#selector(SomeClass.doSomething(_:)	as	

(SomeClass)	->	(String)	->	Void)

Because	a	selector	is	created	at	compile	time,	not	at	runtime,	the	compiler	can
check	that	a	method	or	property	exists	and	that	they’re	exposed	to	the	Objective-
C	runtime.

NOTE

Although	the	method	name	and	the	property	name	are	expressions,	they’re	never	evaluated.

For	more	information	about	using	selectors	in	Swift	code	that	interacts	with
Objective-C	APIs,	see	Using	Objective-C	Runtime	Features	in	Swift.

GRAMMAR 	OF 	A	 SELECTOR 	EXPRESS ION

selector-expression 	→	 #selector 	 (expression)
selector-expression 	→	 #selector 	 (getter: 	 expression)
selector-expression 	→	 #selector 	 (setter: 	 expression)

Key-Path	String	Expression
A	key-path	string	expression	lets	you	access	the	string	used	to	refer	to	a	property
in	Objective-C,	for	use	in	key-value	coding	and	key-value	observing	APIs.	It	has
the	following	form:

	 #keyPath(property	name)

The	property	name	must	be	a	reference	to	a	property	that	is	available	in	the
Objective-C	runtime.	At	compile	time,	the	key-path	string	expression	is	replaced
by	a	string	literal.	For	example:

1 class	SomeClass:	NSObject	{

2 				@objc	var	someProperty:	Int

3 				init(someProperty:	Int)	{

4 								self.someProperty	=	someProperty

https://developer.apple.com/documentation/swift/using_objective_c_runtime_features_in_swift

5 				}

6 }

7

8 let	c	=	SomeClass(someProperty:	12)

9 let	keyPath	=	#keyPath(SomeClass.someProperty)

10

11 if	let	value	=	c.value(forKey:	keyPath)	{

12 				print(value)

13 }

14 //	Prints	"12"

When	you	use	a	key-path	string	expression	within	a	class,	you	can	refer	to	a
property	of	that	class	by	writing	just	the	property	name,	without	the	class	name.

1 extension	SomeClass	{

2 				func	getSomeKeyPath()	->	String	{

3 								return	#keyPath(someProperty)

4 				}

5 }

6 print(keyPath	==	c.getSomeKeyPath())

7 //	Prints	"true"

Because	the	key	path	string	is	created	at	compile	time,	not	at	runtime,	the
compiler	can	check	that	the	property	exists	and	that	the	property	is	exposed	to
the	Objective-C	runtime.

For	more	information	about	using	key	paths	in	Swift	code	that	interacts	with
Objective-C	APIs,	see	Using	Objective-C	Runtime	Features	in	Swift.	For
information	about	key-value	coding	and	key-value	observing,	see	Key-Value
Coding	Programming	Guide	and	Key-Value	Observing	Programming	Guide.

NOTE

Although	the	property	name	is	an	expression,	it	is	never	evaluated.

https://developer.apple.com/documentation/swift/using_objective_c_runtime_features_in_swift
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueCoding/index.html#//apple_ref/doc/uid/10000107i
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueObserving/KeyValueObserving.html#//apple_ref/doc/uid/10000177i

GRAMMAR 	OF 	A	 KEY-PATH 	STR ING 	EXPRESS ION

key-path-string-expression 	→	 #keyPath 	 (expression)

Postfix	Expressions

Postfix	expressions	are	formed	by	applying	a	postfix	operator	or	other	postfix
syntax	to	an	expression.	Syntactically,	every	primary	expression	is	also	a	postfix
expression.

For	information	about	the	behavior	of	these	operators,	see	Basic	Operators	and
Advanced	Operators.

For	information	about	the	operators	provided	by	the	Swift	standard	library,	see
Operator	Declarations.

GRAMMAR 	OF 	A	 POSTF IX 	 EXPRESS ION

postfix-expression 	→	 primary-expression
postfix-expression 	→	 postfix-expression 	 postfix-operator
postfix-expression 	→	 function-call-expression
postfix-expression 	→	 initializer-expression
postfix-expression 	→	 explicit-member-expression
postfix-expression 	→	 postfix-self-expression
postfix-expression 	→	 subscript-expression
postfix-expression 	→	 forced-value-expression
postfix-expression 	→	 optional-chaining-expression

Function	Call	Expression
A	function	call	expression	consists	of	a	function	name	followed	by	a	comma-
separated	list	of	the	function’s	arguments	in	parentheses.	Function	call
expressions	have	the	following	form:

	 function	name (argument	value	1 ,	 argument	value	2)

The	function	name	can	be	any	expression	whose	value	is	of	a	function	type.

https://developer.apple.com/documentation/swift/operator_declarations

If	the	function	definition	includes	names	for	its	parameters,	the	function	call
must	include	names	before	its	argument	values	separated	by	a	colon	(:).	This
kind	of	function	call	expression	has	the	following	form:

	 function	name (argument	name	1 :	 argument	value	1 ,

	 argument	name	2 :	 argument	value	2)

A	function	call	expression	can	include	a	trailing	closure	in	the	form	of	a	closure
expression	immediately	after	the	closing	parenthesis.	The	trailing	closure	is
understood	as	an	argument	to	the	function,	added	after	the	last	parenthesized
argument.	The	following	function	calls	are	equivalent:

1 //	someFunction	takes	an	integer	and	a	closure	as	its	arguments

2 someFunction(x:	x,	f:	{$0	==	13})

3 someFunction(x:	x)	{$0	==	13}

If	the	trailing	closure	is	the	function’s	only	argument,	the	parentheses	can	be
omitted.

1 //	someMethod	takes	a	closure	as	its	only	argument

2 myData.someMethod()	{$0	==	13}

3 myData.someMethod	{$0	==	13}

GRAMMAR 	OF 	A	 FUNCT ION 	CALL 	 EXPRESS ION

function-call-expression 	→	 postfix-expression 	 function-call-argument-clause
function-call-expression 	→	 postfix-expression 	 function-call-argument-clause 	opt 	 trailing-

closure
function-call-argument-clause 	→	 () 	|	 (function-call-argument-list)
function-call-argument-list 	→	 function-call-argument 	|	 function-call-argument 	 , 	 function-

call-argument-list
function-call-argument 	→	 expression 	|	 identifier 	 : 	 expression
function-call-argument 	→	 operator 	|	 identifier 	 : 	 operator
trailing-closure 	→	 closure-expression

Initializer	Expression

An	initializer	expression	provides	access	to	a	type’s	initializer.	It	has	the
following	form:

	 expression .init(initializer	arguments)

You	use	the	initializer	expression	in	a	function	call	expression	to	initialize	a	new
instance	of	a	type.	You	also	use	an	initializer	expression	to	delegate	to	the
initializer	of	a	superclass.

1 class	SomeSubClass:	SomeSuperClass	{

2 				override	init()	{

3 								//	subclass	initialization	goes	here

4 								super.init()

5 				}

6 }

Like	a	function,	an	initializer	can	be	used	as	a	value.	For	example:

1 //	Type	annotation	is	required	because	String	has	multiple	

initializers.

2 let	initializer:	(Int)	->	String	=	String.init

3 let	oneTwoThree	=	[1,	2,	3].map(initializer).reduce("",	+)

4 print(oneTwoThree)

5 //	Prints	"123"

If	you	specify	a	type	by	name,	you	can	access	the	type’s	initializer	without	using
an	initializer	expression.	In	all	other	cases,	you	must	use	an	initializer
expression.

1 let	s1	=	SomeType.init(data:	3)		//	Valid

2 let	s2	=	SomeType(data:	1)							//	Also	valid

3

4 let	s3	=	type(of:	someValue).init(data:	7)		//	Valid

5 let	s4	=	type(of:	someValue)(data:	5)							//	Error

GRAMMAR 	OF 	AN 	 I N I T I A L I ZER 	EXPRESS ION

initializer-expression 	→	 postfix-expression 	 . 	 init
initializer-expression 	→	 postfix-expression 	 . 	 init 	 (argument-names)

Explicit	Member	Expression
An	explicit	member	expression	allows	access	to	the	members	of	a	named	type,	a
tuple,	or	a	module.	It	consists	of	a	period	(.)	between	the	item	and	the	identifier
of	its	member.

	 expression . member	name

The	members	of	a	named	type	are	named	as	part	of	the	type’s	declaration	or
extension.	For	example:

1 class	SomeClass	{

2 				var	someProperty	=	42

3 }

4 let	c	=	SomeClass()

5 let	y	=	c.someProperty		//	Member	access

The	members	of	a	tuple	are	implicitly	named	using	integers	in	the	order	they
appear,	starting	from	zero.	For	example:

1 var	t	=	(10,	20,	30)

2 t.0	=	t.1

3 //	Now	t	is	(20,	20,	30)

The	members	of	a	module	access	the	top-level	declarations	of	that	module.

Types	declared	with	the	dynamicMemberLookup	attribute	include	members	that	are
looked	up	at	runtime,	as	described	in	Attributes.

To	distinguish	between	methods	or	initializers	whose	names	differ	only	by	the
names	of	their	arguments,	include	the	argument	names	in	parentheses,	with	each
argument	name	followed	by	a	colon	(:).	Write	an	underscore	(_)	for	an	argument
with	no	name.	To	distinguish	between	overloaded	methods,	use	a	type
annotation.	For	example:

1 class	SomeClass	{

2 				func	someMethod(x:	Int,	y:	Int)	{}

3 				func	someMethod(x:	Int,	z:	Int)	{}

4 				func	overloadedMethod(x:	Int,	y:	Int)	{}

5 				func	overloadedMethod(x:	Int,	y:	Bool)	{}

6 }

7 let	instance	=	SomeClass()

8

9 let	a	=	instance.someMethod														//	Ambiguous

10 let	b	=	instance.someMethod(x:y:)								//	Unambiguous

11

12 let	d	=	instance.overloadedMethod								//	Ambiguous

13 let	d	=	instance.overloadedMethod(x:y:)		//	Still	ambiguous

14 let	d:	(Int,	Bool)	->	Void		=	instance.overloadedMethod(x:y:)		

//	Unambiguous

If	a	period	appears	at	the	beginning	of	a	line,	it	is	understood	as	part	of	an
explicit	member	expression,	not	as	an	implicit	member	expression.	For	example,
the	following	listing	shows	chained	method	calls	split	over	several	lines:

1 let	x	=	[10,	3,	20,	15,	4]

2 				.sorted()

3 				.filter	{	$0	>	5	}

4 				.map	{	$0	*	100	}

GRAMMAR 	OF 	AN 	EXPL IC I T 	MEMBER 	EXPRESS ION

explicit-member-expression 	→	 postfix-expression 	 . 	 decimal-digits
explicit-member-expression 	→	 postfix-expression 	 . 	 identifier 	 generic-argument-clause

opt
explicit-member-expression 	→	 postfix-expression 	 . 	 identifier 	 (argument-names)
argument-names 	→	 argument-name 	 argument-names 	opt
argument-name 	→	 identifier 	 :

Postfix	Self	Expression
A	postfix	self	expression	consists	of	an	expression	or	the	name	of	a	type,
immediately	followed	by	.self.	It	has	the	following	forms:

	 expression .self

	 type .self

The	first	form	evaluates	to	the	value	of	the	expression.	For	example,	x.self
evaluates	to	x.

The	second	form	evaluates	to	the	value	of	the	type.	Use	this	form	to	access	a
type	as	a	value.	For	example,	because	SomeClass.self	evaluates	to	the	SomeClass
type	itself,	you	can	pass	it	to	a	function	or	method	that	accepts	a	type-level
argument.

GRAMMAR 	OF 	A	 POSTF IX 	 SELF 	 EXPRESS ION

postfix-self-expression 	→	 postfix-expression 	 . 	 self

Subscript	Expression
A	subscript	expression	provides	subscript	access	using	the	getter	and	setter	of
the	corresponding	subscript	declaration.	It	has	the	following	form:

	 expression [index	expressions]

To	evaluate	the	value	of	a	subscript	expression,	the	subscript	getter	for	the
expression’s	type	is	called	with	the	index	expressions	passed	as	the	subscript
parameters.	To	set	its	value,	the	subscript	setter	is	called	in	the	same	way.

For	information	about	subscript	declarations,	see	Protocol	Subscript	Declaration.

GRAMMAR 	OF 	A	 SUBSCR IPT 	 EXPRESS ION

subscript-expression 	→	 postfix-expression 	 [function-call-argument-list]

Forced-Value	Expression
A	forced-value	expression	unwraps	an	optional	value	that	you	are	certain	is	not
nil.	It	has	the	following	form:

	 expression !

If	the	value	of	the	expression	is	not	nil,	the	optional	value	is	unwrapped	and
returned	with	the	corresponding	non-optional	type.	Otherwise,	a	runtime	error	is
raised.

The	unwrapped	value	of	a	forced-value	expression	can	be	modified,	either	by
mutating	the	value	itself,	or	by	assigning	to	one	of	the	value’s	members.	For
example:

1 var	x:	Int?	=	0

2 x!	+=	1

3 //	x	is	now	1

4

5 var	someDictionary	=	["a":	[1,	2,	3],	"b":	[10,	20]]

6 someDictionary["a"]![0]	=	100

7 //	someDictionary	is	now	["a":	[100,	2,	3],	"b":	[10,	20]]

GRAMMAR 	OF 	A	 FORCED -VALUE 	EXPRESS ION

forced-value-expression 	→	 postfix-expression 	 !

Optional-Chaining	Expression

An	optional-chaining	expression	provides	a	simplified	syntax	for	using	optional
values	in	postfix	expressions.	It	has	the	following	form:

	 expression ?

The	postfix	?	operator	makes	an	optional-chaining	expression	from	an
expression	without	changing	the	expression’s	value.

Optional-chaining	expressions	must	appear	within	a	postfix	expression,	and	they
cause	the	postfix	expression	to	be	evaluated	in	a	special	way.	If	the	value	of	the
optional-chaining	expression	is	nil,	all	of	the	other	operations	in	the	postfix
expression	are	ignored	and	the	entire	postfix	expression	evaluates	to	nil.	If	the
value	of	the	optional-chaining	expression	is	not	nil,	the	value	of	the	optional-
chaining	expression	is	unwrapped	and	used	to	evaluate	the	rest	of	the	postfix
expression.	In	either	case,	the	value	of	the	postfix	expression	is	still	of	an
optional	type.

If	a	postfix	expression	that	contains	an	optional-chaining	expression	is	nested
inside	other	postfix	expressions,	only	the	outermost	expression	returns	an
optional	type.	In	the	example	below,	when	c	is	not	nil,	its	value	is	unwrapped
and	used	to	evaluate	.property,	the	value	of	which	is	used	to	evaluate
.performAction().	The	entire	expression	c?.property.performAction()	has	a
value	of	an	optional	type.

1 var	c:	SomeClass?

2 var	result:	Bool?	=	c?.property.performAction()

The	following	example	shows	the	behavior	of	the	example	above	without	using
optional	chaining.

1 var	result:	Bool?

2 if	let	unwrappedC	=	c	{

3 				result	=	unwrappedC.property.performAction()

4 }

The	unwrapped	value	of	an	optional-chaining	expression	can	be	modified,	either

by	mutating	the	value	itself,	or	by	assigning	to	one	of	the	value’s	members.	If	the
value	of	the	optional-chaining	expression	is	nil,	the	expression	on	the	right-hand
side	of	the	assignment	operator	is	not	evaluated.	For	example:

1 func	someFunctionWithSideEffects()	->	Int	{

2 				return	42		//	No	actual	side	effects.

3 }

4 var	someDictionary	=	["a":	[1,	2,	3],	"b":	[10,	20]]

5

6 someDictionary["not	here"]?[0]	=	someFunctionWithSideEffects()

7 //	someFunctionWithSideEffects	is	not	evaluated

8 //	someDictionary	is	still	["a":	[1,	2,	3],	"b":	[10,	20]]

9

10 someDictionary["a"]?[0]	=	someFunctionWithSideEffects()

11 //	someFunctionWithSideEffects	is	evaluated	and	returns	42

12 //	someDictionary	is	now	["a":	[42,	2,	3],	"b":	[10,	20]]

GRAMMAR 	OF 	AN 	OPT IONAL -CHA IN ING 	EXPRESS ION

optional-chaining-expression 	→	 postfix-expression 	 ?

Statements

In	Swift,	there	are	three	kinds	of	statements:	simple	statements,	compiler	control
statements,	and	control	flow	statements.	Simple	statements	are	the	most	common
and	consist	of	either	an	expression	or	a	declaration.	Compiler	control	statements
allow	the	program	to	change	aspects	of	the	compiler’s	behavior	and	include	a
conditional	compilation	block	and	a	line	control	statement.

Control	flow	statements	are	used	to	control	the	flow	of	execution	in	a	program.
There	are	several	types	of	control	flow	statements	in	Swift,	including	loop
statements,	branch	statements,	and	control	transfer	statements.	Loop	statements
allow	a	block	of	code	to	be	executed	repeatedly,	branch	statements	allow	a
certain	block	of	code	to	be	executed	only	when	certain	conditions	are	met,	and
control	transfer	statements	provide	a	way	to	alter	the	order	in	which	code	is
executed.	In	addition,	Swift	provides	a	do	statement	to	introduce	scope,	and
catch	and	handle	errors,	and	a	defer	statement	for	running	cleanup	actions	just
before	the	current	scope	exits.

A	semicolon	(;)	can	optionally	appear	after	any	statement	and	is	used	to	separate
multiple	statements	if	they	appear	on	the	same	line.

GRAMMAR 	OF 	A	 STATEMENT

statement 	→	 expression 	 ;opt
statement 	→	 declaration 	 ;opt
statement 	→	 loop-statement 	 ;opt
statement 	→	 branch-statement 	 ;opt
statement 	→	 labeled-statement 	 ;opt
statement 	→	 control-transfer-statement 	 ;opt
statement 	→	 defer-statement 	 ;opt
statement 	→	 do-statement 	 ;opt
statement 	→	 compiler-control-statement
statements 	→	 statement 	 statements 	opt

Loop	Statements

Loop	statements	allow	a	block	of	code	to	be	executed	repeatedly,	depending	on
the	conditions	specified	in	the	loop.	Swift	has	three	loop	statements:	a	for-in
statement,	a	while	statement,	and	a	repeat-while	statement.

Control	flow	in	a	loop	statement	can	be	changed	by	a	break	statement	and	a
continue	statement	and	is	discussed	in	Break	Statement	and	Continue	Statement
below.

GRAMMAR 	OF 	A	 LOOP 	STATEMENT

loop-statement 	→	 for-in-statement
loop-statement 	→	 while-statement
loop-statement 	→	 repeat-while-statement

For-In	Statement
A	for-in	statement	allows	a	block	of	code	to	be	executed	once	for	each	item	in	a
collection	(or	any	type)	that	conforms	to	the	Sequence	protocol.

A	for-in	statement	has	the	following	form:

	 for	 item 	in	 collection 	{

	 				 statements

	 }

The	makeIterator()	method	is	called	on	the	collection	expression	to	obtain	a
value	of	an	iterator	type—that	is,	a	type	that	conforms	to	the	IteratorProtocol
protocol.	The	program	begins	executing	a	loop	by	calling	the	next()	method	on
the	iterator.	If	the	value	returned	is	not	nil,	it	is	assigned	to	the	item	pattern,	the
program	executes	the	statements,	and	then	continues	execution	at	the	beginning
of	the	loop.	Otherwise,	the	program	does	not	perform	assignment	or	execute	the
statements,	and	it	is	finished	executing	the	for-in	statement.

GRAMMAR 	OF 	A	 FOR - IN 	 STATEMENT

for-in-statement 	→	 for 	 caseopt 	 pattern 	 in 	 expression 	where-clause 	opt 	 code-block

https://developer.apple.com/documentation/swift/sequence
https://developer.apple.com/documentation/swift/iteratorprotocol

While	Statement
A	while	statement	allows	a	block	of	code	to	be	executed	repeatedly,	as	long	as	a
condition	remains	true.

A	while	statement	has	the	following	form:

	 while	 condition 	{

	 				 statements

	 }

A	while	statement	is	executed	as	follows:

1.	 The	condition	is	evaluated.

If	true,	execution	continues	to	step	2.	If	false,	the	program	is	finished
executing	the	while	statement.

2.	 The	program	executes	the	statements,	and	execution	returns	to	step	1.

Because	the	value	of	the	condition	is	evaluated	before	the	statements	are
executed,	the	statements	in	a	while	statement	can	be	executed	zero	or	more
times.

The	value	of	the	condition	must	be	of	type	Bool	or	a	type	bridged	to	Bool.	The
condition	can	also	be	an	optional	binding	declaration,	as	discussed	in	Optional
Binding.

GRAMMAR 	OF 	A	WH I LE 	 STATEMENT

while-statement 	→	 while 	 condition-list 	 code-block
condition-list 	→	 condition 	|	 condition 	 , 	 condition-list
condition 	→	 expression 	|	 availability-condition 	|	 case-condition 	|	 optional-binding-

condition
case-condition 	→	 case 	 pattern 	 initializer
optional-binding-condition 	→	 let 	 pattern 	 initializer 	|	 var 	 pattern 	 initializer

Repeat-While	Statement

A	repeat-while	statement	allows	a	block	of	code	to	be	executed	one	or	more
times,	as	long	as	a	condition	remains	true.

A	repeat-while	statement	has	the	following	form:

	 repeat	{

	 				 statements

	 }	while	 condition

A	repeat-while	statement	is	executed	as	follows:

1.	 The	program	executes	the	statements,	and	execution	continues	to	step	2.

2.	 The	condition	is	evaluated.

If	true,	execution	returns	to	step	1.	If	false,	the	program	is	finished
executing	the	repeat-while	statement.

Because	the	value	of	the	condition	is	evaluated	after	the	statements	are	executed,
the	statements	in	a	repeat-while	statement	are	executed	at	least	once.

The	value	of	the	condition	must	be	of	type	Bool	or	a	type	bridged	to	Bool.	The
condition	can	also	be	an	optional	binding	declaration,	as	discussed	in	Optional
Binding.

GRAMMAR 	OF 	A	REPEAT-WH I LE 	 STATEMENT

repeat-while-statement 	→	 repeat 	 code-block 	 while 	 expression

Branch	Statements

Branch	statements	allow	the	program	to	execute	certain	parts	of	code	depending
on	the	value	of	one	or	more	conditions.	The	values	of	the	conditions	specified	in
a	branch	statement	control	how	the	program	branches	and,	therefore,	what	block
of	code	is	executed.	Swift	has	three	branch	statements:	an	if	statement,	a	guard
statement,	and	a	switch	statement.

Control	flow	in	an	if	statement	or	a	switch	statement	can	be	changed	by	a	break
statement	and	is	discussed	in	Break	Statement	below.

GRAMMAR 	OF 	A	 BRANCH 	STATEMENT

branch-statement 	→	 if-statement
branch-statement 	→	 guard-statement
branch-statement 	→	 switch-statement

If	Statement
An	if	statement	is	used	for	executing	code	based	on	the	evaluation	of	one	or
more	conditions.

There	are	two	basic	forms	of	an	if	statement.	In	each	form,	the	opening	and
closing	braces	are	required.

The	first	form	allows	code	to	be	executed	only	when	a	condition	is	true	and	has
the	following	form:

	 if	 condition 	{

	 				 statements

	 }

The	second	form	of	an	if	statement	provides	an	additional	else	clause
(introduced	by	the	else	keyword)	and	is	used	for	executing	one	part	of	code
when	the	condition	is	true	and	another	part	of	code	when	the	same	condition	is
false.	When	a	single	else	clause	is	present,	an	if	statement	has	the	following
form:

	 if	 condition 	{

	 				 statements	to	execute	if	condition	is	true

	 }	else	{

	 				 statements	to	execute	if	condition	is	false

	 }

The	else	clause	of	an	if	statement	can	contain	another	if	statement	to	test	more

than	one	condition.	An	if	statement	chained	together	in	this	way	has	the
following	form:

	 if	 condition	1 	{

	 				 statements	to	execute	if	condition	1	is	true

	 }	else	if	 condition	2 	{

	 				 statements	to	execute	if	condition	2	is	true

	 }	else	{

	 				 statements	to	execute	if	both	conditions	are	false

	 }

The	value	of	any	condition	in	an	if	statement	must	be	of	type	Bool	or	a	type
bridged	to	Bool.	The	condition	can	also	be	an	optional	binding	declaration,	as
discussed	in	Optional	Binding.

GRAMMAR 	OF 	AN 	 I F 	 STATEMENT

if-statement 	→	 if 	 condition-list 	 code-block 	 else-clause 	opt
else-clause 	→	 else 	 code-block 	|	 else 	 if-statement

Guard	Statement
A	guard	statement	is	used	to	transfer	program	control	out	of	a	scope	if	one	or
more	conditions	aren’t	met.

A	guard	statement	has	the	following	form:

	 guard	 condition 	else	{

	 				 statements

	 }

The	value	of	any	condition	in	a	guard	statement	must	be	of	type	Bool	or	a	type
bridged	to	Bool.	The	condition	can	also	be	an	optional	binding	declaration,	as
discussed	in	Optional	Binding.

Any	constants	or	variables	assigned	a	value	from	an	optional	binding	declaration

in	a	guard	statement	condition	can	be	used	for	the	rest	of	the	guard	statement’s
enclosing	scope.

The	else	clause	of	a	guard	statement	is	required,	and	must	either	call	a	function
with	the	Never	return	type	or	transfer	program	control	outside	the	guard
statement’s	enclosing	scope	using	one	of	the	following	statements:

return

break

continue

throw

Control	transfer	statements	are	discussed	in	Control	Transfer	Statements	below.
For	more	information	on	functions	with	the	Never	return	type,	see	Functions	that
Never	Return.

GRAMMAR 	OF 	A	GUARD 	STATEMENT

guard-statement 	→	 guard 	 condition-list 	 else 	 code-block

Switch	Statement
A	switch	statement	allows	certain	blocks	of	code	to	be	executed	depending	on
the	value	of	a	control	expression.

A	switch	statement	has	the	following	form:

	 switch	 control	expression 	{

	 case	 pattern	1 :

	 				 statements

	 case	 pattern	2 	where	 condition :

	 				 statements

	 case	 pattern	3 	where	 condition ,

	 					 pattern	4 	where	 condition :

	 				 statements

	 default:

	 				 statements

	 }

The	control	expression	of	the	switch	statement	is	evaluated	and	then	compared
with	the	patterns	specified	in	each	case.	If	a	match	is	found,	the	program
executes	the	statements	listed	within	the	scope	of	that	case.	The	scope	of	each
case	can’t	be	empty.	As	a	result,	you	must	include	at	least	one	statement
following	the	colon	(:)	of	each	case	label.	Use	a	single	break	statement	if	you
don’t	intend	to	execute	any	code	in	the	body	of	a	matched	case.

The	values	of	expressions	your	code	can	branch	on	are	very	flexible.	For
example,	in	addition	to	the	values	of	scalar	types,	such	as	integers	and
characters,	your	code	can	branch	on	the	values	of	any	type,	including	floating-
point	numbers,	strings,	tuples,	instances	of	custom	classes,	and	optionals.	The
value	of	the	control	expression	can	even	be	matched	to	the	value	of	a	case	in	an
enumeration	and	checked	for	inclusion	in	a	specified	range	of	values.	For
examples	of	how	to	use	these	various	types	of	values	in	switch	statements,	see
Switch	in	Control	Flow.

A	switch	case	can	optionally	contain	a	where	clause	after	each	pattern.	A	where
clause	is	introduced	by	the	where	keyword	followed	by	an	expression,	and	is
used	to	provide	an	additional	condition	before	a	pattern	in	a	case	is	considered
matched	to	the	control	expression.	If	a	where	clause	is	present,	the	statements
within	the	relevant	case	are	executed	only	if	the	value	of	the	control	expression
matches	one	of	the	patterns	of	the	case	and	the	expression	of	the	where	clause
evaluates	to	true.	For	example,	a	control	expression	matches	the	case	in	the
example	below	only	if	it	is	a	tuple	that	contains	two	elements	of	the	same	value,
such	as	(1,	1).

	 case	let	(x,	y)	where	x	==	y:

As	the	above	example	shows,	patterns	in	a	case	can	also	bind	constants	using	the
let	keyword	(they	can	also	bind	variables	using	the	var	keyword).	These
constants	(or	variables)	can	then	be	referenced	in	a	corresponding	where	clause

and	throughout	the	rest	of	the	code	within	the	scope	of	the	case.	If	the	case
contains	multiple	patterns	that	match	the	control	expression,	all	of	the	patterns
must	contain	the	same	constant	or	variable	bindings,	and	each	bound	variable	or
constant	must	have	the	same	type	in	all	of	the	case’s	patterns.

A	switch	statement	can	also	include	a	default	case,	introduced	by	the	default
keyword.	The	code	within	a	default	case	is	executed	only	if	no	other	cases	match
the	control	expression.	A	switch	statement	can	include	only	one	default	case,
which	must	appear	at	the	end	of	the	switch	statement.

Although	the	actual	execution	order	of	pattern-matching	operations,	and	in
particular	the	evaluation	order	of	patterns	in	cases,	is	unspecified,	pattern
matching	in	a	switch	statement	behaves	as	if	the	evaluation	is	performed	in
source	order—that	is,	the	order	in	which	they	appear	in	source	code.	As	a	result,
if	multiple	cases	contain	patterns	that	evaluate	to	the	same	value,	and	thus	can
match	the	value	of	the	control	expression,	the	program	executes	only	the	code
within	the	first	matching	case	in	source	order.

Switch	Statements	Must	Be	Exhaustive

In	Swift,	every	possible	value	of	the	control	expression’s	type	must	match	the
value	of	at	least	one	pattern	of	a	case.	When	this	simply	isn’t	feasible	(for
example,	when	the	control	expression’s	type	is	Int),	you	can	include	a	default
case	to	satisfy	the	requirement.

Switching	Over	Future	Enumeration	Cases

A	nonfrozen	enumeration	is	a	special	kind	of	enumeration	that	may	gain	new
enumeration	cases	in	the	future—even	after	you	compile	and	ship	an	app.
Switching	over	a	nonfrozen	enumeration	requires	extra	consideration.	When	a
library’s	authors	mark	an	enumeration	as	nonfrozen,	they	reserve	the	right	to	add
new	enumeration	cases,	and	any	code	that	interacts	with	that	enumeration	must
be	able	to	handle	those	future	cases	without	being	recompiled.	Code	that’s
compiled	in	library	evolution	mode,	code	in	the	standard	library,	Swift	overlays
for	Apple	frameworks,	and	C	and	Objective-C	code	can	declare	nonfrozen
enumerations.	For	information	about	frozen	and	nonfrozen	enumerations,	see
frozen.

When	switching	over	a	nonfrozen	enumeration	value,	you	always	need	to
include	a	default	case,	even	if	every	case	of	the	enumeration	already	has	a
corresponding	switch	case.	You	can	apply	the	@unknown	attribute	to	the	default
case,	which	indicates	that	the	default	case	should	match	only	enumeration	cases
that	are	added	in	the	future.	Swift	produces	a	warning	if	the	default	case	matches
any	enumeration	case	that	is	known	at	compiler	time.	This	future	warning
informs	you	that	the	library	author	added	a	new	case	to	the	enumeration	that
doesn’t	have	a	corresponding	switch	case.

The	following	example	switches	over	all	three	existing	cases	of	the	standard
library’s	Mirror.AncestorRepresentation	enumeration.	If	you	add	additional
cases	in	the	future,	the	compiler	generates	a	warning	to	indicate	that	you	need	to
update	the	switch	statement	to	take	the	new	cases	into	account.

1 let	representation:	Mirror.AncestorRepresentation	=	.generated

2 switch	representation	{

3 case	.customized:

4 				print("Use	the	nearest	ancestor’s	implementation.")

5 case	.generated:

6 				print("Generate	a	default	mirror	for	all	ancestor	

classes.")

7 case	.suppressed:

8 				print("Suppress	the	representation	of	all	ancestor	

classes.")

9 @unknown	default:

10 				print("Use	a	representation	that	was	unknown	when	this	

code	was	compiled.")

11 }

12 //	Prints	"Generate	a	default	mirror	for	all	ancestor	

classes."

Execution	Does	Not	Fall	Through	Cases	Implicitly

https://developer.apple.com/documentation/swift/mirror/ancestorrepresentation

After	the	code	within	a	matched	case	has	finished	executing,	the	program	exits
from	the	switch	statement.	Program	execution	does	not	continue	or	“fall
through”	to	the	next	case	or	default	case.	That	said,	if	you	want	execution	to
continue	from	one	case	to	the	next,	explicitly	include	a	fallthrough	statement,
which	simply	consists	of	the	fallthrough	keyword,	in	the	case	from	which	you
want	execution	to	continue.	For	more	information	about	the	fallthrough
statement,	see	Fallthrough	Statement	below.

GRAMMAR 	OF 	A	 SW ITCH 	STATEMENT

switch-statement 	→	 switch 	 expression 	 { 	 switch-cases 	opt 	 }
switch-cases 	→	 switch-case 	 switch-cases 	opt
switch-case 	→	 case-label 	 statements
switch-case 	→	 default-label 	 statements
switch-case 	→	 conditional-switch-case
case-label 	→	 attributes 	opt 	 case 	 case-item-list 	 :
case-item-list 	→	 pattern 	where-clause 	opt 	|	 pattern 	where-clause 	opt 	 , 	 case-item-list
default-label 	→	 attributes 	opt 	 default 	 :
where-clause 	→	 where 	where-expression
where-expression 	→	 expression
conditional-switch-case 	→	 switch-if-directive-clause 	 switch-elseif-directive-clauses 	opt

switch-else-directive-clause 	opt 	 endif-directive
switch-if-directive-clause 	→	 if-directive 	 compilation-condition 	 switch-cases 	opt
switch-elseif-directive-clauses 	→	 elseif-directive-clause 	 switch-elseif-directive-clauses 	opt
switch-elseif-directive-clause 	→	 elseif-directive 	 compilation-condition 	 switch-cases 	opt
switch-else-directive-clause 	→	 else-directive 	 switch-cases 	opt

Labeled	Statement

You	can	prefix	a	loop	statement,	an	if	statement,	a	switch	statement,	or	a	do
statement	with	a	statement	label,	which	consists	of	the	name	of	the	label
followed	immediately	by	a	colon	(:).	Use	statement	labels	with	break	and
continue	statements	to	be	explicit	about	how	you	want	to	change	control	flow	in
a	loop	statement	or	a	switch	statement,	as	discussed	in	Break	Statement	and
Continue	Statement	below.

The	scope	of	a	labeled	statement	is	the	entire	statement	following	the	statement
label.	You	can	nest	labeled	statements,	but	the	name	of	each	statement	label	must

be	unique.

For	more	information	and	to	see	examples	of	how	to	use	statement	labels,	see
Labeled	Statements	in	Control	Flow.

GRAMMAR 	OF 	A	 LABELED 	STATEMENT

labeled-statement 	→	 statement-label 	 loop-statement
labeled-statement 	→	 statement-label 	 if-statement
labeled-statement 	→	 statement-label 	 switch-statement
labeled-statement 	→	 statement-label 	 do-statement
statement-label 	→	 label-name 	 :
label-name 	→	 identifier

Control	Transfer	Statements

Control	transfer	statements	can	change	the	order	in	which	code	in	your	program
is	executed	by	unconditionally	transferring	program	control	from	one	piece	of
code	to	another.	Swift	has	five	control	transfer	statements:	a	break	statement,	a
continue	statement,	a	fallthrough	statement,	a	return	statement,	and	a	throw
statement.

GRAMMAR 	OF 	A	CONTROL	TRANSFER 	STATEMENT

control-transfer-statement 	→	 break-statement
control-transfer-statement 	→	 continue-statement
control-transfer-statement 	→	 fallthrough-statement
control-transfer-statement 	→	 return-statement
control-transfer-statement 	→	 throw-statement

Break	Statement
A	break	statement	ends	program	execution	of	a	loop,	an	if	statement,	or	a
switch	statement.	A	break	statement	can	consist	of	only	the	break	keyword,	or	it
can	consist	of	the	break	keyword	followed	by	the	name	of	a	statement	label,	as
shown	below.

	 break

	 break	 label	name

When	a	break	statement	is	followed	by	the	name	of	a	statement	label,	it	ends
program	execution	of	the	loop,	if	statement,	or	switch	statement	named	by	that
label.

When	a	break	statement	is	not	followed	by	the	name	of	a	statement	label,	it	ends
program	execution	of	the	switch	statement	or	the	innermost	enclosing	loop
statement	in	which	it	occurs.	You	can’t	use	an	unlabeled	break	statement	to
break	out	of	an	if	statement.

In	both	cases,	program	control	is	then	transferred	to	the	first	line	of	code
following	the	enclosing	loop	or	switch	statement,	if	any.

For	examples	of	how	to	use	a	break	statement,	see	Break	and	Labeled
Statements	in	Control	Flow.

GRAMMAR 	OF 	A	 BREAK 	STATEMENT

break-statement 	→	 break 	 label-name 	opt

Continue	Statement
A	continue	statement	ends	program	execution	of	the	current	iteration	of	a	loop
statement	but	does	not	stop	execution	of	the	loop	statement.	A	continue
statement	can	consist	of	only	the	continue	keyword,	or	it	can	consist	of	the
continue	keyword	followed	by	the	name	of	a	statement	label,	as	shown	below.

	 continue

	 continue	 label	name

When	a	continue	statement	is	followed	by	the	name	of	a	statement	label,	it	ends
program	execution	of	the	current	iteration	of	the	loop	statement	named	by	that
label.

When	a	continue	statement	is	not	followed	by	the	name	of	a	statement	label,	it
ends	program	execution	of	the	current	iteration	of	the	innermost	enclosing	loop

statement	in	which	it	occurs.

In	both	cases,	program	control	is	then	transferred	to	the	condition	of	the
enclosing	loop	statement.

In	a	for	statement,	the	increment	expression	is	still	evaluated	after	the	continue
statement	is	executed,	because	the	increment	expression	is	evaluated	after	the
execution	of	the	loop’s	body.

For	examples	of	how	to	use	a	continue	statement,	see	Continue	and	Labeled
Statements	in	Control	Flow.

GRAMMAR 	OF 	A	CONT INUE 	STATEMENT

continue-statement 	→	 continue 	 label-name 	opt

Fallthrough	Statement
A	fallthrough	statement	consists	of	the	fallthrough	keyword	and	occurs	only	in
a	case	block	of	a	switch	statement.	A	fallthrough	statement	causes	program
execution	to	continue	from	one	case	in	a	switch	statement	to	the	next	case.
Program	execution	continues	to	the	next	case	even	if	the	patterns	of	the	case
label	do	not	match	the	value	of	the	switch	statement’s	control	expression.

A	fallthrough	statement	can	appear	anywhere	inside	a	switch	statement,	not	just
as	the	last	statement	of	a	case	block,	but	it	can’t	be	used	in	the	final	case	block.	It
also	cannot	transfer	control	into	a	case	block	whose	pattern	contains	value
binding	patterns.

For	an	example	of	how	to	use	a	fallthrough	statement	in	a	switch	statement,	see
Control	Transfer	Statements	in	Control	Flow.

GRAMMAR 	OF 	A	 FALLTHROUGH 	STATEMENT

fallthrough-statement 	→	 fallthrough

Return	Statement

A	return	statement	occurs	in	the	body	of	a	function	or	method	definition	and
causes	program	execution	to	return	to	the	calling	function	or	method.	Program
execution	continues	at	the	point	immediately	following	the	function	or	method
call.

A	return	statement	can	consist	of	only	the	return	keyword,	or	it	can	consist	of
the	return	keyword	followed	by	an	expression,	as	shown	below.

	 return

	 return	 expression

When	a	return	statement	is	followed	by	an	expression,	the	value	of	the
expression	is	returned	to	the	calling	function	or	method.	If	the	value	of	the
expression	does	not	match	the	value	of	the	return	type	declared	in	the	function	or
method	declaration,	the	expression’s	value	is	converted	to	the	return	type	before
it	is	returned	to	the	calling	function	or	method.

NOTE

As	described	in	Failable	Initializers,	a	special	form	of	the	return	statement	(return	nil)	can	be
used	in	a	failable	initializer	to	indicate	initialization	failure.

When	a	return	statement	is	not	followed	by	an	expression,	it	can	be	used	only	to
return	from	a	function	or	method	that	does	not	return	a	value	(that	is,	when	the
return	type	of	the	function	or	method	is	Void	or	()).

GRAMMAR 	OF 	A	RETURN 	STATEMENT

return-statement 	→	 return 	 expression 	opt

Throw	Statement
A	throw	statement	occurs	in	the	body	of	a	throwing	function	or	method,	or	in	the
body	of	a	closure	expression	whose	type	is	marked	with	the	throws	keyword.

A	throw	statement	causes	a	program	to	end	execution	of	the	current	scope	and
begin	error	propagation	to	its	enclosing	scope.	The	error	that’s	thrown	continues

to	propagate	until	it’s	handled	by	a	catch	clause	of	a	do	statement.

A	throw	statement	consists	of	the	throw	keyword	followed	by	an	expression,	as
shown	below.

	 throw	 expression

The	value	of	the	expression	must	have	a	type	that	conforms	to	the	Error
protocol.

For	an	example	of	how	to	use	a	throw	statement,	see	Propagating	Errors	Using
Throwing	Functions	in	Error	Handling.

GRAMMAR 	OF 	A	THROW	STATEMENT

throw-statement 	→	 throw 	 expression

Defer	Statement

A	defer	statement	is	used	for	executing	code	just	before	transferring	program
control	outside	of	the	scope	that	the	defer	statement	appears	in.

A	defer	statement	has	the	following	form:

	 defer	{

	 				 statements

	 }

The	statements	within	the	defer	statement	are	executed	no	matter	how	program
control	is	transferred.	This	means	that	a	defer	statement	can	be	used,	for
example,	to	perform	manual	resource	management	such	as	closing	file
descriptors,	and	to	perform	actions	that	need	to	happen	even	if	an	error	is
thrown.

If	multiple	defer	statements	appear	in	the	same	scope,	the	order	they	appear	is
the	reverse	of	the	order	they	are	executed.	Executing	the	last	defer	statement	in	a

given	scope	first	means	that	statements	inside	that	last	defer	statement	can	refer
to	resources	that	will	be	cleaned	up	by	other	defer	statements.

1 func	f()	{

2 				defer	{	print("First	defer")	}

3 				defer	{	print("Second	defer")	}

4 				print("End	of	function")

5 }

6 f()

7 //	Prints	"End	of	function"

8 //	Prints	"Second	defer"

9 //	Prints	"First	defer"

The	statements	in	the	defer	statement	can’t	transfer	program	control	outside	of
the	defer	statement.

GRAMMAR 	OF 	A	DEFER 	STATEMENT

defer-statement 	→	 defer 	 code-block

Do	Statement

The	do	statement	is	used	to	introduce	a	new	scope	and	can	optionally	contain	one
or	more	catch	clauses,	which	contain	patterns	that	match	against	defined	error
conditions.	Variables	and	constants	declared	in	the	scope	of	a	do	statement	can
be	accessed	only	within	that	scope.

A	do	statement	in	Swift	is	similar	to	curly	braces	({})	in	C	used	to	delimit	a	code
block,	and	does	not	incur	a	performance	cost	at	runtime.

A	do	statement	has	the	following	form:

	 do	{

	 				try	 expression

	 				 statements

	 }	catch	 pattern	1 	{

	 				 statements

	 }	catch	 pattern	2 	where	 condition 	{

	 				 statements

	 }

Like	a	switch	statement,	the	compiler	attempts	to	infer	whether	catch	clauses	are
exhaustive.	If	such	a	determination	can	be	made,	the	error	is	considered	handled.
Otherwise,	the	error	can	propagate	out	of	the	containing	scope,	which	means	the
error	must	be	handled	by	an	enclosing	catch	clause	or	the	containing	function
must	be	declared	with	throws.

To	ensure	that	an	error	is	handled,	use	a	catch	clause	with	a	pattern	that	matches
all	errors,	such	as	a	wildcard	pattern	(_).	If	a	catch	clause	does	not	specify	a
pattern,	the	catch	clause	matches	and	binds	any	error	to	a	local	constant	named
error.	For	more	information	about	the	patterns	you	can	use	in	a	catch	clause,	see
Patterns.

To	see	an	example	of	how	to	use	a	do	statement	with	several	catch	clauses,	see
Handling	Errors.

GRAMMAR 	OF 	A	DO 	STATEMENT

do-statement 	→	 do 	 code-block 	 catch-clauses 	opt
catch-clauses 	→	 catch-clause 	 catch-clauses 	opt
catch-clause 	→	 catch 	 pattern 	opt 	where-clause 	opt 	 code-block

Compiler	Control	Statements

Compiler	control	statements	allow	the	program	to	change	aspects	of	the
compiler’s	behavior.	Swift	has	three	compiler	control	statements:	a	conditional
compilation	block	a	line	control	statement,	and	a	compile-time	diagnostic
statement.

GRAMMAR 	OF 	A	COMP I LER 	CONTROL	STATEMENT

compiler-control-statement 	→	 conditional-compilation-block
compiler-control-statement 	→	 line-control-statement
compiler-control-statement 	→	 diagnostic-statement

Conditional	Compilation	Block
A	conditional	compilation	block	allows	code	to	be	conditionally	compiled
depending	on	the	value	of	one	or	more	compilation	conditions.

Every	conditional	compilation	block	begins	with	the	#if	compilation	directive
and	ends	with	the	#endif	compilation	directive.	A	simple	conditional
compilation	block	has	the	following	form:

	 #if	 compilation	condition

	 statements

	 #endif

Unlike	the	condition	of	an	if	statement,	the	compilation	condition	is	evaluated	at
compile	time.	As	a	result,	the	statements	are	compiled	and	executed	only	if	the
compilation	condition	evaluates	to	true	at	compile	time.

The	compilation	condition	can	include	the	true	and	false	Boolean	literals,	an
identifier	used	with	the	-D	command	line	flag,	or	any	of	the	platform	conditions
listed	in	the	table	below.

Platform	condition Valid	arguments

os() macOS,	iOS,	watchOS,	tvOS,	Linux

arch() i386,	x86_64,	arm,	arm64

swift() >=	or	<	followed	by	a	version	number

compiler() >=	or	<	followed	by	a	version	number

canImport() A	module	name

targetEnvironment() simulator,	macCatalyst

The	version	number	for	the	swift()	and	compiler()	platform	conditions	consists
of	a	major	number,	optional	minor	number,	optional	patch	number,	and	so	on,
with	a	dot	(.)	separating	each	part	of	the	version	number.	There	must	not	be
whitespace	between	the	comparison	operator	and	the	version	number.	The
version	for	compiler()	is	the	compiler	version,	regardless	of	the	Swift	version
setting	passed	to	the	compiler.	The	version	for	swift()	is	the	language	version
currently	being	compiled.	For	example,	if	you	compile	your	code	using	the	Swift
5	compiler	in	Swift	4.2	mode,	the	compiler	version	is	5	and	the	language	version
is	4.2.	With	those	settings,	the	following	code	prints	all	three	messages:

1 #if	compiler(>=5)

2 print("Compiled	with	the	Swift	5	compiler	or	later")

3 #endif

4 #if	swift(>=4.2)

5 print("Compiled	in	Swift	4.2	mode	or	later")

6 #endif

7 #if	compiler(>=5)	&&	swift(<5)

8 print("Compiled	with	the	Swift	5	compiler	or	later	in	a	Swift	

mode	earlier	than	5")

9 #endif

10 //	Prints	"Compiled	with	the	Swift	5	compiler	or	later"

11 //	Prints	"Compiled	in	Swift	4.2	mode	or	later"

12 //	Prints	"Compiled	with	the	Swift	5	compiler	or	later	in	a	

Swift	mode	earlier	than	5"

The	argument	for	the	canImport()	platform	condition	is	the	name	of	a	module
that	may	not	be	present	on	all	platforms.	This	condition	tests	whether	it’s
possible	to	import	the	module,	but	doesn’t	actually	import	it.	If	the	module	is
present,	the	platform	condition	returns	true;	otherwise,	it	returns	false.

The	targetEnvironment()	platform	condition	returns	true	when	code	is
compiled	for	a	simulator;	otherwise,	it	returns	false.

NOTE

The	arch(arm)	platform	condition	does	not	return	true	for	ARM	64	devices.	The	arch(i386)
platform	condition	returns	true	when	code	is	compiled	for	the	32–bit	iOS	simulator.

You	can	combine	compilation	conditions	using	the	logical	operators	&&,	||,	and	!
and	use	parentheses	for	grouping.	These	operators	have	the	same	associativity
and	precedence	as	the	logical	operators	that	are	used	to	combine	ordinary
Boolean	expressions.

Similar	to	an	if	statement,	you	can	add	multiple	conditional	branches	to	test	for
different	compilation	conditions.	You	can	add	any	number	of	additional	branches
using	#elseif	clauses.	You	can	also	add	a	final	additional	branch	using	an	#else
clause.	Conditional	compilation	blocks	that	contain	multiple	branches	have	the
following	form:

	 #if	 compilation	condition	1

	 statements	to	compile	if	compilation	condition	1	is	true

	 #elseif	 compilation	condition	2

	 statements	to	compile	if	compilation	condition	2	is	true

	 #else

	 statements	to	compile	if	both	compilation	conditions	are	false

	 #endif

NOTE

Each	statement	in	the	body	of	a	conditional	compilation	block	is	parsed	even	if	it’s	not	compiled.
However,	there	is	an	exception	if	the	compilation	condition	includes	a	swift()	platform	condition:
The	statements	are	parsed	only	if	the	compiler’s	version	of	Swift	matches	what	is	specified	in	the

platform	condition.	This	exception	ensures	that	an	older	compiler	doesn’t	attempt	to	parse	syntax
introduced	in	a	newer	version	of	Swift.

GRAMMAR 	OF 	A	COND I T IONAL	COMP I LAT ION 	BLOCK

conditional-compilation-block 	→	 if-directive-clause 	 elseif-directive-clauses 	opt 	 else-
directive-clause 	opt 	 endif-directive

if-directive-clause 	→	 if-directive 	 compilation-condition 	 statements 	opt
elseif-directive-clauses 	→	 elseif-directive-clause 	 elseif-directive-clauses 	opt
elseif-directive-clause 	→	 elseif-directive 	 compilation-condition 	 statements 	opt
else-directive-clause 	→	 else-directive 	 statements 	opt
if-directive 	→	 #if
elseif-directive 	→	 #elseif
else-directive 	→	 #else
endif-directive 	→	 #endif
compilation-condition 	→	 platform-condition
compilation-condition 	→	 identifier
compilation-condition 	→	 boolean-literal
compilation-condition 	→	 (compilation-condition)
compilation-condition 	→	 ! 	 compilation-condition
compilation-condition 	→	 compilation-condition 	 && 	 compilation-condition
compilation-condition 	→	 compilation-condition 	 || 	 compilation-condition
platform-condition 	→	 os 	 (operating-system)
platform-condition 	→	 arch 	 (architecture)
platform-condition 	→	 swift 	 (>= 	 swift-version) 	|	 swift 	 (< 	 swift-version)
platform-condition 	→	 compiler 	 (>= 	 swift-version) 	|	 compiler 	 (< 	 swift-version

)

platform-condition 	→	 canImport 	 (module-name)
platform-condition 	→	 targetEnvironment 	 (environment)
operating-system 	→	 macOS 	|	 iOS 	|	 watchOS 	|	 tvOS
architecture 	→	 i386 	|	 x86_64 	|	 arm 	|	 arm64
swift-version 	→	 decimal-digits 	 swift-version-continuation 	opt
swift-version-continuation 	→	 . 	 decimal-digits 	 swift-version-continuation 	opt
module-name 	→	 identifier
environment 	→	 simulator

Line	Control	Statement
A	line	control	statement	is	used	to	specify	a	line	number	and	filename	that	can
be	different	from	the	line	number	and	filename	of	the	source	code	being
compiled.	Use	a	line	control	statement	to	change	the	source	code	location	used
by	Swift	for	diagnostic	and	debugging	purposes.

A	line	control	statement	has	the	following	forms:

	 #sourceLocation(file:	 filename ,	line:	 line	number)

	 #sourceLocation()

The	first	form	of	a	line	control	statement	changes	the	values	of	the	#line	and
#file	literal	expressions,	beginning	with	the	line	of	code	following	the	line
control	statement.	The	line	number	changes	the	value	of	#line	and	is	any	integer
literal	greater	than	zero.	The	filename	changes	the	value	of	#file	and	is	a	string
literal.

The	second	form	of	a	line	control	statement,	#sourceLocation(),	resets	the
source	code	location	back	to	the	default	line	numbering	and	filename.

GRAMMAR 	OF 	A	 L I NE 	CONTROL	STATEMENT

line-control-statement 	→	 #sourceLocation 	 (file: 	 file-name 	 , 	 line: 	 line-
number)

line-control-statement 	→	 #sourceLocation 	 ()
line-number 	→	 A	decimal	integer	greater	than	zero
file-name 	→	 static-string-literal

Compile-Time	Diagnostic	Statement
A	compile-time	diagnostic	statement	causes	the	compiler	to	emit	an	error	or	a
warning	during	compilation.	A	compile-time	diagnostic	statement	has	the
following	forms:

	 #error(" error	message ")

	 #warning(" warning	message ")

The	first	form	emits	the	error	message	as	a	fatal	error	and	terminates	the
compilation	process.	The	second	form	emits	the	warning	message	as	a	nonfatal
warning	and	allows	compilation	to	proceed.	You	write	the	diagnostic	message	as
a	static	string	literal.	Static	string	literals	can’t	use	features	like	string
interpolation	or	concatenation,	but	they	can	use	the	multiline	string	literal
syntax.

GRAMMAR 	OF 	A	COMP I LE - T IME 	D I AGNOST IC 	 STATEMENT

diagnostic-statement 	→	 #error 	 (diagnostic-message)
diagnostic-statement 	→	 #warning 	 (diagnostic-message)
diagnostic-message 	→	 static-string-literal

Availability	Condition

An	availability	condition	is	used	as	a	condition	of	an	if,	while,	and	guard
statement	to	query	the	availability	of	APIs	at	runtime,	based	on	specified
platforms	arguments.

An	availability	condition	has	the	following	form:

	 if	#available(platform	name 	 version ,	 ... ,	*)	{

	 				 statements	to	execute	if	the	APIs	are	available

	 }	else	{

	 			

	 fallback	statements	to	execute	if	the	APIs	are	unavailable

	 }

You	use	an	availability	condition	to	execute	a	block	of	code,	depending	on
whether	the	APIs	you	want	to	use	are	available	at	runtime.	The	compiler	uses	the
information	from	the	availability	condition	when	it	verifies	that	the	APIs	in	that
block	of	code	are	available.

The	availability	condition	takes	a	comma-separated	list	of	platform	names	and
versions.	Use	iOS,	macOS,	watchOS,	and	tvOS	for	the	platform	names,	and	include
the	corresponding	version	numbers.	The	*	argument	is	required	and	specifies
that	on	any	other	platform,	the	body	of	the	code	block	guarded	by	the
availability	condition	executes	on	the	minimum	deployment	target	specified	by
your	target.

Unlike	Boolean	conditions,	you	can’t	combine	availability	conditions	using

logical	operators	such	as	&&	and	||.

GRAMMAR 	OF 	AN 	AVA I LAB I L I TY 	COND I T ION

availability-condition 	→	 #available 	 (availability-arguments)
availability-arguments 	→	 availability-argument 	|	 availability-argument 	 , 	 availability-

arguments
availability-argument 	→	 platform-name 	 platform-version
availability-argument 	→	 *
platform-name 	→	 iOS 	|	 iOSApplicationExtension
platform-name 	→	 macOS 	|	 macOSApplicationExtension
platform-name 	→	 watchOS
platform-name 	→	 tvOS
platform-version 	→	 decimal-digits
platform-version 	→	 decimal-digits 	 . 	 decimal-digits
platform-version 	→	 decimal-digits 	 . 	 decimal-digits 	 . 	 decimal-digits

Declarations

A	declaration	introduces	a	new	name	or	construct	into	your	program.	For
example,	you	use	declarations	to	introduce	functions	and	methods,	to	introduce
variables	and	constants,	and	to	define	enumeration,	structure,	class,	and	protocol
types.	You	can	also	use	a	declaration	to	extend	the	behavior	of	an	existing	named
type	and	to	import	symbols	into	your	program	that	are	declared	elsewhere.

In	Swift,	most	declarations	are	also	definitions	in	the	sense	that	they	are
implemented	or	initialized	at	the	same	time	they	are	declared.	That	said,	because
protocols	don’t	implement	their	members,	most	protocol	members	are
declarations	only.	For	convenience	and	because	the	distinction	isn’t	that
important	in	Swift,	the	term	declaration	covers	both	declarations	and	definitions.

GRAMMAR 	OF 	A	DECLARAT ION

declaration 	→	 import-declaration
declaration 	→	 constant-declaration
declaration 	→	 variable-declaration
declaration 	→	 typealias-declaration
declaration 	→	 function-declaration
declaration 	→	 enum-declaration
declaration 	→	 struct-declaration
declaration 	→	 class-declaration
declaration 	→	 protocol-declaration
declaration 	→	 initializer-declaration
declaration 	→	 deinitializer-declaration
declaration 	→	 extension-declaration
declaration 	→	 subscript-declaration
declaration 	→	 operator-declaration
declaration 	→	 precedence-group-declaration
declarations 	→	 declaration 	 declarations 	opt

Top-Level	Code

The	top-level	code	in	a	Swift	source	file	consists	of	zero	or	more	statements,
declarations,	and	expressions.	By	default,	variables,	constants,	and	other	named
declarations	that	are	declared	at	the	top-level	of	a	source	file	are	accessible	to

code	in	every	source	file	that	is	part	of	the	same	module.	You	can	override	this
default	behavior	by	marking	the	declaration	with	an	access-level	modifier,	as
described	in	Access	Control	Levels.

GRAMMAR 	OF 	A	TOP - LEVEL	DECLARAT ION

top-level-declaration 	→	 statements 	opt

Code	Blocks

A	code	block	is	used	by	a	variety	of	declarations	and	control	structures	to	group
statements	together.	It	has	the	following	form:

	 {

	 				 statements

	 }

The	statements	inside	a	code	block	include	declarations,	expressions,	and	other
kinds	of	statements	and	are	executed	in	order	of	their	appearance	in	source	code.

GRAMMAR 	OF 	A	CODE 	BLOCK

code-block 	→	 { 	 statements 	opt 	 }

Import	Declaration

An	import	declaration	lets	you	access	symbols	that	are	declared	outside	the
current	file.	The	basic	form	imports	the	entire	module;	it	consists	of	the	import
keyword	followed	by	a	module	name:

	 import	 module

Providing	more	detail	limits	which	symbols	are	imported—you	can	specify	a

specific	submodule	or	a	specific	declaration	within	a	module	or	submodule.
When	this	detailed	form	is	used,	only	the	imported	symbol	(and	not	the	module
that	declares	it)	is	made	available	in	the	current	scope.

	 import	 import	kind 	 module . symbol	name

	 import	 module . submodule

GRAMMAR 	OF 	AN 	 IMPORT 	DECLARAT ION

import-declaration 	→	 attributes 	opt 	 import 	 import-kind 	opt 	 import-path
import-kind 	→	 typealias 	|	 struct 	|	 class 	|	 enum 	|	 protocol 	|	 let 	|	 var 	|

func

import-path 	→	 import-path-identifier 	|	 import-path-identifier 	 . 	 import-path
import-path-identifier 	→	 identifier 	|	 operator

Constant	Declaration

A	constant	declaration	introduces	a	constant	named	value	into	your	program.
Constant	declarations	are	declared	using	the	let	keyword	and	have	the	following
form:

	 let	 constant	name :	 type 	=	 expression

A	constant	declaration	defines	an	immutable	binding	between	the	constant	name
and	the	value	of	the	initializer	expression;	after	the	value	of	a	constant	is	set,	it
cannot	be	changed.	That	said,	if	a	constant	is	initialized	with	a	class	object,	the
object	itself	can	change,	but	the	binding	between	the	constant	name	and	the
object	it	refers	to	can’t.

When	a	constant	is	declared	at	global	scope,	it	must	be	initialized	with	a	value.
When	a	constant	declaration	occurs	in	the	context	of	a	function	or	method,	it	can
be	initialized	later,	as	long	as	it	is	guaranteed	to	have	a	value	set	before	the	first
time	its	value	is	read.	When	a	constant	declaration	occurs	in	the	context	of	a
class	or	structure	declaration,	it	is	considered	a	constant	property.	Constant
declarations	are	not	computed	properties	and	therefore	do	not	have	getters	or
setters.

If	the	constant	name	of	a	constant	declaration	is	a	tuple	pattern,	the	name	of	each
item	in	the	tuple	is	bound	to	the	corresponding	value	in	the	initializer	expression.

	 let	(firstNumber,	secondNumber)	=	(10,	42)

In	this	example,	firstNumber	is	a	named	constant	for	the	value	10,	and
secondNumber	is	a	named	constant	for	the	value	42.	Both	constants	can	now	be
used	independently:

1 print("The	first	number	is	\(firstNumber).")

2 //	Prints	"The	first	number	is	10."

3 print("The	second	number	is	\(secondNumber).")

4 //	Prints	"The	second	number	is	42."

The	type	annotation	(:	type)	is	optional	in	a	constant	declaration	when	the	type
of	the	constant	name	can	be	inferred,	as	described	in	Type	Inference.

To	declare	a	constant	type	property,	mark	the	declaration	with	the	static
declaration	modifier.	A	constant	type	property	of	a	class	is	always	implicitly
final;	you	can’t	mark	it	with	the	class	or	final	declaration	modifier	to	allow	or
disallow	overriding	by	subclasses.	Type	properties	are	discussed	in	Type
Properties.

For	more	information	about	constants	and	for	guidance	about	when	to	use	them,
see	Constants	and	Variables	and	Stored	Properties.

GRAMMAR 	OF 	A	CONSTANT 	DECLARAT ION

constant-declaration 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 let 	 pattern-initializer-
list

pattern-initializer-list 	→	 pattern-initializer 	|	 pattern-initializer 	 , 	 pattern-initializer-list
pattern-initializer 	→	 pattern 	 initializer 	opt
initializer 	→	 = 	 expression

Variable	Declaration

A	variable	declaration	introduces	a	variable	named	value	into	your	program	and
is	declared	using	the	var	keyword.

Variable	declarations	have	several	forms	that	declare	different	kinds	of	named,
mutable	values,	including	stored	and	computed	variables	and	properties,	stored
variable	and	property	observers,	and	static	variable	properties.	The	appropriate
form	to	use	depends	on	the	scope	at	which	the	variable	is	declared	and	the	kind
of	variable	you	intend	to	declare.

NOTE

You	can	also	declare	properties	in	the	context	of	a	protocol	declaration,	as	described	in	Protocol
Property	Declaration.

You	can	override	a	property	in	a	subclass	by	marking	the	subclass’s	property
declaration	with	the	override	declaration	modifier,	as	described	in	Overriding.

Stored	Variables	and	Stored	Variable	Properties
The	following	form	declares	a	stored	variable	or	stored	variable	property:

	 var	 variable	name :	 type 	=	 expression

You	define	this	form	of	a	variable	declaration	at	global	scope,	the	local	scope	of
a	function,	or	in	the	context	of	a	class	or	structure	declaration.	When	a	variable
declaration	of	this	form	is	declared	at	global	scope	or	the	local	scope	of	a
function,	it	is	referred	to	as	a	stored	variable.	When	it	is	declared	in	the	context
of	a	class	or	structure	declaration,	it	is	referred	to	as	a	stored	variable	property.

The	initializer	expression	can’t	be	present	in	a	protocol	declaration,	but	in	all
other	contexts,	the	initializer	expression	is	optional.	That	said,	if	no	initializer
expression	is	present,	the	variable	declaration	must	include	an	explicit	type
annotation	(:	type).

As	with	constant	declarations,	if	the	variable	name	is	a	tuple	pattern,	the	name	of
each	item	in	the	tuple	is	bound	to	the	corresponding	value	in	the	initializer
expression.

As	their	names	suggest,	the	value	of	a	stored	variable	or	a	stored	variable
property	is	stored	in	memory.

Computed	Variables	and	Computed	Properties
The	following	form	declares	a	computed	variable	or	computed	property:

	 var	 variable	name :	 type 	{

	 				get	{

	 								 statements

	 				}

	 				set(setter	name)	{

	 								 statements

	 				}

	 }

You	define	this	form	of	a	variable	declaration	at	global	scope,	the	local	scope	of
a	function,	or	in	the	context	of	a	class,	structure,	enumeration,	or	extension
declaration.	When	a	variable	declaration	of	this	form	is	declared	at	global	scope
or	the	local	scope	of	a	function,	it	is	referred	to	as	a	computed	variable.	When	it
is	declared	in	the	context	of	a	class,	structure,	or	extension	declaration,	it	is
referred	to	as	a	computed	property.

The	getter	is	used	to	read	the	value,	and	the	setter	is	used	to	write	the	value.	The
setter	clause	is	optional,	and	when	only	a	getter	is	needed,	you	can	omit	both
clauses	and	simply	return	the	requested	value	directly,	as	described	in	Read-Only
Computed	Properties.	But	if	you	provide	a	setter	clause,	you	must	also	provide	a
getter	clause.

The	setter	name	and	enclosing	parentheses	is	optional.	If	you	provide	a	setter
name,	it	is	used	as	the	name	of	the	parameter	to	the	setter.	If	you	do	not	provide
a	setter	name,	the	default	parameter	name	to	the	setter	is	newValue,	as	described
in	Shorthand	Setter	Declaration.

Unlike	stored	named	values	and	stored	variable	properties,	the	value	of	a

computed	named	value	or	a	computed	property	is	not	stored	in	memory.

For	more	information	and	to	see	examples	of	computed	properties,	see
Computed	Properties.

Stored	Variable	Observers	and	Property	Observers
You	can	also	declare	a	stored	variable	or	property	with	willSet	and	didSet
observers.	A	stored	variable	or	property	declared	with	observers	has	the
following	form:

	 var	 variable	name :	 type 	=	 expression 	{

	 				willSet(setter	name)	{

	 								 statements

	 				}

	 				didSet(setter	name)	{

	 								 statements

	 				}

	 }

You	define	this	form	of	a	variable	declaration	at	global	scope,	the	local	scope	of
a	function,	or	in	the	context	of	a	class	or	structure	declaration.	When	a	variable
declaration	of	this	form	is	declared	at	global	scope	or	the	local	scope	of	a
function,	the	observers	are	referred	to	as	stored	variable	observers.	When	it	is
declared	in	the	context	of	a	class	or	structure	declaration,	the	observers	are
referred	to	as	property	observers.

You	can	add	property	observers	to	any	stored	property.	You	can	also	add
property	observers	to	any	inherited	property	(whether	stored	or	computed)	by
overriding	the	property	within	a	subclass,	as	described	in	Overriding	Property
Observers.

The	initializer	expression	is	optional	in	the	context	of	a	class	or	structure
declaration,	but	required	elsewhere.	The	type	annotation	is	optional	when	the
type	can	be	inferred	from	the	initializer	expression.

The	willSet	and	didSet	observers	provide	a	way	to	observe	(and	to	respond
appropriately)	when	the	value	of	a	variable	or	property	is	being	set.	The
observers	are	not	called	when	the	variable	or	property	is	first	initialized.	Instead,
they	are	called	only	when	the	value	is	set	outside	of	an	initialization	context.

A	willSet	observer	is	called	just	before	the	value	of	the	variable	or	property	is
set.	The	new	value	is	passed	to	the	willSet	observer	as	a	constant,	and	therefore
it	can’t	be	changed	in	the	implementation	of	the	willSet	clause.	The	didSet
observer	is	called	immediately	after	the	new	value	is	set.	In	contrast	to	the
willSet	observer,	the	old	value	of	the	variable	or	property	is	passed	to	the	didSet
observer	in	case	you	still	need	access	to	it.	That	said,	if	you	assign	a	value	to	a
variable	or	property	within	its	own	didSet	observer	clause,	that	new	value	that
you	assign	will	replace	the	one	that	was	just	set	and	passed	to	the	willSet
observer.

The	setter	name	and	enclosing	parentheses	in	the	willSet	and	didSet	clauses	are
optional.	If	you	provide	setter	names,	they	are	used	as	the	parameter	names	to
the	willSet	and	didSet	observers.	If	you	do	not	provide	setter	names,	the	default
parameter	name	to	the	willSet	observer	is	newValue	and	the	default	parameter
name	to	the	didSet	observer	is	oldValue.

The	didSet	clause	is	optional	when	you	provide	a	willSet	clause.	Likewise,	the
willSet	clause	is	optional	when	you	provide	a	didSet	clause.

For	more	information	and	to	see	an	example	of	how	to	use	property	observers,
see	Property	Observers.

Type	Variable	Properties
To	declare	a	type	variable	property,	mark	the	declaration	with	the	static
declaration	modifier.	Classes	can	mark	type	computed	properties	with	the	class
declaration	modifier	instead	to	allow	subclasses	to	override	the	superclass’s
implementation.	Type	properties	are	discussed	in	Type	Properties.

GRAMMAR 	OF 	A	 VAR IABLE 	DECLARAT ION

variable-declaration 	→	 variable-declaration-head 	 pattern-initializer-list
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation 	 code-

block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation 	 getter-

setter-block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation 	 getter-

setter-keyword-block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 initializer 	willSet-didSet-

block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation

initializer 	opt 	willSet-didSet-block
variable-declaration-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 var
variable-name 	→	 identifier
getter-setter-block 	→	 code-block
getter-setter-block 	→	 { 	 getter-clause 	 setter-clause 	opt 	 }
getter-setter-block 	→	 { 	 setter-clause 	 getter-clause 	 }
getter-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 get 	 code-block
setter-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 set 	 setter-name 	opt 	 code-block
setter-name 	→	 (identifier)
getter-setter-keyword-block 	→	 { 	 getter-keyword-clause 	 setter-keyword-clause 	opt 	 }
getter-setter-keyword-block 	→	 { 	 setter-keyword-clause 	 getter-keyword-clause 	 }
getter-keyword-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 get
setter-keyword-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 set
willSet-didSet-block 	→	 { 	willSet-clause 	 didSet-clause 	opt 	 }
willSet-didSet-block 	→	 { 	 didSet-clause 	willSet-clause 	opt 	 }
willSet-clause 	→	 attributes 	opt 	 willSet 	 setter-name 	opt 	 code-block
didSet-clause 	→	 attributes 	opt 	 didSet 	 setter-name 	opt 	 code-block

Type	Alias	Declaration

A	type	alias	declaration	introduces	a	named	alias	of	an	existing	type	into	your
program.	Type	alias	declarations	are	declared	using	the	typealias	keyword	and
have	the	following	form:

	 typealias	 name 	=	 existing	type

After	a	type	alias	is	declared,	the	aliased	name	can	be	used	instead	of	the	existing
type	everywhere	in	your	program.	The	existing	type	can	be	a	named	type	or	a
compound	type.	Type	aliases	do	not	create	new	types;	they	simply	allow	a	name
to	refer	to	an	existing	type.

A	type	alias	declaration	can	use	generic	parameters	to	give	a	name	to	an	existing
generic	type.	The	type	alias	can	provide	concrete	types	for	some	or	all	of	the
generic	parameters	of	the	existing	type.	For	example:

1 typealias	StringDictionary<Value>	=	Dictionary<String,	Value>

2

3 //	The	following	dictionaries	have	the	same	type.

4 var	dictionary1:	StringDictionary<Int>	=	[:]

5 var	dictionary2:	Dictionary<String,	Int>	=	[:]

When	a	type	alias	is	declared	with	generic	parameters,	the	constraints	on	those
parameters	must	match	exactly	the	constraints	on	the	existing	type’s	generic
parameters.	For	example:

	 typealias	DictionaryOfInts<Key:	Hashable>	=	Dictionary<Key,	

Int>

Because	the	type	alias	and	the	existing	type	can	be	used	interchangeably,	the
type	alias	can’t	introduce	additional	generic	constraints.

A	type	alias	can	forward	an	existing	type’s	generic	parameters	by	omitting	all
generic	parameters	from	the	declaration.	For	example,	the	Diccionario	type	alias
declared	here	has	the	same	generic	parameters	and	constraints	as	Dictionary.

	 typealias	Diccionario	=	Dictionary

Inside	a	protocol	declaration,	a	type	alias	can	give	a	shorter	and	more	convenient
name	to	a	type	that	is	used	frequently.	For	example:

1 protocol	Sequence	{

2 				associatedtype	Iterator:	IteratorProtocol

3 				typealias	Element	=	Iterator.Element

4 }

5

6 func	sum<T:	Sequence>(_	sequence:	T)	->	Int	where	T.Element	==	

Int	{

7 				//	...

8 }

Without	this	type	alias,	the	sum	function	would	have	to	refer	to	the	associated
type	as	T.Iterator.Element	instead	of	T.Element.

See	also	Protocol	Associated	Type	Declaration.

GRAMMAR 	OF 	A	TYPE 	AL I AS 	DECLARAT ION

typealias-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 typealias 	 typealias-
name 	 generic-parameter-clause 	opt 	 typealias-assignment

typealias-name 	→	 identifier
typealias-assignment 	→	 = 	 type

Function	Declaration

A	function	declaration	introduces	a	function	or	method	into	your	program.	A
function	declared	in	the	context	of	class,	structure,	enumeration,	or	protocol	is
referred	to	as	a	method.	Function	declarations	are	declared	using	the	func
keyword	and	have	the	following	form:

	 func	 function	name (parameters)	->	 return	type 	{

	 				 statements

	 }

If	the	function	has	a	return	type	of	Void,	the	return	type	can	be	omitted	as
follows:

	 func	 function	name (parameters)	{

	 				 statements

	 }

The	type	of	each	parameter	must	be	included—it	can’t	be	inferred.	If	you	write
inout	in	front	of	a	parameter’s	type,	the	parameter	can	be	modified	inside	the
scope	of	the	function.	In-out	parameters	are	discussed	in	detail	in	In-Out
Parameters,	below.

A	function	declaration	whose	statements	include	only	a	single	expression	is
understood	to	return	the	value	of	that	expression.

Functions	can	return	multiple	values	using	a	tuple	type	as	the	return	type	of	the
function.

A	function	definition	can	appear	inside	another	function	declaration.	This	kind	of
function	is	known	as	a	nested	function.

A	nested	function	is	nonescaping	if	it	captures	a	value	that	is	guaranteed	to	never
escape—such	as	an	in-out	parameter—or	passed	as	a	nonescaping	function
argument.	Otherwise,	the	nested	function	is	an	escaping	function.

For	a	discussion	of	nested	functions,	see	Nested	Functions.

Parameter	Names
Function	parameters	are	a	comma-separated	list	where	each	parameter	has	one
of	several	forms.	The	order	of	arguments	in	a	function	call	must	match	the	order
of	parameters	in	the	function’s	declaration.	The	simplest	entry	in	a	parameter	list
has	the	following	form:

	 parameter	name :	 parameter	type

A	parameter	has	a	name,	which	is	used	within	the	function	body,	as	well	as	an
argument	label,	which	is	used	when	calling	the	function	or	method.	By	default,
parameter	names	are	also	used	as	argument	labels.	For	example:

1 func	f(x:	Int,	y:	Int)	->	Int	{	return	x	+	y	}

2 f(x:	1,	y:	2)	//	both	x	and	y	are	labeled

You	can	override	the	default	behavior	for	argument	labels	with	one	of	the
following	forms:

	 argument	label 	 parameter	name :	 parameter	type

	 _	 parameter	name :	 parameter	type

A	name	before	the	parameter	name	gives	the	parameter	an	explicit	argument
label,	which	can	be	different	from	the	parameter	name.	The	corresponding
argument	must	use	the	given	argument	label	in	function	or	method	calls.

An	underscore	(_)	before	a	parameter	name	suppresses	the	argument	label.	The
corresponding	argument	must	have	no	label	in	function	or	method	calls.

1 func	repeatGreeting(_	greeting:	String,	count	n:	Int)	{	/*	

Greet	n	times	*/	}

2 repeatGreeting("Hello,	world!",	count:	2)	//		count	is	labeled,	

greeting	is	not

In-Out	Parameters
In-out	parameters	are	passed	as	follows:

1.	 When	the	function	is	called,	the	value	of	the	argument	is	copied.

2.	 In	the	body	of	the	function,	the	copy	is	modified.

3.	 When	the	function	returns,	the	copy’s	value	is	assigned	to	the	original
argument.

This	behavior	is	known	as	copy-in	copy-out	or	call	by	value	result.	For	example,
when	a	computed	property	or	a	property	with	observers	is	passed	as	an	in-out
parameter,	its	getter	is	called	as	part	of	the	function	call	and	its	setter	is	called	as
part	of	the	function	return.

As	an	optimization,	when	the	argument	is	a	value	stored	at	a	physical	address	in
memory,	the	same	memory	location	is	used	both	inside	and	outside	the	function

body.	The	optimized	behavior	is	known	as	call	by	reference;	it	satisfies	all	of	the
requirements	of	the	copy-in	copy-out	model	while	removing	the	overhead	of
copying.	Write	your	code	using	the	model	given	by	copy-in	copy-out,	without
depending	on	the	call-by-reference	optimization,	so	that	it	behaves	correctly
with	or	without	the	optimization.

Within	a	function,	don’t	access	a	value	that	was	passed	as	an	in-out	argument,
even	if	the	original	value	is	available	in	the	current	scope.	Accessing	the	original
is	a	simultaneous	access	of	the	value,	which	violates	Swift’s	memory	exclusivity
guarantee.	For	the	same	reason,	you	can’t	pass	the	same	value	to	multiple	in-out
parameters.

For	more	information	about	memory	safety	and	memory	exclusivity,	see
Memory	Safety.

A	closure	or	nested	function	that	captures	an	in-out	parameter	must	be
nonescaping.	If	you	need	to	capture	an	in-out	parameter	without	mutating	it	or	to
observe	changes	made	by	other	code,	use	a	capture	list	to	explicitly	capture	the
parameter	immutably.

1 func	someFunction(a:	inout	Int)	->	()	->	Int	{

2 				return	{	[a]	in	return	a	+	1	}

3 }

If	you	need	to	capture	and	mutate	an	in-out	parameter,	use	an	explicit	local	copy,
such	as	in	multithreaded	code	that	ensures	all	mutation	has	finished	before	the
function	returns.

1 func	multithreadedFunction(queue:	DispatchQueue,	x:	inout	Int)	

{

2 				//	Make	a	local	copy	and	manually	copy	it	back.

3 				var	localX	=	x

4 				defer	{	x	=	localX	}

5

6 				//	Operate	on	localX	asynchronously,	then	wait	before	

returning.

7 				queue.async	{	someMutatingOperation(&localX)	}

8 				queue.sync	{}

9 }

For	more	discussion	and	examples	of	in-out	parameters,	see	In-Out	Parameters.

Special	Kinds	of	Parameters
Parameters	can	be	ignored,	take	a	variable	number	of	values,	and	provide	default
values	using	the	following	forms:

	 _	:	 parameter	type

	 parameter	name :	 parameter	type ...

	 parameter	name :	 parameter	type 	=	 default	argument	value

An	underscore	(_)	parameter	is	explicitly	ignored	and	can’t	be	accessed	within
the	body	of	the	function.

A	parameter	with	a	base	type	name	followed	immediately	by	three	dots	(...)	is
understood	as	a	variadic	parameter.	A	function	can	have	at	most	one	variadic
parameter.	A	variadic	parameter	is	treated	as	an	array	that	contains	elements	of
the	base	type	name.	For	example,	the	variadic	parameter	Int...	is	treated	as
[Int].	For	an	example	that	uses	a	variadic	parameter,	see	Variadic	Parameters.

A	parameter	with	an	equals	sign	(=)	and	an	expression	after	its	type	is	understood
to	have	a	default	value	of	the	given	expression.	The	given	expression	is
evaluated	when	the	function	is	called.	If	the	parameter	is	omitted	when	calling
the	function,	the	default	value	is	used	instead.

1 func	f(x:	Int	=	42)	->	Int	{	return	x	}

2 f()							//	Valid,	uses	default	value

3 f(x:	7)			//	Valid,	uses	the	value	provided

4 f(7)						//	Invalid,	missing	argument	label

Special	Kinds	of	Methods
Methods	on	an	enumeration	or	a	structure	that	modify	self	must	be	marked	with
the	mutating	declaration	modifier.

Methods	that	override	a	superclass	method	must	be	marked	with	the	override
declaration	modifier.	It’s	a	compile-time	error	to	override	a	method	without	the
override	modifier	or	to	use	the	override	modifier	on	a	method	that	doesn’t
override	a	superclass	method.

Methods	associated	with	a	type	rather	than	an	instance	of	a	type	must	be	marked
with	the	static	declaration	modifier	for	enumerations	and	structures,	or	with
either	the	static	or	class	declaration	modifier	for	classes.	A	class	type	method
marked	with	the	class	declaration	modifier	can	be	overridden	by	a	subclass
implementation;	a	class	type	method	marked	with	class	final	or	static	can’t
be	overridden.

Throwing	Functions	and	Methods
Functions	and	methods	that	can	throw	an	error	must	be	marked	with	the	throws
keyword.	These	functions	and	methods	are	known	as	throwing	functions	and
throwing	methods.	They	have	the	following	form:

	 func	 function	name (parameters)	throws	->	 return	type 	{

	 				 statements

	 }

Calls	to	a	throwing	function	or	method	must	be	wrapped	in	a	try	or	try!
expression	(that	is,	in	the	scope	of	a	try	or	try!	operator).

The	throws	keyword	is	part	of	a	function’s	type,	and	nonthrowing	functions	are
subtypes	of	throwing	functions.	As	a	result,	you	can	use	a	nonthrowing	function
in	the	same	places	as	a	throwing	one.

You	can’t	overload	a	function	based	only	on	whether	the	function	can	throw	an
error.	That	said,	you	can	overload	a	function	based	on	whether	a	function
parameter	can	throw	an	error.

A	throwing	method	can’t	override	a	nonthrowing	method,	and	a	throwing
method	can’t	satisfy	a	protocol	requirement	for	a	nonthrowing	method.	That
said,	a	nonthrowing	method	can	override	a	throwing	method,	and	a	nonthrowing
method	can	satisfy	a	protocol	requirement	for	a	throwing	method.

Rethrowing	Functions	and	Methods
A	function	or	method	can	be	declared	with	the	rethrows	keyword	to	indicate	that
it	throws	an	error	only	if	one	of	its	function	parameters	throws	an	error.	These
functions	and	methods	are	known	as	rethrowing	functions	and	rethrowing
methods.	Rethrowing	functions	and	methods	must	have	at	least	one	throwing
function	parameter.

1 func	someFunction(callback:	()	throws	->	Void)	rethrows	{

2 				try	callback()

3 }

A	rethrowing	function	or	method	can	contain	a	throw	statement	only	inside	a
catch	clause.	This	lets	you	call	the	throwing	function	inside	a	do-catch	block	and
handle	errors	in	the	catch	clause	by	throwing	a	different	error.	In	addition,	the
catch	clause	must	handle	only	errors	thrown	by	one	of	the	rethrowing	function’s
throwing	parameters.	For	example,	the	following	is	invalid	because	the	catch
clause	would	handle	the	error	thrown	by	alwaysThrows().

1 func	alwaysThrows()	throws	{

2 				throw	SomeError.error

3 }

4 func	someFunction(callback:	()	throws	->	Void)	rethrows	{

5 				do	{

6 								try	callback()

7 								try	alwaysThrows()		//	Invalid,	alwaysThrows()	isn't	a	

throwing	parameter

8 				}	catch	{

9 								throw	AnotherError.error

10 				}

11 }

A	throwing	method	can’t	override	a	rethrowing	method,	and	a	throwing	method
can’t	satisfy	a	protocol	requirement	for	a	rethrowing	method.	That	said,	a
rethrowing	method	can	override	a	throwing	method,	and	a	rethrowing	method
can	satisfy	a	protocol	requirement	for	a	throwing	method.

Functions	that	Never	Return
Swift	defines	a	Never	type,	which	indicates	that	a	function	or	method	doesn’t
return	to	its	caller.	Functions	and	methods	with	the	Never	return	type	are	called
nonreturning.	Nonreturning	functions	and	methods	either	cause	an	irrecoverable
error	or	begin	a	sequence	of	work	that	continues	indefinitely.	This	means	that
code	that	would	otherwise	run	immediately	after	the	call	is	never	executed.
Throwing	and	rethrowing	functions	can	transfer	program	control	to	an
appropriate	catch	block,	even	when	they	are	nonreturning.

A	nonreturning	function	or	method	can	be	called	to	conclude	the	else	clause	of	a
guard	statement,	as	discussed	in	Guard	Statement.

You	can	override	a	nonreturning	method,	but	the	new	method	must	preserve	its
return	type	and	nonreturning	behavior.

GRAMMAR 	OF 	A	 FUNCT ION 	DECLARAT ION

function-declaration 	→	 function-head 	 function-name 	 generic-parameter-clause 	opt
function-signature 	 generic-where-clause 	opt 	 function-body 	opt

function-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 func
function-name 	→	 identifier 	|	 operator
function-signature 	→	 parameter-clause 	 throwsopt 	 function-result 	opt
function-signature 	→	 parameter-clause 	 rethrows 	 function-result 	opt
function-result 	→	 -> 	 attributes 	opt 	 type
function-body 	→	 code-block
parameter-clause 	→	 () 	|	 (parameter-list)
parameter-list 	→	 parameter 	|	 parameter 	 , 	 parameter-list
parameter 	→	 external-parameter-name 	opt 	 local-parameter-name 	 type-annotation

default-argument-clause 	opt
parameter 	→	 external-parameter-name 	opt 	 local-parameter-name 	 type-annotation
parameter 	→	 external-parameter-name 	opt 	 local-parameter-name 	 type-annotation 	 ...
external-parameter-name 	→	 identifier
local-parameter-name 	→	 identifier
default-argument-clause 	→	 = 	 expression

Enumeration	Declaration

An	enumeration	declaration	introduces	a	named	enumeration	type	into	your
program.

Enumeration	declarations	have	two	basic	forms	and	are	declared	using	the	enum
keyword.	The	body	of	an	enumeration	declared	using	either	form	contains	zero
or	more	values—called	enumeration	cases—and	any	number	of	declarations,
including	computed	properties,	instance	methods,	type	methods,	initializers,	type
aliases,	and	even	other	enumeration,	structure,	and	class	declarations.
Enumeration	declarations	can’t	contain	deinitializer	or	protocol	declarations.

Enumeration	types	can	adopt	any	number	of	protocols,	but	can’t	inherit	from
classes,	structures,	or	other	enumerations.

Unlike	classes	and	structures,	enumeration	types	do	not	have	an	implicitly
provided	default	initializer;	all	initializers	must	be	declared	explicitly.	Initializers
can	delegate	to	other	initializers	in	the	enumeration,	but	the	initialization	process
is	complete	only	after	an	initializer	assigns	one	of	the	enumeration	cases	to	self.

Like	structures	but	unlike	classes,	enumerations	are	value	types;	instances	of	an
enumeration	are	copied	when	assigned	to	variables	or	constants,	or	when	passed
as	arguments	to	a	function	call.	For	information	about	value	types,	see	Structures
and	Enumerations	Are	Value	Types.

You	can	extend	the	behavior	of	an	enumeration	type	with	an	extension
declaration,	as	discussed	in	Extension	Declaration.

Enumerations	with	Cases	of	Any	Type
The	following	form	declares	an	enumeration	type	that	contains	enumeration
cases	of	any	type:

	 enum	 enumeration	name :	 adopted	protocols 	{

	 				case	 enumeration	case	1

	 				case	 enumeration	case	2 (associated	value	types)

	 }

Enumerations	declared	in	this	form	are	sometimes	called	discriminated	unions	in
other	programming	languages.

In	this	form,	each	case	block	consists	of	the	case	keyword	followed	by	one	or
more	enumeration	cases,	separated	by	commas.	The	name	of	each	case	must	be
unique.	Each	case	can	also	specify	that	it	stores	values	of	a	given	type.	These
types	are	specified	in	the	associated	value	types	tuple,	immediately	following	the
name	of	the	case.

Enumeration	cases	that	store	associated	values	can	be	used	as	functions	that
create	instances	of	the	enumeration	with	the	specified	associated	values.	And
just	like	functions,	you	can	get	a	reference	to	an	enumeration	case	and	apply	it
later	in	your	code.

1 enum	Number	{

2 				case	integer(Int)

3 				case	real(Double)

4 }

5 let	f	=	Number.integer

6 //	f	is	a	function	of	type	(Int)	->	Number

7

8 //	Apply	f	to	create	an	array	of	Number	instances	with	integer	

values

9 let	evenInts:	[Number]	=	[0,	2,	4,	6].map(f)

For	more	information	and	to	see	examples	of	cases	with	associated	value	types,
see	Associated	Values.

Enumerations	with	Indirection

Enumerations	can	have	a	recursive	structure,	that	is,	they	can	have	cases	with
associated	values	that	are	instances	of	the	enumeration	type	itself.	However,
instances	of	enumeration	types	have	value	semantics,	which	means	they	have	a
fixed	layout	in	memory.	To	support	recursion,	the	compiler	must	insert	a	layer	of
indirection.

To	enable	indirection	for	a	particular	enumeration	case,	mark	it	with	the
indirect	declaration	modifier.	An	indirect	case	must	have	an	associated	value.

1 enum	Tree<T>	{

2 				case	empty

3 				indirect	case	node(value:	T,	left:	Tree,	right:	Tree)

4 }

To	enable	indirection	for	all	the	cases	of	an	enumeration	that	have	an	associated
value,	mark	the	entire	enumeration	with	the	indirect	modifier—this	is
convenient	when	the	enumeration	contains	many	cases	that	would	each	need	to
be	marked	with	the	indirect	modifier.

An	enumeration	that	is	marked	with	the	indirect	modifier	can	contain	a	mixture
of	cases	that	have	associated	values	and	cases	those	that	don’t.	That	said,	it	can’t
contain	any	cases	that	are	also	marked	with	the	indirect	modifier.

Enumerations	with	Cases	of	a	Raw-Value	Type
The	following	form	declares	an	enumeration	type	that	contains	enumeration
cases	of	the	same	basic	type:

	 enum	 enumeration	name :	 raw-value	type ,	 adopted	protocols 	{

	 				case	 enumeration	case	1 	=	 raw	value	1

	 				case	 enumeration	case	2 	=	 raw	value	2

	 }

In	this	form,	each	case	block	consists	of	the	case	keyword,	followed	by	one	or
more	enumeration	cases,	separated	by	commas.	Unlike	the	cases	in	the	first
form,	each	case	has	an	underlying	value,	called	a	raw	value,	of	the	same	basic
type.	The	type	of	these	values	is	specified	in	the	raw-value	type	and	must
represent	an	integer,	floating-point	number,	string,	or	single	character.	In
particular,	the	raw-value	type	must	conform	to	the	Equatable	protocol	and	one	of
the	following	protocols:	ExpressibleByIntegerLiteral	for	integer	literals,
ExpressibleByFloatLiteral	for	floating-point	literals,
ExpressibleByStringLiteral	for	string	literals	that	contain	any	number	of
characters,	and	ExpressibleByUnicodeScalarLiteral	or
ExpressibleByExtendedGraphemeClusterLiteral	for	string	literals	that	contain
only	a	single	character.	Each	case	must	have	a	unique	name	and	be	assigned	a
unique	raw	value.

If	the	raw-value	type	is	specified	as	Int	and	you	don’t	assign	a	value	to	the	cases
explicitly,	they	are	implicitly	assigned	the	values	0,	1,	2,	and	so	on.	Each
unassigned	case	of	type	Int	is	implicitly	assigned	a	raw	value	that	is
automatically	incremented	from	the	raw	value	of	the	previous	case.

1 enum	ExampleEnum:	Int	{

2 				case	a,	b,	c	=	5,	d

3 }

In	the	above	example,	the	raw	value	of	ExampleEnum.a	is	0	and	the	value	of
ExampleEnum.b	is	1.	And	because	the	value	of	ExampleEnum.c	is	explicitly	set	to	5,
the	value	of	ExampleEnum.d	is	automatically	incremented	from	5	and	is	therefore
6.

If	the	raw-value	type	is	specified	as	String	and	you	don’t	assign	values	to	the
cases	explicitly,	each	unassigned	case	is	implicitly	assigned	a	string	with	the
same	text	as	the	name	of	that	case.

1 enum	GamePlayMode:	String	{

2 				case	cooperative,	individual,	competitive

3 }

In	the	above	example,	the	raw	value	of	GamePlayMode.cooperative	is
"cooperative",	the	raw	value	of	GamePlayMode.individual	is	"individual",	and
the	raw	value	of	GamePlayMode.competitive	is	"competitive".

Enumerations	that	have	cases	of	a	raw-value	type	implicitly	conform	to	the
RawRepresentable	protocol,	defined	in	the	Swift	standard	library.	As	a	result,
they	have	a	rawValue	property	and	a	failable	initializer	with	the	signature	init?
(rawValue:	RawValue).	You	can	use	the	rawValue	property	to	access	the	raw
value	of	an	enumeration	case,	as	in	ExampleEnum.b.rawValue.	You	can	also	use	a
raw	value	to	find	a	corresponding	case,	if	there	is	one,	by	calling	the
enumeration’s	failable	initializer,	as	in	ExampleEnum(rawValue:	5),	which	returns
an	optional	case.	For	more	information	and	to	see	examples	of	cases	with	raw-
value	types,	see	Raw	Values.

Accessing	Enumeration	Cases
To	reference	the	case	of	an	enumeration	type,	use	dot	(.)	syntax,	as	in
EnumerationType.enumerationCase.	When	the	enumeration	type	can	be	inferred
from	context,	you	can	omit	it	(the	dot	is	still	required),	as	described	in
Enumeration	Syntax	and	Implicit	Member	Expression.

To	check	the	values	of	enumeration	cases,	use	a	switch	statement,	as	shown	in
Matching	Enumeration	Values	with	a	Switch	Statement.	The	enumeration	type	is
pattern-matched	against	the	enumeration	case	patterns	in	the	case	blocks	of	the
switch	statement,	as	described	in	Enumeration	Case	Pattern.

GRAMMAR 	OF 	AN 	ENUMERAT ION 	DECLARAT ION

enum-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 union-style-enum
enum-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 raw-value-style-enum
union-style-enum 	→	 indirectopt 	 enum 	 enum-name 	 generic-parameter-clause 	opt

type-inheritance-clause 	opt 	 generic-where-clause 	opt 	 { 	 union-style-enum-members

opt 	 }
union-style-enum-members 	→	 union-style-enum-member 	 union-style-enum-members 	opt
union-style-enum-member 	→	 declaration 	|	 union-style-enum-case-clause 	|	 compiler-

control-statement
union-style-enum-case-clause 	→	 attributes 	opt 	 indirectopt 	 case 	 union-style-enum-

case-list
union-style-enum-case-list 	→	 union-style-enum-case 	|	 union-style-enum-case 	 , 	 union-

style-enum-case-list
union-style-enum-case 	→	 enum-case-name 	 tuple-type 	opt
enum-name 	→	 identifier
enum-case-name 	→	 identifier
raw-value-style-enum 	→	 enum 	 enum-name 	 generic-parameter-clause 	opt 	 type-

inheritance-clause 	 generic-where-clause 	opt 	 { 	 raw-value-style-enum-members 	 }
raw-value-style-enum-members 	→	 raw-value-style-enum-member 	 raw-value-style-enum-

members 	opt
raw-value-style-enum-member 	→	 declaration 	|	 raw-value-style-enum-case-clause 	|

compiler-control-statement
raw-value-style-enum-case-clause 	→	 attributes 	opt 	 case 	 raw-value-style-enum-case-

list
raw-value-style-enum-case-list 	→	 raw-value-style-enum-case 	|	 raw-value-style-enum-

case 	 , 	 raw-value-style-enum-case-list
raw-value-style-enum-case 	→	 enum-case-name 	 raw-value-assignment 	opt
raw-value-assignment 	→	 = 	 raw-value-literal
raw-value-literal 	→	 numeric-literal 	|	 static-string-literal 	|	 boolean-literal

Structure	Declaration

A	structure	declaration	introduces	a	named	structure	type	into	your	program.
Structure	declarations	are	declared	using	the	struct	keyword	and	have	the
following	form:

	 struct	 structure	name :	 adopted	protocols 	{

	 				 declarations

	 }

The	body	of	a	structure	contains	zero	or	more	declarations.	These	declarations
can	include	both	stored	and	computed	properties,	type	properties,	instance
methods,	type	methods,	initializers,	subscripts,	type	aliases,	and	even	other
structure,	class,	and	enumeration	declarations.	Structure	declarations	can’t
contain	deinitializer	or	protocol	declarations.	For	a	discussion	and	several
examples	of	structures	that	include	various	kinds	of	declarations,	see	Structures

and	Classes.

Structure	types	can	adopt	any	number	of	protocols,	but	can’t	inherit	from
classes,	enumerations,	or	other	structures.

There	are	three	ways	to	create	an	instance	of	a	previously	declared	structure:

Call	one	of	the	initializers	declared	within	the	structure,	as	described	in
Initializers.

If	no	initializers	are	declared,	call	the	structure’s	memberwise	initializer,	as
described	in	Memberwise	Initializers	for	Structure	Types.

If	no	initializers	are	declared,	and	all	properties	of	the	structure	declaration
were	given	initial	values,	call	the	structure’s	default	initializer,	as	described
in	Default	Initializers.

The	process	of	initializing	a	structure’s	declared	properties	is	described	in
Initialization.

Properties	of	a	structure	instance	can	be	accessed	using	dot	(.)	syntax,	as
described	in	Accessing	Properties.

Structures	are	value	types;	instances	of	a	structure	are	copied	when	assigned	to
variables	or	constants,	or	when	passed	as	arguments	to	a	function	call.	For
information	about	value	types,	see	Structures	and	Enumerations	Are	Value
Types.

You	can	extend	the	behavior	of	a	structure	type	with	an	extension	declaration,	as
discussed	in	Extension	Declaration.

GRAMMAR 	OF 	A	 STRUCTURE 	DECLARAT ION

struct-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 struct 	 struct-name
generic-parameter-clause 	opt 	 type-inheritance-clause 	opt 	 generic-where-clause 	opt
struct-body

struct-name 	→	 identifier
struct-body 	→	 { 	 struct-members 	opt 	 }
struct-members 	→	 struct-member 	 struct-members 	opt
struct-member 	→	 declaration 	|	 compiler-control-statement

Class	Declaration

A	class	declaration	introduces	a	named	class	type	into	your	program.	Class
declarations	are	declared	using	the	class	keyword	and	have	the	following	form:

	 class	 class	name :	 superclass ,	 adopted	protocols 	{

	 				 declarations

	 }

The	body	of	a	class	contains	zero	or	more	declarations.	These	declarations	can
include	both	stored	and	computed	properties,	instance	methods,	type	methods,
initializers,	a	single	deinitializer,	subscripts,	type	aliases,	and	even	other	class,
structure,	and	enumeration	declarations.	Class	declarations	can’t	contain
protocol	declarations.	For	a	discussion	and	several	examples	of	classes	that
include	various	kinds	of	declarations,	see	Structures	and	Classes.

A	class	type	can	inherit	from	only	one	parent	class,	its	superclass,	but	can	adopt
any	number	of	protocols.	The	superclass	appears	first	after	the	class	name	and
colon,	followed	by	any	adopted	protocols.	Generic	classes	can	inherit	from	other
generic	and	nongeneric	classes,	but	a	nongeneric	class	can	inherit	only	from
other	nongeneric	classes.	When	you	write	the	name	of	a	generic	superclass	class
after	the	colon,	you	must	include	the	full	name	of	that	generic	class,	including	its
generic	parameter	clause.

As	discussed	in	Initializer	Declaration,	classes	can	have	designated	and
convenience	initializers.	The	designated	initializer	of	a	class	must	initialize	all	of
the	class’s	declared	properties	and	it	must	do	so	before	calling	any	of	its
superclass’s	designated	initializers.

A	class	can	override	properties,	methods,	subscripts,	and	initializers	of	its
superclass.	Overridden	properties,	methods,	subscripts,	and	designated
initializers	must	be	marked	with	the	override	declaration	modifier.

To	require	that	subclasses	implement	a	superclass’s	initializer,	mark	the
superclass’s	initializer	with	the	required	declaration	modifier.	The	subclass’s
implementation	of	that	initializer	must	also	be	marked	with	the	required
declaration	modifier.

Although	properties	and	methods	declared	in	the	superclass	are	inherited	by	the
current	class,	designated	initializers	declared	in	the	superclass	are	only	inherited
when	the	subclass	meets	the	conditions	described	in	Automatic	Initializer
Inheritance.	Swift	classes	do	not	inherit	from	a	universal	base	class.

There	are	two	ways	to	create	an	instance	of	a	previously	declared	class:

Call	one	of	the	initializers	declared	within	the	class,	as	described	in
Initializers.

If	no	initializers	are	declared,	and	all	properties	of	the	class	declaration
were	given	initial	values,	call	the	class’s	default	initializer,	as	described	in
Default	Initializers.

Access	properties	of	a	class	instance	with	dot	(.)	syntax,	as	described	in
Accessing	Properties.

Classes	are	reference	types;	instances	of	a	class	are	referred	to,	rather	than
copied,	when	assigned	to	variables	or	constants,	or	when	passed	as	arguments	to
a	function	call.	For	information	about	reference	types,	see	Structures	and
Enumerations	Are	Value	Types.

You	can	extend	the	behavior	of	a	class	type	with	an	extension	declaration,	as
discussed	in	Extension	Declaration.

GRAMMAR 	OF 	A	CLASS 	DECLARAT ION

class-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 finalopt 	 class 	 class-
name 	 generic-parameter-clause 	opt 	 type-inheritance-clause 	opt 	 generic-where-clause

opt 	 class-body
class-declaration 	→	 attributes 	opt 	 final 	 access-level-modifier 	opt 	 class 	 class-

name 	 generic-parameter-clause 	opt 	 type-inheritance-clause 	opt 	 generic-where-clause

opt 	 class-body
class-name 	→	 identifier
class-body 	→	 { 	 class-members 	opt 	 }
class-members 	→	 class-member 	 class-members 	opt
class-member 	→	 declaration 	|	 compiler-control-statement

Protocol	Declaration

A	protocol	declaration	introduces	a	named	protocol	type	into	your	program.
Protocol	declarations	are	declared	at	global	scope	using	the	protocol	keyword
and	have	the	following	form:

	 protocol	 protocol	name :	 inherited	protocols 	{

	 				 protocol	member	declarations

	 }

The	body	of	a	protocol	contains	zero	or	more	protocol	member	declarations,
which	describe	the	conformance	requirements	that	any	type	adopting	the
protocol	must	fulfill.	In	particular,	a	protocol	can	declare	that	conforming	types
must	implement	certain	properties,	methods,	initializers,	and	subscripts.
Protocols	can	also	declare	special	kinds	of	type	aliases,	called	associated	types,
that	can	specify	relationships	among	the	various	declarations	of	the	protocol.
Protocol	declarations	can’t	contain	class,	structure,	enumeration,	or	other
protocol	declarations.	The	protocol	member	declarations	are	discussed	in	detail
below.

Protocol	types	can	inherit	from	any	number	of	other	protocols.	When	a	protocol
type	inherits	from	other	protocols,	the	set	of	requirements	from	those	other
protocols	are	aggregated,	and	any	type	that	inherits	from	the	current	protocol
must	conform	to	all	those	requirements.	For	an	example	of	how	to	use	protocol
inheritance,	see	Protocol	Inheritance.

NOTE

You	can	also	aggregate	the	conformance	requirements	of	multiple	protocols	using	protocol
composition	types,	as	described	in	Protocol	Composition	Type	and	Protocol	Composition.

You	can	add	protocol	conformance	to	a	previously	declared	type	by	adopting	the
protocol	in	an	extension	declaration	of	that	type.	In	the	extension,	you	must
implement	all	of	the	adopted	protocol’s	requirements.	If	the	type	already
implements	all	of	the	requirements,	you	can	leave	the	body	of	the	extension
declaration	empty.

By	default,	types	that	conform	to	a	protocol	must	implement	all	properties,

methods,	and	subscripts	declared	in	the	protocol.	That	said,	you	can	mark	these
protocol	member	declarations	with	the	optional	declaration	modifier	to	specify
that	their	implementation	by	a	conforming	type	is	optional.	The	optional
modifier	can	be	applied	only	to	members	that	are	marked	with	the	objc	attribute,
and	only	to	members	of	protocols	that	are	marked	with	the	objc	attribute.	As	a
result,	only	class	types	can	adopt	and	conform	to	a	protocol	that	contains
optional	member	requirements.	For	more	information	about	how	to	use	the
optional	declaration	modifier	and	for	guidance	about	how	to	access	optional
protocol	members—for	example,	when	you’re	not	sure	whether	a	conforming
type	implements	them—see	Optional	Protocol	Requirements.

To	restrict	the	adoption	of	a	protocol	to	class	types	only,	include	the	AnyObject
protocol	in	the	inherited	protocols	list	after	the	colon.	For	example,	the
following	protocol	can	be	adopted	only	by	class	types:

1 protocol	SomeProtocol:	AnyObject	{

2 				/*	Protocol	members	go	here	*/

3 }

Any	protocol	that	inherits	from	a	protocol	that’s	marked	with	the	AnyObject
requirement	can	likewise	be	adopted	only	by	class	types.

NOTE

If	a	protocol	is	marked	with	the	objc	attribute,	the	AnyObject	requirement	is	implicitly	applied	to
that	protocol;	there’s	no	need	to	mark	the	protocol	with	the	AnyObject	requirement	explicitly.

Protocols	are	named	types,	and	thus	they	can	appear	in	all	the	same	places	in
your	code	as	other	named	types,	as	discussed	in	Protocols	as	Types.	However,
you	can’t	construct	an	instance	of	a	protocol,	because	protocols	do	not	actually
provide	the	implementations	for	the	requirements	they	specify.

You	can	use	protocols	to	declare	which	methods	a	delegate	of	a	class	or	structure
should	implement,	as	described	in	Delegation.

GRAMMAR 	OF 	A	 PROTOCOL	DECLARAT ION

protocol-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 protocol 	 protocol-

name 	 type-inheritance-clause 	opt 	 generic-where-clause 	opt 	 protocol-body
protocol-name 	→	 identifier
protocol-body 	→	 { 	 protocol-members 	opt 	 }
protocol-members 	→	 protocol-member 	 protocol-members 	opt
protocol-member 	→	 protocol-member-declaration 	|	 compiler-control-statement
protocol-member-declaration 	→	 protocol-property-declaration
protocol-member-declaration 	→	 protocol-method-declaration
protocol-member-declaration 	→	 protocol-initializer-declaration
protocol-member-declaration 	→	 protocol-subscript-declaration
protocol-member-declaration 	→	 protocol-associated-type-declaration
protocol-member-declaration 	→	 typealias-declaration

Protocol	Property	Declaration
Protocols	declare	that	conforming	types	must	implement	a	property	by	including
a	protocol	property	declaration	in	the	body	of	the	protocol	declaration.	Protocol
property	declarations	have	a	special	form	of	a	variable	declaration:

	 var	 property	name :	 type 	{	get	set	}

As	with	other	protocol	member	declarations,	these	property	declarations	declare
only	the	getter	and	setter	requirements	for	types	that	conform	to	the	protocol.	As
a	result,	you	don’t	implement	the	getter	or	setter	directly	in	the	protocol	in	which
it	is	declared.

The	getter	and	setter	requirements	can	be	satisfied	by	a	conforming	type	in	a
variety	of	ways.	If	a	property	declaration	includes	both	the	get	and	set
keywords,	a	conforming	type	can	implement	it	with	a	stored	variable	property	or
a	computed	property	that	is	both	readable	and	writeable	(that	is,	one	that
implements	both	a	getter	and	a	setter).	However,	that	property	declaration	can’t
be	implemented	as	a	constant	property	or	a	read-only	computed	property.	If	a
property	declaration	includes	only	the	get	keyword,	it	can	be	implemented	as
any	kind	of	property.	For	examples	of	conforming	types	that	implement	the
property	requirements	of	a	protocol,	see	Property	Requirements.

To	declare	a	type	property	requirement	in	a	protocol	declaration,	mark	the
property	declaration	with	the	static	keyword.	Structures	and	enumerations	that
conform	to	the	protocol	declare	the	property	with	the	static	keyword,	and

classes	that	conform	to	the	protocol	declare	the	property	with	either	the	static
or	class	keyword.	Extensions	that	add	protocol	conformance	to	a	structure,
enumeration,	or	class	use	the	same	keyword	as	the	type	they	extend	uses.
Extensions	that	provide	a	default	implementation	for	a	type	property	requirement
use	the	static	keyword.

See	also	Variable	Declaration.

GRAMMAR 	OF 	A	 PROTOCOL	PROPERTY 	DECLARAT ION

protocol-property-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation
getter-setter-keyword-block

Protocol	Method	Declaration
Protocols	declare	that	conforming	types	must	implement	a	method	by	including
a	protocol	method	declaration	in	the	body	of	the	protocol	declaration.	Protocol
method	declarations	have	the	same	form	as	function	declarations,	with	two
exceptions:	They	don’t	include	a	function	body,	and	you	can’t	provide	any
default	parameter	values	as	part	of	the	function	declaration.	For	examples	of
conforming	types	that	implement	the	method	requirements	of	a	protocol,	see
Method	Requirements.

To	declare	a	class	or	static	method	requirement	in	a	protocol	declaration,	mark
the	method	declaration	with	the	static	declaration	modifier.	Structures	and
enumerations	that	conform	to	the	protocol	declare	the	method	with	the	static
keyword,	and	classes	that	conform	to	the	protocol	declare	the	method	with	either
the	static	or	class	keyword.	Extensions	that	add	protocol	conformance	to	a
structure,	enumeration,	or	class	use	the	same	keyword	as	the	type	they	extend
uses.	Extensions	that	provide	a	default	implementation	for	a	type	method
requirement	use	the	static	keyword.

See	also	Function	Declaration.

GRAMMAR 	OF 	A	 PROTOCOL	METHOD 	DECLARAT ION

protocol-method-declaration 	→	 function-head 	 function-name 	 generic-parameter-clause
opt 	 function-signature 	 generic-where-clause 	opt

Protocol	Initializer	Declaration
Protocols	declare	that	conforming	types	must	implement	an	initializer	by
including	a	protocol	initializer	declaration	in	the	body	of	the	protocol
declaration.	Protocol	initializer	declarations	have	the	same	form	as	initializer
declarations,	except	they	don’t	include	the	initializer’s	body.

A	conforming	type	can	satisfy	a	nonfailable	protocol	initializer	requirement	by
implementing	a	nonfailable	initializer	or	an	init!	failable	initializer.	A
conforming	type	can	satisfy	a	failable	protocol	initializer	requirement	by
implementing	any	kind	of	initializer.

When	a	class	implements	an	initializer	to	satisfy	a	protocol’s	initializer
requirement,	the	initializer	must	be	marked	with	the	required	declaration
modifier	if	the	class	is	not	already	marked	with	the	final	declaration	modifier.

See	also	Initializer	Declaration.

GRAMMAR 	OF 	A	 PROTOCOL	 I N I T I A L I ZER 	DECLARAT ION

protocol-initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt
parameter-clause 	 throwsopt 	 generic-where-clause 	opt

protocol-initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt
parameter-clause 	 rethrows 	 generic-where-clause 	opt

Protocol	Subscript	Declaration
Protocols	declare	that	conforming	types	must	implement	a	subscript	by	including
a	protocol	subscript	declaration	in	the	body	of	the	protocol	declaration.	Protocol
subscript	declarations	have	a	special	form	of	a	subscript	declaration:

	 subscript	(parameters)	->	 return	type 	{	get	set	}

Subscript	declarations	only	declare	the	minimum	getter	and	setter
implementation	requirements	for	types	that	conform	to	the	protocol.	If	the
subscript	declaration	includes	both	the	get	and	set	keywords,	a	conforming	type
must	implement	both	a	getter	and	a	setter	clause.	If	the	subscript	declaration
includes	only	the	get	keyword,	a	conforming	type	must	implement	at	least	a

getter	clause	and	optionally	can	implement	a	setter	clause.

To	declare	a	static	subscript	requirement	in	a	protocol	declaration,	mark	the
subscript	declaration	with	the	static	declaration	modifier.	Structures	and
enumerations	that	conform	to	the	protocol	declare	the	subscript	with	the	static
keyword,	and	classes	that	conform	to	the	protocol	declare	the	subscript	with
either	the	static	or	class	keyword.	Extensions	that	add	protocol	conformance	to
a	structure,	enumeration,	or	class	use	the	same	keyword	as	the	type	they	extend
uses.	Extensions	that	provide	a	default	implementation	for	a	static	subscript
requirement	use	the	static	keyword.

See	also	Subscript	Declaration.

GRAMMAR 	OF 	A	 PROTOCOL	SUBSCR IPT 	DECLARAT ION

protocol-subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause
opt 	 getter-setter-keyword-block

Protocol	Associated	Type	Declaration
Protocols	declare	associated	types	using	the	associatedtype	keyword.	An
associated	type	provides	an	alias	for	a	type	that	is	used	as	part	of	a	protocol’s
declaration.	Associated	types	are	similar	to	type	parameters	in	generic	parameter
clauses,	but	they’re	associated	with	Self	in	the	protocol	in	which	they’re
declared.	In	that	context,	Self	refers	to	the	eventual	type	that	conforms	to	the
protocol.	For	more	information	and	examples,	see	Associated	Types.

You	use	a	generic	where	clause	in	a	protocol	declaration	to	add	constraints	to	an
associated	types	inherited	from	another	protocol,	without	redeclaring	the
associated	types.	For	example,	the	declarations	of	SubProtocol	below	are
equivalent:

1 protocol	SomeProtocol	{

2 				associatedtype	SomeType

3 }

4

5 protocol	SubProtocolA:	SomeProtocol	{

6 				//	This	syntax	produces	a	warning.

7 				associatedtype	SomeType:	Equatable

8 }

9

10 //	This	syntax	is	preferred.

11 protocol	SubProtocolB:	SomeProtocol	where	SomeType:	Equatable	

{	}

See	also	Type	Alias	Declaration.

GRAMMAR 	OF 	A	 PROTOCOL	ASSOC IATED 	TYPE 	DECLARAT ION

protocol-associated-type-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt
associatedtype 	 typealias-name 	 type-inheritance-clause 	opt 	 typealias-assignment

opt 	 generic-where-clause 	opt

Initializer	Declaration

An	initializer	declaration	introduces	an	initializer	for	a	class,	structure,	or
enumeration	into	your	program.	Initializer	declarations	are	declared	using	the
init	keyword	and	have	two	basic	forms.

Structure,	enumeration,	and	class	types	can	have	any	number	of	initializers,	but
the	rules	and	associated	behavior	for	class	initializers	are	different.	Unlike
structures	and	enumerations,	classes	have	two	kinds	of	initializers:	designated
initializers	and	convenience	initializers,	as	described	in	Initialization.

The	following	form	declares	initializers	for	structures,	enumerations,	and
designated	initializers	of	classes:

	 init(parameters)	{

	 				 statements

	 }

A	designated	initializer	of	a	class	initializes	all	of	the	class’s	properties	directly.
It	can’t	call	any	other	initializers	of	the	same	class,	and	if	the	class	has	a
superclass,	it	must	call	one	of	the	superclass’s	designated	initializers.	If	the	class
inherits	any	properties	from	its	superclass,	one	of	the	superclass’s	designated
initializers	must	be	called	before	any	of	these	properties	can	be	set	or	modified
in	the	current	class.

Designated	initializers	can	be	declared	in	the	context	of	a	class	declaration	only
and	therefore	can’t	be	added	to	a	class	using	an	extension	declaration.

Initializers	in	structures	and	enumerations	can	call	other	declared	initializers	to
delegate	part	or	all	of	the	initialization	process.

To	declare	convenience	initializers	for	a	class,	mark	the	initializer	declaration
with	the	convenience	declaration	modifier.

	 convenience	init(parameters)	{

	 				 statements

	 }

Convenience	initializers	can	delegate	the	initialization	process	to	another
convenience	initializer	or	to	one	of	the	class’s	designated	initializers.	That	said,
the	initialization	processes	must	end	with	a	call	to	a	designated	initializer	that
ultimately	initializes	the	class’s	properties.	Convenience	initializers	can’t	call	a
superclass’s	initializers.

You	can	mark	designated	and	convenience	initializers	with	the	required
declaration	modifier	to	require	that	every	subclass	implement	the	initializer.	A
subclass’s	implementation	of	that	initializer	must	also	be	marked	with	the
required	declaration	modifier.

By	default,	initializers	declared	in	a	superclass	are	not	inherited	by	subclasses.
That	said,	if	a	subclass	initializes	all	of	its	stored	properties	with	default	values
and	doesn’t	define	any	initializers	of	its	own,	it	inherits	all	of	the	superclass’s
initializers.	If	the	subclass	overrides	all	of	the	superclass’s	designated	initializers,
it	inherits	the	superclass’s	convenience	initializers.

As	with	methods,	properties,	and	subscripts,	you	need	to	mark	overridden

designated	initializers	with	the	override	declaration	modifier.

NOTE

If	you	mark	an	initializer	with	the	required	declaration	modifier,	you	don’t	also	mark	the
initializer	with	the	override	modifier	when	you	override	the	required	initializer	in	a	subclass.

Just	like	functions	and	methods,	initializers	can	throw	or	rethrow	errors.	And	just
like	functions	and	methods,	you	use	the	throws	or	rethrows	keyword	after	an
initializer’s	parameters	to	indicate	the	appropriate	behavior.

To	see	examples	of	initializers	in	various	type	declarations,	see	Initialization.

Failable	Initializers
A	failable	initializer	is	a	type	of	initializer	that	produces	an	optional	instance	or
an	implicitly	unwrapped	optional	instance	of	the	type	the	initializer	is	declared
on.	As	a	result,	a	failable	initializer	can	return	nil	to	indicate	that	initialization
failed.

To	declare	a	failable	initializer	that	produces	an	optional	instance,	append	a
question	mark	to	the	init	keyword	in	the	initializer	declaration	(init?).	To
declare	a	failable	initializer	that	produces	an	implicitly	unwrapped	optional
instance,	append	an	exclamation	mark	instead	(init!).	The	example	below
shows	an	init?	failable	initializer	that	produces	an	optional	instance	of	a
structure.

1 struct	SomeStruct	{

2 				let	property:	String

3 				//	produces	an	optional	instance	of	'SomeStruct'

4 				init?(input:	String)	{

5 								if	input.isEmpty	{

6 												//	discard	'self'	and	return	'nil'

7 												return	nil

8 								}

9 								property	=	input

10 				}

11 }

You	call	an	init?	failable	initializer	in	the	same	way	that	you	call	a	nonfailable
initializer,	except	that	you	must	deal	with	the	optionality	of	the	result.

1 if	let	actualInstance	=	SomeStruct(input:	"Hello")	{

2 				//	do	something	with	the	instance	of	'SomeStruct'

3 }	else	{

4 				//	initialization	of	'SomeStruct'	failed	and	the	

initializer	returned	'nil'

5 }

A	failable	initializer	can	return	nil	at	any	point	in	the	implementation	of	the
initializer’s	body.

A	failable	initializer	can	delegate	to	any	kind	of	initializer.	A	nonfailable
initializer	can	delegate	to	another	nonfailable	initializer	or	to	an	init!	failable
initializer.	A	nonfailable	initializer	can	delegate	to	an	init?	failable	initializer	by
force-unwrapping	the	result	of	the	superclass’s	initializer—for	example,	by
writing	super.init()!.

Initialization	failure	propagates	through	initializer	delegation.	Specifically,	if	a
failable	initializer	delegates	to	an	initializer	that	fails	and	returns	nil,	then	the
initializer	that	delegated	also	fails	and	implicitly	returns	nil.	If	a	nonfailable
initializer	delegates	to	an	init!	failable	initializer	that	fails	and	returns	nil,	then
a	runtime	error	is	raised	(as	if	you	used	the	!	operator	to	unwrap	an	optional	that
has	a	nil	value).

A	failable	designated	initializer	can	be	overridden	in	a	subclass	by	any	kind	of
designated	initializer.	A	nonfailable	designated	initializer	can	be	overridden	in	a
subclass	by	a	nonfailable	designated	initializer	only.

For	more	information	and	to	see	examples	of	failable	initializers,	see	Failable

Initializers.

GRAMMAR 	OF 	AN 	 I N I T I A L I ZER 	DECLARAT ION

initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt 	 parameter-clause
throwsopt 	 generic-where-clause 	opt 	 initializer-body

initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt 	 parameter-clause
rethrows 	 generic-where-clause 	opt 	 initializer-body

initializer-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 init
initializer-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 init 	 ?
initializer-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 init 	 !
initializer-body 	→	 code-block

Deinitializer	Declaration

A	deinitializer	declaration	declares	a	deinitializer	for	a	class	type.	Deinitializers
take	no	parameters	and	have	the	following	form:

	 deinit	{

	 				 statements

	 }

A	deinitializer	is	called	automatically	when	there	are	no	longer	any	references	to
a	class	object,	just	before	the	class	object	is	deallocated.	A	deinitializer	can	be
declared	only	in	the	body	of	a	class	declaration—but	not	in	an	extension	of	a
class—and	each	class	can	have	at	most	one.

A	subclass	inherits	its	superclass’s	deinitializer,	which	is	implicitly	called	just
before	the	subclass	object	is	deallocated.	The	subclass	object	is	not	deallocated
until	all	deinitializers	in	its	inheritance	chain	have	finished	executing.

Deinitializers	are	not	called	directly.

For	an	example	of	how	to	use	a	deinitializer	in	a	class	declaration,	see
Deinitialization.

GRAMMAR 	OF 	A	DE IN I T I A L I ZER 	DECLARAT ION

deinitializer-declaration 	→	 attributes 	opt 	 deinit 	 code-block

Extension	Declaration

An	extension	declaration	allows	you	to	extend	the	behavior	of	existing	types.
Extension	declarations	are	declared	using	the	extension	keyword	and	have	the
following	form:

	 extension	 type	name 	where	 requirements 	{

	 				 declarations

	 }

The	body	of	an	extension	declaration	contains	zero	or	more	declarations.	These
declarations	can	include	computed	properties,	computed	type	properties,
instance	methods,	type	methods,	initializers,	subscript	declarations,	and	even
class,	structure,	and	enumeration	declarations.	Extension	declarations	can’t
contain	deinitializer	or	protocol	declarations,	stored	properties,	property
observers,	or	other	extension	declarations.	Declarations	in	a	protocol	extension
can’t	be	marked	final.	For	a	discussion	and	several	examples	of	extensions	that
include	various	kinds	of	declarations,	see	Extensions.

If	the	type	name	is	a	class,	structure,	or	enumeration	type,	the	extension	extends
that	type.	If	the	type	name	is	a	protocol	type,	the	extension	extends	all	types	that
conform	to	that	protocol.

Extension	declarations	that	extend	a	generic	type	or	a	protocol	with	associated
types	can	include	requirements.	If	an	instance	of	the	extended	type	or	of	a	type
that	conforms	to	the	extended	protocol	satisfies	the	requirements,	the	instance
gains	the	behavior	specified	in	the	declaration.

Extension	declarations	can	contain	initializer	declarations.	That	said,	if	the	type
you’re	extending	is	defined	in	another	module,	an	initializer	declaration	must
delegate	to	an	initializer	already	defined	in	that	module	to	ensure	members	of
that	type	are	properly	initialized.

Properties,	methods,	and	initializers	of	an	existing	type	can’t	be	overridden	in	an
extension	of	that	type.

Extension	declarations	can	add	protocol	conformance	to	an	existing	class,
structure,	or	enumeration	type	by	specifying	adopted	protocols:

	 extension	 type	name :	 adopted	protocols 	where	 requirements 	

{

	 				 declarations

	 }

Extension	declarations	can’t	add	class	inheritance	to	an	existing	class,	and
therefore	you	can	specify	only	a	list	of	protocols	after	the	type	name	and	colon.

Conditional	Conformance
You	can	extend	a	generic	type	to	conditionally	conform	to	a	protocol,	so	that
instances	of	the	type	conform	to	the	protocol	only	when	certain	requirements	are
met.	You	add	conditional	conformance	to	a	protocol	by	including	requirements
in	an	extension	declaration.

Overridden	Requirements	Aren’t	Used	in	Some	Generic	Contexts

In	some	generic	contexts,	types	that	get	behavior	from	conditional	conformance
to	a	protocol	don’t	always	use	the	specialized	implementations	of	that	protocol’s
requirements.	To	illustrate	this	behavior,	the	following	example	defines	two
protocols	and	a	generic	type	that	conditionally	conforms	to	both	protocols.

1 protocol	Loggable	{

2 				func	log()

3 }

4 extension	Loggable	{

5 				func	log()	{

6 								print(self)

7 				}

8 }

9

10 protocol	TitledLoggable:	Loggable	{

11 				static	var	logTitle:	String	{	get	}

12 }

13 extension	TitledLoggable	{

14 				func	log()	{

15 								print("\(Self.logTitle):	\(self)")

16 				}

17 }

18

19 struct	Pair<T>:	CustomStringConvertible	{

20 				let	first:	T

21 				let	second:	T

22 				var	description:	String	{

23 								return	"(\(first),	\(second))"

24 				}

25 }

26

27 extension	Pair:	Loggable	where	T:	Loggable	{	}

28 extension	Pair:	TitledLoggable	where	T:	TitledLoggable	{

29 				static	var	logTitle:	String	{

30 								return	"Pair	of	'\(T.logTitle)'"

31 				}

32 }

33

34 extension	String:	TitledLoggable	{

35 				static	var	logTitle:	String	{

36 								return	"String"

37 				}

38 }

The	Pair	structure	conforms	to	Loggable	and	TitledLoggable	whenever	its
generic	type	conforms	to	Loggable	or	TitledLoggable,	respectively.	In	the
example	below,	oneAndTwo	is	an	instance	of	Pair<String>,	which	conforms	to
TitledLoggable	because	String	conforms	to	TitledLoggable.	When	the	log()
method	is	called	on	oneAndTwo	directly,	the	specialized	version	containing	the
title	string	is	used.

1 let	oneAndTwo	=	Pair(first:	"one",	second:	"two")

2 oneAndTwo.log()

3 //	Prints	"Pair	of	'String':	(one,	two)"

However,	when	oneAndTwo	is	used	in	a	generic	context	or	as	an	instance	of	the
Loggable	protocol,	the	specialized	version	isn’t	used.	Swift	picks	which
implementation	of	log()	to	call	by	consulting	only	the	minimum	requirements
that	Pair	needs	to	conform	to	Loggable.	For	this	reason,	the	default
implementation	provided	by	the	Loggable	protocol	is	used	instead.

1 func	doSomething<T:	Loggable>(with	x:	T)	{

2 				x.log()

3 }

4 doSomething(with:	oneAndTwo)

5 //	Prints	"(one,	two)"

When	log()	is	called	on	the	instance	that’s	passed	to	doSomething(_:),	the
customized	title	is	omitted	from	the	logged	string.

Protocol	Conformance	Must	Not	Be	Redundant
A	concrete	type	can	conform	to	a	particular	protocol	only	once.	Swift	marks
redundant	protocol	conformances	as	an	error.	You’re	likely	to	encounter	this
kind	of	error	in	two	kinds	of	situations.	The	first	situation	is	when	you	explicitly

conform	to	the	same	protocol	multiple	times,	but	with	different	requirements.
The	second	situation	is	when	you	implicitly	inherit	from	the	same	protocol
multiple	times.	These	situations	are	discussed	in	the	sections	below.

Resolving	Explicit	Redundancy

Multiple	extensions	on	a	concrete	type	can’t	add	conformance	to	the	same
protocol,	even	if	the	extensions’	requirements	are	mutually	exclusive.	This
restriction	is	demonstrated	in	the	example	below.	Two	extension	declarations
attempt	to	add	conditional	conformance	to	the	Serializable	protocol,	one	for	for
arrays	with	Int	elements,	and	one	for	arrays	with	String	elements.

1 protocol	Serializable	{

2 				func	serialize()	->	Any

3 }

4

5 extension	Array:	Serializable	where	Element	==	Int	{

6 				func	serialize()	->	Any	{

7 								//	implementation

8 				}

9 }

10 extension	Array:	Serializable	where	Element	==	String	{

11 				func	serialize()	->	Any	{

12 								//	implementation

13 				}

14 }

15 //	Error:	redundant	conformance	of	'Array<Element>'	to	

protocol	'Serializable'

If	you	need	to	add	conditional	conformance	based	on	multiple	concrete	types,
create	a	new	protocol	that	each	type	can	conform	to	and	use	that	protocol	as	the
requirement	when	declaring	conditional	conformance.

1 protocol	SerializableInArray	{	}

2 extension	Int:	SerializableInArray	{	}

3 extension	String:	SerializableInArray	{	}

4

5 extension	Array:	Serializable	where	Element:	

SerializableInArray	{

6 				func	serialize()	->	Any	{

7 								//	implementation

8 				}

9 }

Resolving	Implicit	Redundancy

When	a	concrete	type	conditionally	conforms	to	a	protocol,	that	type	implicitly
conforms	to	any	parent	protocols	with	the	same	requirements.

If	you	need	a	type	to	conditionally	conform	to	two	protocols	that	inherit	from	a
single	parent,	explicitly	declare	conformance	to	the	parent	protocol.	This	avoids
implicitly	conforming	to	the	parent	protocol	twice	with	different	requirements.

The	following	example	explicitly	declares	the	conditional	conformance	of	Array
to	Loggable	to	avoid	a	conflict	when	declaring	its	conditional	conformance	to
both	TitledLoggable	and	the	new	MarkedLoggable	protocol.

1 protocol	MarkedLoggable:	Loggable	{

2 				func	markAndLog()

3 }

4

5 extension	MarkedLoggable	{

6 				func	markAndLog()	{

7 								print("----------")

8 								log()

9 				}

10 }

11

12 extension	Array:	Loggable	where	Element:	Loggable	{	}

13 extension	Array:	TitledLoggable	where	Element:	TitledLoggable	

{

14 				static	var	logTitle:	String	{

15 								return	"Array	of	'\(Element.logTitle)'"

16 				}

17 }

18 extension	Array:	MarkedLoggable	where	Element:	MarkedLoggable	

{	}

Without	the	extension	to	explicitly	declare	conditional	conformance	to	Loggable,
the	other	Array	extensions	would	implicitly	create	these	declarations,	resulting	in
an	error:

1 extension	Array:	Loggable	where	Element:	TitledLoggable	{	}

2 extension	Array:	Loggable	where	Element:	MarkedLoggable	{	}

3 //	Error:	redundant	conformance	of	'Array<Element>'	to	protocol	

'Loggable'

GRAMMAR 	OF 	AN 	EXTENS ION 	DECLARAT ION

extension-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 extension 	 type-
identifier 	 type-inheritance-clause 	opt 	 generic-where-clause 	opt 	 extension-body

extension-body 	→	 { 	 extension-members 	opt 	 }
extension-members 	→	 extension-member 	 extension-members 	opt
extension-member 	→	 declaration 	|	 compiler-control-statement

Subscript	Declaration

A	subscript	declaration	allows	you	to	add	subscripting	support	for	objects	of	a
particular	type	and	are	typically	used	to	provide	a	convenient	syntax	for
accessing	the	elements	in	a	collection,	list,	or	sequence.	Subscript	declarations
are	declared	using	the	subscript	keyword	and	have	the	following	form:

	 subscript	(parameters)	->	 return	type 	{

	 				get	{

	 								 statements

	 				}

	 				set(setter	name)	{

	 								 statements

	 				}

	 }

Subscript	declarations	can	appear	only	in	the	context	of	a	class,	structure,
enumeration,	extension,	or	protocol	declaration.

The	parameters	specify	one	or	more	indexes	used	to	access	elements	of	the
corresponding	type	in	a	subscript	expression	(for	example,	the	i	in	the
expression	object[i]).	Although	the	indexes	used	to	access	the	elements	can	be
of	any	type,	each	parameter	must	include	a	type	annotation	to	specify	the	type	of
each	index.	The	return	type	specifies	the	type	of	the	element	being	accessed.

As	with	computed	properties,	subscript	declarations	support	reading	and	writing
the	value	of	the	accessed	elements.	The	getter	is	used	to	read	the	value,	and	the
setter	is	used	to	write	the	value.	The	setter	clause	is	optional,	and	when	only	a
getter	is	needed,	you	can	omit	both	clauses	and	simply	return	the	requested	value
directly.	That	said,	if	you	provide	a	setter	clause,	you	must	also	provide	a	getter
clause.

The	setter	name	and	enclosing	parentheses	are	optional.	If	you	provide	a	setter
name,	it	is	used	as	the	name	of	the	parameter	to	the	setter.	If	you	do	not	provide
a	setter	name,	the	default	parameter	name	to	the	setter	is	value.	The	type	of	the
parameter	to	the	setter	is	the	same	as	the	return	type.

You	can	overload	a	subscript	declaration	in	the	type	in	which	it	is	declared,	as

long	as	the	parameters	or	the	return	type	differ	from	the	one	you’re	overloading.
You	can	also	override	a	subscript	declaration	inherited	from	a	superclass.	When
you	do	so,	you	must	mark	the	overridden	subscript	declaration	with	the	override
declaration	modifier.

Subscript	parameters	follow	the	same	rules	as	function	parameters,	with	two
exceptions.	By	default,	the	parameters	used	in	subscripting	don’t	have	argument
labels,	unlike	functions,	methods,	and	initializers.	However,	you	can	provide
explicit	argument	labels	using	the	same	syntax	that	functions,	methods,	and
initializers	use.	In	addition,	subscripts	can’t	have	in-out	parameters.

You	can	also	declare	subscripts	in	the	context	of	a	protocol	declaration,	as
described	in	Protocol	Subscript	Declaration.

For	more	information	about	subscripting	and	to	see	examples	of	subscript
declarations,	see	Subscripts.

Type	Subscript	Declarations
To	declare	a	subscript	that’s	exposed	by	the	type,	rather	than	by	instances	of	the
type,	mark	the	subscript	declaration	with	the	static	declaration	modifier.
Classes	can	mark	type	computed	properties	with	the	class	declaration	modifier
instead	to	allow	subclasses	to	override	the	superclass’s	implementation.	In	a
class	declaration,	the	static	keyword	has	the	same	effect	as	marking	the
declaration	with	both	the	class	and	final	declaration	modifiers.

GRAMMAR 	OF 	A	 SUBSCR IPT 	DECLARAT ION

subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause 	opt 	 code-
block

subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause 	opt 	 getter-
setter-block

subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause 	opt 	 getter-
setter-keyword-block

subscript-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 subscript 	 generic-
parameter-clause 	opt 	 parameter-clause

subscript-result 	→	 -> 	 attributes 	opt 	 type

Operator	Declaration

An	operator	declaration	introduces	a	new	infix,	prefix,	or	postfix	operator	into
your	program	and	is	declared	using	the	operator	keyword.

You	can	declare	operators	of	three	different	fixities:	infix,	prefix,	and	postfix.
The	fixity	of	an	operator	specifies	the	relative	position	of	an	operator	to	its
operands.

There	are	three	basic	forms	of	an	operator	declaration,	one	for	each	fixity.	The
fixity	of	the	operator	is	specified	by	marking	the	operator	declaration	with	the
infix,	prefix,	or	postfix	declaration	modifier	before	the	operator	keyword.	In
each	form,	the	name	of	the	operator	can	contain	only	the	operator	characters
defined	in	Operators.

The	following	form	declares	a	new	infix	operator:

	 infix	operator	 operator	name :	 precedence	group

An	infix	operator	is	a	binary	operator	that	is	written	between	its	two	operands,
such	as	the	familiar	addition	operator	(+)	in	the	expression	1	+	2.

Infix	operators	can	optionally	specify	a	precedence	group.	If	you	omit	the
precedence	group	for	an	operator,	Swift	uses	the	default	precedence	group,
DefaultPrecedence,	which	specifies	a	precedence	just	higher	than
TernaryPrecedence.	For	more	information,	see	Precedence	Group	Declaration.

The	following	form	declares	a	new	prefix	operator:

	 prefix	operator	 operator	name

A	prefix	operator	is	a	unary	operator	that	is	written	immediately	before	its
operand,	such	as	the	prefix	logical	NOT	operator	(!)	in	the	expression	!a.

Prefix	operators	declarations	don’t	specify	a	precedence	level.	Prefix	operators
are	nonassociative.

The	following	form	declares	a	new	postfix	operator:

	 postfix	operator	 operator	name

A	postfix	operator	is	a	unary	operator	that	is	written	immediately	after	its
operand,	such	as	the	postfix	forced-unwrap	operator	(!)	in	the	expression	a!.

As	with	prefix	operators,	postfix	operator	declarations	don’t	specify	a
precedence	level.	Postfix	operators	are	nonassociative.

After	declaring	a	new	operator,	you	implement	it	by	declaring	a	static	method
that	has	the	same	name	as	the	operator.	The	static	method	is	a	member	of	one	of
the	types	whose	values	the	operator	takes	as	an	argument—for	example,	an
operator	that	multiplies	a	Double	by	an	Int	is	implemented	as	a	static	method	on
either	the	Double	or	Int	structure.	If	you’re	implementing	a	prefix	or	postfix
operator,	you	must	also	mark	that	method	declaration	with	the	corresponding
prefix	or	postfix	declaration	modifier.	To	see	an	example	of	how	to	create	and
implement	a	new	operator,	see	Custom	Operators.

GRAMMAR 	OF 	AN 	OPERATOR 	DECLARAT ION

operator-declaration 	→	 prefix-operator-declaration 	|	 postfix-operator-declaration 	|	 infix-
operator-declaration

prefix-operator-declaration 	→	 prefix 	 operator 	 operator
postfix-operator-declaration 	→	 postfix 	 operator 	 operator
infix-operator-declaration 	→	 infix 	 operator 	 operator 	 infix-operator-group 	opt
infix-operator-group 	→	 : 	 precedence-group-name

Precedence	Group	Declaration

A	precedence	group	declaration	introduces	a	new	grouping	for	infix	operator
precedence	into	your	program.	The	precedence	of	an	operator	specifies	how
tightly	the	operator	binds	to	its	operands,	in	the	absence	of	grouping	parentheses.

A	precedence	group	declaration	has	the	following	form:

	 precedencegroup	 precedence	group	name 	{

	 				higherThan:	 lower	group	names

	 				lowerThan:	 higher	group	names

	 				associativity:	 associativity

	 				assignment:	 assignment

	 }

The	lower	group	names	and	higher	group	names	lists	specify	the	new
precedence	group’s	relation	to	existing	precedence	groups.	The	lowerThan
precedence	group	attribute	may	only	be	used	to	refer	to	precedence	groups
declared	outside	of	the	current	module.	When	two	operators	compete	with	each
other	for	their	operands,	such	as	in	the	expression	2	+	3	*	5,	the	operator	with
the	higher	relative	precedence	binds	more	tightly	to	its	operands.

NOTE

Precedence	groups	related	to	each	other	using	lower	group	names	and	higher	group	names	must	fit
into	a	single	relational	hierarchy,	but	they	don’t	have	to	form	a	linear	hierarchy.	This	means	it	is
possible	to	have	precedence	groups	with	undefined	relative	precedence.	Operators	from	those
precedence	groups	can’t	be	used	next	to	each	other	without	grouping	parentheses.

Swift	defines	numerous	precedence	groups	to	go	along	with	the	operators
provided	by	the	standard	library.	For	example,	the	addition	(+)	and	subtraction	(-
)	operators	belong	to	the	AdditionPrecedence	group,	and	the	multiplication	(*)
and	division	(/)	operators	belong	to	the	MultiplicationPrecedence	group.	For	a
complete	list	of	precedence	groups	provided	by	the	Swift	standard	library,	see
Operator	Declarations.

The	associativity	of	an	operator	specifies	how	a	sequence	of	operators	with	the
same	precedence	level	are	grouped	together	in	the	absence	of	grouping
parentheses.	You	specify	the	associativity	of	an	operator	by	writing	one	of	the
context-sensitive	keywords	left,	right,	or	none—if	your	omit	the	associativity,
the	default	is	none.	Operators	that	are	left-associative	group	left-to-right.	For
example,	the	subtraction	operator	(-)	is	left-associative,	so	the	expression	4	-	5
-	6	is	grouped	as	(4	-	5)	-	6	and	evaluates	to	-7.	Operators	that	are	right-
associative	group	right-to-left,	and	operators	that	are	specified	with	an
associativity	of	none	don’t	associate	at	all.	Nonassociative	operators	of	the	same
precedence	level	can’t	appear	adjacent	to	each	to	other.	For	example,	the	<
operator	has	an	associativity	of	none,	which	means	1	<	2	<	3	is	not	a	valid
expression.

https://developer.apple.com/documentation/swift/operator_declarations

The	assignment	of	a	precedence	group	specifies	the	precedence	of	an	operator
when	used	in	an	operation	that	includes	optional	chaining.	When	set	to	true,	an
operator	in	the	corresponding	precedence	group	uses	the	same	grouping	rules
during	optional	chaining	as	the	assignment	operators	from	the	standard	library.
Otherwise,	when	set	to	false	or	omitted,	operators	in	the	precedence	group
follows	the	same	optional	chaining	rules	as	operators	that	don’t	perform
assignment.

GRAMMAR 	OF 	A	 PRECEDENCE 	GROUP 	DECLARAT ION

precedence-group-declaration 	→	 precedencegroup 	 precedence-group-name 	 {
precedence-group-attributes 	opt 	 }

precedence-group-attributes 	→	 precedence-group-attribute 	 precedence-group-attributes
opt

precedence-group-attribute 	→	 precedence-group-relation
precedence-group-attribute 	→	 precedence-group-assignment
precedence-group-attribute 	→	 precedence-group-associativity
precedence-group-relation 	→	 higherThan 	 : 	 precedence-group-names
precedence-group-relation 	→	 lowerThan 	 : 	 precedence-group-names
precedence-group-assignment 	→	 assignment 	 : 	 boolean-literal
precedence-group-associativity 	→	 associativity 	 : 	 left
precedence-group-associativity 	→	 associativity 	 : 	 right
precedence-group-associativity 	→	 associativity 	 : 	 none
precedence-group-names 	→	 precedence-group-name 	|	 precedence-group-name 	 ,

precedence-group-names
precedence-group-name 	→	 identifier

Declaration	Modifiers

Declaration	modifiers	are	keywords	or	context-sensitive	keywords	that	modify
the	behavior	or	meaning	of	a	declaration.	You	specify	a	declaration	modifier	by
writing	the	appropriate	keyword	or	context-sensitive	keyword	between	a
declaration’s	attributes	(if	any)	and	the	keyword	that	introduces	the	declaration.

class

Apply	this	modifier	to	a	member	of	a	class	to	indicate	that	the	member	is	a
member	of	the	class	itself,	rather	than	a	member	of	instances	of	the	class.
Members	of	a	superclass	that	have	this	modifier	and	don’t	have	the	final
modifier	can	be	overridden	by	subclasses.

dynamic

Apply	this	modifier	to	any	member	of	a	class	that	can	be	represented	by
Objective-C.	When	you	mark	a	member	declaration	with	the	dynamic
modifier,	access	to	that	member	is	always	dynamically	dispatched	using	the
Objective-C	runtime.	Access	to	that	member	is	never	inlined	or
devirtualized	by	the	compiler.

Because	declarations	marked	with	the	dynamic	modifier	are	dispatched
using	the	Objective-C	runtime,	they	must	be	marked	with	the	objc	attribute.

final

Apply	this	modifier	to	a	class	or	to	a	property,	method,	or	subscript	member
of	a	class.	It’s	applied	to	a	class	to	indicate	that	the	class	can’t	be
subclassed.	It’s	applied	to	a	property,	method,	or	subscript	of	a	class	to
indicate	that	a	class	member	can’t	be	overridden	in	any	subclass.	For	an
example	of	how	to	use	the	final	attribute,	see	Preventing	Overrides.

lazy

Apply	this	modifier	to	a	stored	variable	property	of	a	class	or	structure	to
indicate	that	the	property’s	initial	value	is	calculated	and	stored	at	most
once,	when	the	property	is	first	accessed.	For	an	example	of	how	to	use	the
lazy	modifier,	see	Lazy	Stored	Properties.

optional

Apply	this	modifier	to	a	protocol’s	property,	method,	or	subscript	members
to	indicate	that	a	conforming	type	isn’t	required	to	implement	those
members.

You	can	apply	the	optional	modifier	only	to	protocols	that	are	marked	with
the	objc	attribute.	As	a	result,	only	class	types	can	adopt	and	conform	to	a
protocol	that	contains	optional	member	requirements.	For	more	information
about	how	to	use	the	optional	modifier	and	for	guidance	about	how	to
access	optional	protocol	members—for	example,	when	you’re	not	sure
whether	a	conforming	type	implements	them—see	Optional	Protocol
Requirements.

required

Apply	this	modifier	to	a	designated	or	convenience	initializer	of	a	class	to
indicate	that	every	subclass	must	implement	that	initializer.	The	subclass’s
implementation	of	that	initializer	must	also	be	marked	with	the	required
modifier.

static

Apply	this	modifier	to	a	member	of	a	structure,	class,	enumeration,	or
protocol	to	indicate	that	the	member	is	a	member	of	the	type,	rather	than	a
member	of	instances	of	that	type.	In	the	scope	of	a	class	declaration,	writing
the	static	modifier	on	a	member	declaration	has	the	same	effect	as	writing
the	class	and	final	modifiers	on	that	member	declaration.	However,
constant	type	properties	of	a	class	are	an	exception:	static	has	its	normal,
nonclass	meaning	there	because	you	can’t	write	class	or	final	on	those
declarations.

unowned

Apply	this	modifier	to	a	stored	variable,	constant,	or	stored	property	to
indicate	that	the	variable	or	property	has	an	unowned	reference	to	the	object
stored	as	its	value.	If	you	try	to	access	the	variable	or	property	after	the
object	has	been	deallocated,	a	runtime	error	is	raised.	Like	a	weak
reference,	the	type	of	the	property	or	value	must	be	a	class	type;	unlike	a
weak	reference,	the	type	is	non-optional.	For	an	example	and	more
information	about	the	unowned	modifier,	see	Unowned	References.

unowned(safe)

An	explicit	spelling	of	unowned.

unowned(unsafe)

Apply	this	modifier	to	a	stored	variable,	constant,	or	stored	property	to
indicate	that	the	variable	or	property	has	an	unowned	reference	to	the	object
stored	as	its	value.	If	you	try	to	access	the	variable	or	property	after	the
object	has	been	deallocated,	you’ll	access	the	memory	at	the	location	where
the	object	used	to	be,	which	is	a	memory-unsafe	operation.	Like	a	weak
reference,	the	type	of	the	property	or	value	must	be	a	class	type;	unlike	a

weak	reference,	the	type	is	non-optional.	For	an	example	and	more
information	about	the	unowned	modifier,	see	Unowned	References.

weak

Apply	this	modifier	to	a	stored	variable	or	stored	variable	property	to
indicate	that	the	variable	or	property	has	a	weak	reference	to	the	object
stored	as	its	value.	The	type	of	the	variable	or	property	must	be	an	optional
class	type.	If	you	access	the	variable	or	property	after	the	object	has	been
deallocated,	its	value	is	nil.	For	an	example	and	more	information	about
the	weak	modifier,	see	Weak	References.

Access	Control	Levels
Swift	provides	five	levels	of	access	control:	open,	public,	internal,	file	private,
and	private.	You	can	mark	a	declaration	with	one	of	the	access-level	modifiers
below	to	specify	the	declaration’s	access	level.	Access	control	is	discussed	in
detail	in	Access	Control.

open

Apply	this	modifier	to	a	declaration	to	indicate	the	declaration	can	be
accessed	and	subclassed	by	code	in	the	same	module	as	the	declaration.
Declarations	marked	with	the	open	access-level	modifier	can	also	be
accessed	and	subclassed	by	code	in	a	module	that	imports	the	module	that
contains	that	declaration.

public

Apply	this	modifier	to	a	declaration	to	indicate	the	declaration	can	be
accessed	and	subclassed	by	code	in	the	same	module	as	the	declaration.
Declarations	marked	with	the	public	access-level	modifier	can	also	be
accessed	(but	not	subclassed)	by	code	in	a	module	that	imports	the	module
that	contains	that	declaration.

internal

Apply	this	modifier	to	a	declaration	to	indicate	the	declaration	can	be

accessed	only	by	code	in	the	same	module	as	the	declaration.	By	default,
most	declarations	are	implicitly	marked	with	the	internal	access-level
modifier.

fileprivate

Apply	this	modifier	to	a	declaration	to	indicate	the	declaration	can	be
accessed	only	by	code	in	the	same	source	file	as	the	declaration.

private

Apply	this	modifier	to	a	declaration	to	indicate	the	declaration	can	be
accessed	only	by	code	within	the	declaration’s	immediate	enclosing	scope.

For	the	purpose	of	access	control,	extensions	to	the	same	type	that	are	in	the
same	file	share	an	access-control	scope.	If	the	type	they	extend	is	also	in	the
same	file,	they	share	the	type’s	access-control	scope.	Private	members	declared
in	the	type’s	declaration	can	be	accessed	from	extensions,	and	private	members
declared	in	one	extension	can	be	accessed	from	other	extensions	and	from	the
type’s	declaration.

Each	access-level	modifier	above	optionally	accepts	a	single	argument,	which
consists	of	the	set	keyword	enclosed	in	parentheses	(for	example,
private(set)).	Use	this	form	of	an	access-level	modifier	when	you	want	to
specify	an	access	level	for	the	setter	of	a	variable	or	subscript	that’s	less	than	or
equal	to	the	access	level	of	the	variable	or	subscript	itself,	as	discussed	in	Getters
and	Setters.

GRAMMAR 	OF 	A	DECLARAT ION 	MOD IF I ER

declaration-modifier 	→	 class 	|	 convenience 	|	 dynamic 	|	 final 	|	 infix 	|	 lazy 	|
optional 	|	 override 	|	 postfix 	|	 prefix 	|	 required 	|	 static 	|	 unowned 	|
unowned 	 (safe) 	|	 unowned 	 (unsafe) 	|	 weak

declaration-modifier 	→	 access-level-modifier
declaration-modifier 	→	 mutation-modifier
declaration-modifiers 	→	 declaration-modifier 	 declaration-modifiers 	opt
access-level-modifier 	→	 private 	|	 private 	 (set)
access-level-modifier 	→	 fileprivate 	|	 fileprivate 	 (set)
access-level-modifier 	→	 internal 	|	 internal 	 (set)
access-level-modifier 	→	 public 	|	 public 	 (set)
access-level-modifier 	→	 open 	|	 open 	 (set)
mutation-modifier 	→	 mutating 	|	 nonmutating

Attributes

There	are	two	kinds	of	attributes	in	Swift—those	that	apply	to	declarations	and
those	that	apply	to	types.	An	attribute	provides	additional	information	about	the
declaration	or	type.	For	example,	the	discardableResult	attribute	on	a	function
declaration	indicates	that,	although	the	function	returns	a	value,	the	compiler
shouldn’t	generate	a	warning	if	the	return	value	is	unused.

You	specify	an	attribute	by	writing	the	@	symbol	followed	by	the	attribute’s	name
and	any	arguments	that	the	attribute	accepts:

	 @ attribute	name

	 @ attribute	name (attribute	arguments)

Some	declaration	attributes	accept	arguments	that	specify	more	information
about	the	attribute	and	how	it	applies	to	a	particular	declaration.	These	attribute
arguments	are	enclosed	in	parentheses,	and	their	format	is	defined	by	the
attribute	they	belong	to.

Declaration	Attributes

You	can	apply	a	declaration	attribute	to	declarations	only.

available
Apply	this	attribute	to	indicate	a	declaration’s	life	cycle	relative	to	certain	Swift
language	versions	or	certain	platforms	and	operating	system	versions.

The	available	attribute	always	appears	with	a	list	of	two	or	more	comma-
separated	attribute	arguments.	These	arguments	begin	with	one	of	the	following
platform	or	language	names:

iOS

iOSApplicationExtension

macOS

macOSApplicationExtension

watchOS

watchOSApplicationExtension

tvOS

tvOSApplicationExtension

swift

You	can	also	use	an	asterisk	(*)	to	indicate	the	availability	of	the	declaration	on
all	of	the	platform	names	listed	above.	An	available	attribute	that	specifies
availability	using	a	Swift	version	number	can’t	use	the	asterisk.

The	remaining	arguments	can	appear	in	any	order	and	specify	additional
information	about	the	declaration’s	life	cycle,	including	important	milestones.

The	unavailable	argument	indicates	that	the	declaration	isn’t	available	on
the	specified	platform.	This	argument	can’t	be	used	when	specifying	Swift
version	availability.

The	introduced	argument	indicates	the	first	version	of	the	specified
platform	or	language	in	which	the	declaration	was	introduced.	It	has	the
following	form:

	 introduced:	 version	number

The	version	number	consists	of	one	to	three	positive	integers,	separated	by
periods.

The	deprecated	argument	indicates	the	first	version	of	the	specified

platform	or	language	in	which	the	declaration	was	deprecated.	It	has	the
following	form:

	 deprecated:	 version	number

The	optional	version	number	consists	of	one	to	three	positive	integers,
separated	by	periods.	Omitting	the	version	number	indicates	that	the
declaration	is	currently	deprecated,	without	giving	any	information	about
when	the	deprecation	occurred.	If	you	omit	the	version	number,	omit	the
colon	(:)	as	well.

The	obsoleted	argument	indicates	the	first	version	of	the	specified	platform
or	language	in	which	the	declaration	was	obsoleted.	When	a	declaration	is
obsoleted,	it’s	removed	from	the	specified	platform	or	language	and	can	no
longer	be	used.	It	has	the	following	form:

	 obsoleted:	 version	number

The	version	number	consists	of	one	to	three	positive	integers,	separated	by
periods.

The	message	argument	provides	a	textual	message	that	the	compiler
displays	when	emitting	a	warning	or	error	about	the	use	of	a	deprecated	or
obsoleted	declaration.	It	has	the	following	form:

	 message:	 message

The	message	consists	of	a	string	literal.

The	renamed	argument	provides	a	textual	message	that	indicates	the	new
name	for	a	declaration	that’s	been	renamed.	The	compiler	displays	the	new
name	when	emitting	an	error	about	the	use	of	a	renamed	declaration.	It	has
the	following	form:

	 renamed:	 new	name

The	new	name	consists	of	a	string	literal.

You	can	apply	the	available	attribute	with	the	renamed	and	unavailable
arguments	to	a	type	alias	declaration,	as	shown	below,	to	indicate	that	the
name	of	a	declaration	changed	between	releases	of	a	framework	or	library.
This	combination	results	in	a	compile-time	error	that	the	declaration	has
been	renamed.

1 //	First	release

2 protocol	MyProtocol	{

3 				//	protocol	definition

4 }

1 //	Subsequent	release	renames	MyProtocol

2 protocol	MyRenamedProtocol	{

3 				//	protocol	definition

4 }

5

6 @available(*,	unavailable,	renamed:	"MyRenamedProtocol")

7 typealias	MyProtocol	=	MyRenamedProtocol

You	can	apply	multiple	available	attributes	on	a	single	declaration	to	specify	the
declaration’s	availability	on	different	platforms	and	different	versions	of	Swift.
The	declaration	that	the	available	attribute	applies	to	is	ignored	if	the	attribute
specifies	a	platform	or	language	version	that	doesn’t	match	the	current	target.	If
you	use	multiple	available	attributes,	the	effective	availability	is	the
combination	of	the	platform	and	Swift	availabilities.

If	an	available	attribute	only	specifies	an	introduced	argument	in	addition	to	a
platform	or	language	name	argument,	you	can	use	the	following	shorthand
syntax	instead:

	 @available(platform	name 	 version	number ,	*)

	 @available(swift	 version	number)

The	shorthand	syntax	for	available	attributes	concisely	expresses	availability

for	multiple	platforms.	Although	the	two	forms	are	functionally	equivalent,	the
shorthand	form	is	preferred	whenever	possible.

1 @available(iOS	10.0,	macOS	10.12,	*)

2 class	MyClass	{

3 				//	class	definition

4 }

An	available	attribute	that	specifies	availability	using	a	Swift	version	number
can’t	additionally	specify	a	declaration’s	platform	availability.	Instead,	use
separate	available	attributes	to	specify	a	Swift	version	availability	and	one	or
more	platform	availabilities.

1 @available(swift	3.0.2)

2 @available(macOS	10.12,	*)

3 struct	MyStruct	{

4 				//	struct	definition

5 }

discardableResult
Apply	this	attribute	to	a	function	or	method	declaration	to	suppress	the	compiler
warning	when	the	function	or	method	that	returns	a	value	is	called	without	using
its	result.

dynamicCallable
Apply	this	attribute	to	a	class,	structure,	enumeration,	or	protocol	to	treat
instances	of	the	type	as	callable	functions.	The	type	must	implement	either	a
dynamicallyCall(withArguments:)	method,	a
dynamicallyCall(withKeywordArguments:)	method,	or	both.

You	can	call	an	instance	of	a	dynamically	callable	type	as	if	it’s	a	function	that

takes	any	number	of	arguments.

1 @dynamicCallable

2 struct	TelephoneExchange	{

3 				func	dynamicallyCall(withArguments	phoneNumber:	[Int])	{

4 								if	phoneNumber	==	[4,	1,	1]	{

5 												print("Get	Swift	help	on	forums.swift.org")

6 								}	else	{

7 												print("Unrecognized	number")

8 								}

9 				}

10 }

11

12 let	dial	=	TelephoneExchange()

13

14 //	Use	a	dynamic	method	call.

15 dial(4,	1,	1)

16 //	Prints	"Get	Swift	help	on	forums.swift.org"

17

18 dial(8,	6,	7,	5,	3,	0,	9)

19 //	Prints	"Unrecognized	number"

20

21 //	Call	the	underlying	method	directly.

22 dial.dynamicallyCall(withArguments:	[4,	1,	1])

The	declaration	of	the	dynamicallyCall(withArguments:)	method	must	have	a
single	parameter	that	conforms	to	the	ExpressibleByArrayLiteral	protocol—like
[Int]	in	the	example	above.	The	return	type	can	be	any	type.

You	can	include	labels	in	a	dynamic	method	call	if	you	implement	the
dynamicallyCall(withKeywordArguments:)	method.

https://developer.apple.com/documentation/swift/expressiblebyarrayliteral

1 @dynamicCallable

2 struct	Repeater	{

3 				func	dynamicallyCall(withKeywordArguments	pairs:	

KeyValuePairs<String,	Int>)	->	String	{

4 								return	pairs

5 												.map	{	label,	count	in

6 																repeatElement(label,	count:	

count).joined(separator:	"	")

7 												}

8 												.joined(separator:	"\n")

9 				}

10 }

11

12 let	repeatLabels	=	Repeater()

13 print(repeatLabels(a:	1,	b:	2,	c:	3,	b:	2,	a:	1))

14 //	a

15 //	b	b

16 //	c	c	c

17 //	b	b

18 //	a

The	declaration	of	the	dynamicallyCall(withKeywordArguments:)	method	must
have	a	single	parameter	that	conforms	to	the	ExpressibleByDictionaryLiteral
protocol,	and	the	return	type	can	be	any	type.	The	parameter’s	Key	must	be
ExpressibleByStringLiteral.	The	previous	example	uses	KeyValuePairs	as	the
parameter	type	so	that	callers	can	include	duplicate	parameter	labels—a	and	b
appear	multiple	times	in	the	call	to	repeat.

If	you	implement	both	dynamicallyCall	methods,
dynamicallyCall(withKeywordArguments:)	is	called	when	the	method	call
includes	keyword	arguments.	In	all	other	cases,
dynamicallyCall(withArguments:)	is	called.

https://developer.apple.com/documentation/swift/expressiblebydictionaryliteral
https://developer.apple.com/documentation/swift/expressiblebydictionaryliteral/2294108-key
https://developer.apple.com/documentation/swift/expressiblebystringliteral
https://developer.apple.com/documentation/swift/keyvaluepairs

You	can	only	call	a	dynamically	callable	instance	with	arguments	and	a	return
value	that	match	the	types	you	specify	in	one	of	your	dynamicallyCall	method
implementations.	The	call	in	the	following	example	doesn’t	compile	because
there	isn’t	an	implementation	of	dynamicallyCall(withArguments:)	that	takes
KeyValuePairs<String,	String>.

	 repeatLabels(a:	"four")	//	Error

dynamicMemberLookup
Apply	this	attribute	to	a	class,	structure,	enumeration,	or	protocol	to	enable
members	to	be	looked	up	by	name	at	runtime.	The	type	must	implement	a
subscript(dynamicMemberLookup:)	subscript.

In	an	explicit	member	expression,	if	there	isn’t	a	corresponding	declaration	for
the	named	member,	the	expression	is	understood	as	a	call	to	the	type’s
subscript(dynamicMemberLookup:)	subscript,	passing	information	about	the
member	as	the	argument.	The	subscript	can	accept	a	parameter	that’s	either	a	key
path	or	a	member	name;	if	you	implement	both	subscripts,	the	subscript	that
takes	key	path	argument	is	used.

An	implementation	of	subscript(dynamicMemberLookup:)	can	accept	key	paths
using	an	argument	of	type	KeyPath,	WritableKeyPath,	or
ReferenceWritableKeyPath.	It	can	accept	member	names	using	an	argument	of	a
type	that	conforms	to	the	ExpressibleByStringLiteral	protocol—in	most	cases,
String.	The	subscript’s	return	type	can	be	any	type.

Dynamic	member	lookup	by	member	name	can	be	used	to	create	a	wrapper	type
around	data	that	can’t	be	type	checked	at	compile	time,	such	as	when	bridging
data	from	other	languages	into	Swift.	For	example:

1 @dynamicMemberLookup

2 struct	DynamicStruct	{

3 				let	dictionary	=	["someDynamicMember":	325,

4 																						"someOtherMember":	787]

https://developer.apple.com/documentation/swift/keypath
https://developer.apple.com/documentation/swift/writablekeypath
https://developer.apple.com/documentation/swift/referencewritablekeypath
https://developer.apple.com/documentation/swift/expressiblebystringliteral

5 				subscript(dynamicMember	member:	String)	->	Int	{

6 								return	dictionary[member]	??	1054

7 				}

8 }

9 let	s	=	DynamicStruct()

10

11 //	Use	dynamic	member	lookup.

12 let	dynamic	=	s.someDynamicMember

13 print(dynamic)

14 //	Prints	"325"

15

16 //	Call	the	underlying	subscript	directly.

17 let	equivalent	=	s[dynamicMember:	"someDynamicMember"]

18 print(dynamic	==	equivalent)

19 //	Prints	"true"

Dynamic	member	lookup	by	key	path	can	be	used	to	implement	a	wrapper	type
in	a	way	that	supports	compile-time	type	checking.	For	example:

1 struct	Point	{	var	x,	y:	Int	}

2

3 @dynamicMemberLookup

4 struct	PassthroughWrapper<Value>	{

5 				var	value:	Value

6 				subscript<T>(dynamicMember	member:	KeyPath<Value,	T>)	->	T	

{

7 								get	{	return	value[keyPath:	member]	}

8 				}

9 }

10

11 let	point	=	Point(x:	381,	y:	431)

12 let	wrapper	=	PassthroughWrapper(value:	point)

13 print(wrapper.x)

frozen
Apply	this	attribute	to	a	structure	or	enumeration	declaration	to	restrict	the	kinds
of	changes	you	can	make	to	the	type.	This	attribute	is	allowed	only	when
compiling	in	library	evolution	mode.	Future	versions	of	the	library	can’t	change
the	declaration	by	adding,	removing,	or	reordering	an	enumeration’s	cases	or	a
structure’s	stored	instance	properties.	These	changes	are	allowed	on	nonfrozen
types,	but	they	break	ABI	compatibility	for	frozen	types.

NOTE

When	the	compiler	isn’t	in	library	evolution	mode,	all	structures	and	enumerations	are	implicitly
frozen,	and	you	can’t	use	this	attribute.

In	library	evolution	mode,	code	that	interacts	with	members	of	nonfrozen
structures	and	enumerations	is	compiled	in	a	way	that	allows	it	to	continue
working	without	recompiling	even	if	a	future	version	of	the	library	adds,
removes,	or	reorders	some	of	that	type’s	members.	The	compiler	makes	this
possible	using	techniques	like	looking	up	information	at	runtime	and	adding	a
layer	of	indirection.	Marking	a	structure	or	enumeration	as	frozen	gives	up	this
flexibility	to	gain	performance:	Future	versions	of	the	library	can	make	only
limited	changes	to	the	type,	but	the	compiler	can	make	additional	optimizations
in	code	that	interacts	with	the	type’s	members.

Frozen	types,	the	types	of	the	stored	properties	of	frozen	structures,	and	the
associated	values	of	frozen	enumeration	cases	must	be	public	or	marked	with	the
usableFromInline	attribute.	The	properties	of	a	frozen	structure	can’t	have
property	observers,	and	expressions	that	provide	the	initial	value	for	stored
instance	properties	must	follow	the	same	restrictions	as	inlinable	functions,	as
discussed	in	inlinable.

To	enable	library	evolution	mode	on	the	command	line,	pass	the	-enable-

library-evolution	option	to	the	Swift	compiler.	To	enable	it	in	Xcode,	set	the
“Build	Libraries	for	Distribution”	build	setting
(BUILD_LIBRARY_FOR_DISTRIBUTION)	to	Yes,	as	described	in	Xcode	Help.

A	switch	statement	over	a	frozen	enumeration	doesn’t	require	a	default	case,	as
discussed	in	Switching	Over	Future	Enumeration	Cases.	Including	a	default	or
@unknown	default	case	when	switching	over	a	frozen	enumeration	produces	a
warning	because	that	code	is	never	executed.

GKInspectable
Apply	this	attribute	to	expose	a	custom	GameplayKit	component	property	to	the
SpriteKit	editor	UI.	Applying	this	attribute	also	implies	the	objc	attribute.

inlinable
Apply	this	attribute	to	a	function,	method,	computed	property,	subscript,
convenience	initializer,	or	deinitializer	declaration	to	expose	that	declaration’s
implementation	as	part	of	the	module’s	public	interface.	The	compiler	is	allowed
to	replace	calls	to	an	inlinable	symbol	with	a	copy	of	the	symbol’s
implementation	at	the	call	site.

Inlinable	code	can	interact	with	public	symbols	declared	in	any	module,	and	it
can	interact	with	internal	symbols	declared	in	the	same	module	that	are	marked
with	the	usableFromInline	attribute.	Inlinable	code	can’t	interact	with	private	or
fileprivate	symbols.

This	attribute	can’t	be	applied	to	declarations	that	are	nested	inside	functions	or
to	fileprivate	or	private	declarations.	Functions	and	closures	that	are	defined
inside	an	inlinable	function	are	implicitly	inlinable,	even	though	they	can’t	be
marked	with	this	attribute.

nonobjc
Apply	this	attribute	to	a	method,	property,	subscript,	or	initializer	declaration	to

https://help.apple.com/xcode/mac/current/#/dev04b3a04ba

suppress	an	implicit	objc	attribute.	The	nonobjc	attribute	tells	the	compiler	to
make	the	declaration	unavailable	in	Objective-C	code,	even	though	it’s	possible
to	represent	it	in	Objective-C.

Applying	this	attribute	to	an	extension	has	the	same	effect	as	applying	it	to	every
member	of	that	extension	that	isn’t	explicitly	marked	with	the	objc	attribute.

You	use	the	nonobjc	attribute	to	resolve	circularity	for	bridging	methods	in	a
class	marked	with	the	objc	attribute,	and	to	allow	overloading	of	methods	and
initializers	in	a	class	marked	with	the	objc	attribute.

A	method	marked	with	the	nonobjc	attribute	can’t	override	a	method	marked
with	the	objc	attribute.	However,	a	method	marked	with	the	objc	attribute	can
override	a	method	marked	with	the	nonobjc	attribute.	Similarly,	a	method
marked	with	the	nonobjc	attribute	can’t	satisfy	a	protocol	requirement	for	a
method	marked	with	the	objc	attribute.

NSApplicationMain
Apply	this	attribute	to	a	class	to	indicate	that	it’s	the	application	delegate.	Using
this	attribute	is	equivalent	to	calling	the	NSApplicationMain(_:_:)	function.

If	you	don’t	use	this	attribute,	supply	a	main.swift	file	with	code	at	the	top	level
that	calls	the	NSApplicationMain(_:_:)	function	as	follows:

1 import	AppKit

2 NSApplicationMain(CommandLine.argc,	CommandLine.unsafeArgv)

NSCopying
Apply	this	attribute	to	a	stored	variable	property	of	a	class.	This	attribute	causes
the	property’s	setter	to	be	synthesized	with	a	copy	of	the	property’s	value—
returned	by	the	copyWithZone(_:)	method—instead	of	the	value	of	the	property
itself.	The	type	of	the	property	must	conform	to	the	NSCopying	protocol.

The	NSCopying	attribute	behaves	in	a	way	similar	to	the	Objective-C	copy
property	attribute.

NSManaged
Apply	this	attribute	to	an	instance	method	or	stored	variable	property	of	a	class
that	inherits	from	NSManagedObject	to	indicate	that	Core	Data	dynamically
provides	its	implementation	at	runtime,	based	on	the	associated	entity
description.	For	a	property	marked	with	the	NSManaged	attribute,	Core	Data	also
provides	the	storage	at	runtime.	Applying	this	attribute	also	implies	the	objc
attribute.

objc
Apply	this	attribute	to	any	declaration	that	can	be	represented	in	Objective-C—
for	example,	nonnested	classes,	protocols,	nongeneric	enumerations	(constrained
to	integer	raw-value	types),	properties	and	methods	(including	getters	and
setters)	of	classes,	protocols	and	optional	members	of	a	protocol,	initializers,	and
subscripts.	The	objc	attribute	tells	the	compiler	that	a	declaration	is	available	to
use	in	Objective-C	code.

Applying	this	attribute	to	an	extension	has	the	same	effect	as	applying	it	to	every
member	of	that	extension	that	isn’t	explicitly	marked	with	the	nonobjc	attribute.

The	compiler	implicitly	adds	the	objc	attribute	to	subclasses	of	any	class	defined
in	Objective-C.	However,	the	subclass	must	not	be	generic,	and	must	not	inherit
from	any	generic	classes.	You	can	explicitly	add	the	objc	attribute	to	a	subclass
that	meets	these	criteria,	to	specify	its	Objective-C	name	as	discussed	below.
Protocols	that	are	marked	with	the	objc	attribute	can’t	inherit	from	protocols	that
aren’t	marked	with	this	attribute.

The	objc	attribute	is	also	implicitly	added	in	the	following	cases:

The	declaration	is	an	override	in	a	subclass,	and	the	superclass’s	declaration
has	the	objc	attribute.

The	declaration	satisfies	a	requirement	from	a	protocol	that	has	the	objc
attribute.

The	declaration	has	the	IBAction,	IBSegueAction,	IBOutlet,	IBDesignable,
IBInspectable,	NSManaged,	or	GKInspectable	attribute.

If	you	apply	the	objc	attribute	to	an	enumeration,	each	enumeration	case	is
exposed	to	Objective-C	code	as	the	concatenation	of	the	enumeration	name	and
the	case	name.	The	first	letter	of	the	case	name	is	capitalized.	For	example,	a
case	named	venus	in	a	Swift	Planet	enumeration	is	exposed	to	Objective-C	code
as	a	case	named	PlanetVenus.

The	objc	attribute	optionally	accepts	a	single	attribute	argument,	which	consists
of	an	identifier.	The	identifier	specifies	the	name	to	be	exposed	to	Objective-C
for	the	entity	that	the	objc	attribute	applies	to.	You	can	use	this	argument	to
name	classes,	enumerations,	enumeration	cases,	protocols,	methods,	getters,
setters,	and	initializers.	If	you	specify	the	Objective-C	name	for	a	class,	protocol,
or	enumeration,	include	a	three-letter	prefix	on	the	name,	as	described	in
Conventions	in	Programming	with	Objective-C.	The	example	below	exposes	the
getter	for	the	enabled	property	of	the	ExampleClass	to	Objective-C	code	as
isEnabled	rather	than	just	as	the	name	of	the	property	itself.

1 class	ExampleClass:	NSObject	{

2 				@objc	var	enabled:	Bool	{

3 								@objc(isEnabled)	get	{

4 												//	Return	the	appropriate	value

5 								}

6 				}

7 }

objcMembers
Apply	this	attribute	to	a	class	declaration,	to	implicitly	apply	the	objc	attribute	to
all	Objective-C	compatible	members	of	the	class,	its	extensions,	its	subclasses,
and	all	of	the	extensions	of	its	subclasses.

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.html#//apple_ref/doc/uid/TP40011210-CH10-SW1
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011210

Most	code	should	use	the	objc	attribute	instead,	to	expose	only	the	declarations
that	are	needed.	If	you	need	to	expose	many	declarations,	you	can	group	them	in
an	extension	that	has	the	objc	attribute.	The	objcMembers	attribute	is	a
convenience	for	libraries	that	make	heavy	use	of	the	introspection	facilities	of
the	Objective-C	runtime.	Applying	the	objc	attribute	when	it	isn’t	needed	can
increase	your	binary	size	and	adversely	affect	performance.

propertyWrapper
Apply	this	attribute	to	a	class,	structure,	or	enumeration	declaration	to	use	that
type	as	a	property	wrapper.	When	you	apply	this	attribute	to	a	type,	you	create	a
custom	attribute	with	the	same	name	as	the	type.	Apply	that	new	attribute	to	a
property	of	a	class,	structure,	or	enumeration	to	wrap	access	to	the	property
through	an	instance	of	the	wrapper	type.	Local	and	global	variables	can’t	use
property	wrappers.

The	wrapper	must	define	a	wrappedValue	instance	property.	The	wrapped	value
of	the	property	is	the	value	that	the	getter	and	setter	for	this	property	expose.	In
most	cases,	wrappedValue	is	a	computed	value,	but	it	can	be	a	stored	value
instead.	The	wrapper	is	responsible	for	defining	and	managing	any	underlying
storage	needed	by	its	wrapped	value.	The	compiler	synthesizes	storage	for	the
instance	of	the	wrapper	type	by	prefixing	the	name	of	the	wrapped	property	with
an	underscore	(_)—for	example,	the	wrapper	for	someProperty	is	stored	as
_someProperty.	The	synthesized	storage	for	the	wrapper	has	an	access	control
level	of	private.

A	property	that	has	a	property	wrapper	can	include	willSet	and	didSet	blocks,
but	it	can’t	override	the	compiler-synthesized	get	or	set	blocks.

Swift	provides	two	forms	of	syntactic	sugar	for	initialization	of	a	property
wrapper.	You	can	use	assignment	syntax	in	the	definition	of	a	wrapped	value	to
pass	the	expression	on	the	right-hand	side	of	the	assignment	as	the	argument	to
the	wrappedValue	parameter	of	the	property	wrapper’s	initializer.	You	can	also
provide	arguments	to	the	attribute	when	you	apply	it	to	a	property,	and	those
arguments	are	passed	to	the	property	wrapper’s	initializer.	For	example,	in	the
code	below,	SomeStruct	calls	each	of	the	initializers	that	SomeWrapper	defines.

1 @propertyWrapper

2 struct	SomeWrapper	{

3 				var	wrappedValue:	Int

4 				var	someValue:	Double

5 				init()	{

6 								self.wrappedValue	=	100

7 								self.someValue	=	12.3

8 				}

9 				init(wrappedValue:	Int)	{

10 								self.wrappedValue	=	wrappedValue

11 								self.someValue	=	45.6

12 				}

13 				init(wrappedValue	value:	Int,	custom:	Double)	{

14 								self.wrappedValue	=	value

15 								self.someValue	=	custom

16 				}

17 }

18

19 struct	SomeStruct	{

20 				//	Uses	init()

21 				@SomeWrapper	var	a:	Int

22

23 				//	Uses	init(wrappedValue:)

24 				@SomeWrapper	var	b	=	10

25

26 				//	Both	use	init(wrappedValue:custom:)

27 				@SomeWrapper(custom:	98.7)	var	c	=	30

28 				@SomeWrapper(wrappedValue:	30,	custom:	98.7)	var	d

29 }

The	projected	value	for	a	wrapped	property	is	a	second	value	that	a	property
wrapper	can	use	to	expose	additional	functionality.	The	author	of	a	property
wrapper	type	is	responsible	for	determining	the	meaning	of	its	projected	value
and	defining	the	interface	that	the	projected	value	exposes.	To	project	a	value
from	a	property	wrapper,	define	a	projectedValue	instance	property	on	the
wrapper	type.	The	compiler	synthesizes	an	identifier	for	the	projected	value	by
prefixing	the	name	of	the	wrapped	property	with	a	dollar	sign	($)—for	example,
the	projected	value	for	someProperty	is	$someProperty.	The	projected	value	has
the	same	access	control	level	as	the	original	wrapped	property.

1 @propertyWrapper

2 struct	WrapperWithProjection	{

3 				var	wrappedValue:	Int

4 				var	projectedValue:	SomeProjection	{

5 								return	SomeProjection(wrapper:	self)

6 				}

7 }

8 struct	SomeProjection	{

9 				var	wrapper:	WrapperWithProjection

10 }

11

12 struct	SomeStruct	{

13 				@WrapperWithProjection	var	x	=	123

14 }

15 let	s	=	SomeStruct()

16 s.x											//	Int	value

17 s.$x										//	SomeProjection	value

18 s.$x.wrapper		//	WrapperWithProjection	value

requires_stored_property_inits
Apply	this	attribute	to	a	class	declaration	to	require	all	stored	properties	within

the	class	to	provide	default	values	as	part	of	their	definitions.	This	attribute	is
inferred	for	any	class	that	inherits	from	NSManagedObject.

testable
Apply	this	attribute	to	an	import	declaration	to	import	that	module	with	changes
to	its	access	control	that	simplify	testing	the	module’s	code.	Entities	in	the
imported	module	that	are	marked	with	the	internal	access-level	modifier	are
imported	as	if	they	were	declared	with	the	public	access-level	modifier.	Classes
and	class	members	that	are	marked	with	the	internal	or	public	access-level
modifier	are	imported	as	if	they	were	declared	with	the	open	access-level
modifier.	The	imported	module	must	be	compiled	with	testing	enabled.

UIApplicationMain
Apply	this	attribute	to	a	class	to	indicate	that	it’s	the	application	delegate.	Using
this	attribute	is	equivalent	to	calling	the	UIApplicationMain	function	and	passing
this	class’s	name	as	the	name	of	the	delegate	class.

If	you	don’t	use	this	attribute,	supply	a	main.swift	file	with	code	at	the	top	level
that	calls	the	UIApplicationMain(_:_:_:_:)	function.	For	example,	if	your	app
uses	a	custom	subclass	of	UIApplication	as	its	principal	class,	call	the
UIApplicationMain(_:_:_:_:)	function	instead	of	using	this	attribute.

usableFromInline
Apply	this	attribute	to	a	function,	method,	computed	property,	subscript,
initializer,	or	deinitializer	declaration	to	allow	that	symbol	to	be	used	in	inlinable
code	that’s	defined	in	the	same	module	as	the	declaration.	The	declaration	must
have	the	internal	access	level	modifier.	A	structure	or	class	marked
usableFromInline	can	use	only	types	that	are	public	or	usableFromInline	for	its
properties.	An	enumeration	marked	usableFromInline	can	use	only	types	that	are
public	or	usableFromInline	for	the	raw	values	and	associated	values	of	its	cases.

Like	the	public	access	level	modifier,	this	attribute	exposes	the	declaration	as

https://developer.apple.com/documentation/uikit/1622933-uiapplicationmain

part	of	the	module’s	public	interface.	Unlike	public,	the	compiler	doesn’t	allow
declarations	marked	with	usableFromInline	to	be	referenced	by	name	in	code
outside	the	module,	even	though	the	declaration’s	symbol	is	exported.	However,
code	outside	the	module	might	still	be	able	to	interact	with	the	declaration’s
symbol	by	using	runtime	behavior.

Declarations	marked	with	the	inlinable	attribute	are	implicitly	usable	from
inlinable	code.	Although	either	inlinable	or	usableFromInline	can	be	applied	to
internal	declarations,	applying	both	attributes	is	an	error.

warn_unqualified_access
Apply	this	attribute	to	a	top-level	function,	instance	method,	or	class	or	static
method	to	trigger	warnings	when	that	function	or	method	is	used	without	a
preceding	qualifier,	such	as	a	module	name,	type	name,	or	instance	variable	or
constant.	Use	this	attribute	to	help	discourage	ambiguity	between	functions	with
the	same	name	that	are	accessible	from	the	same	scope.

For	example,	the	Swift	standard	library	includes	both	a	top-level	min(_:_:)
function	and	a	min()	method	for	sequences	with	comparable	elements.	The
sequence	method	is	declared	with	the	warn_unqualified_access	attribute	to	help
reduce	confusion	when	attempting	to	use	one	or	the	other	from	within	a	Sequence
extension.

Declaration	Attributes	Used	by	Interface	Builder
Interface	Builder	attributes	are	declaration	attributes	used	by	Interface	Builder	to
synchronize	with	Xcode.	Swift	provides	the	following	Interface	Builder
attributes:	IBAction,	IBSegueAction,	IBOutlet,	IBDesignable,	and	IBInspectable.
These	attributes	are	conceptually	the	same	as	their	Objective-C	counterparts.

You	apply	the	IBOutlet	and	IBInspectable	attributes	to	property	declarations	of
a	class.	You	apply	the	IBAction	and	IBSegueAction	attribute	to	method
declarations	of	a	class	and	the	IBDesignable	attribute	to	class	declarations.

Applying	the	IBAction,	IBSegueAction,	IBOutlet,	IBDesignable,	or

https://developer.apple.com/documentation/swift/1538339-min/
https://developer.apple.com/documentation/swift/sequence/1641174-min

IBInspectable	attribute	also	implies	the	objc	attribute.

Type	Attributes

You	can	apply	type	attributes	to	types	only.

autoclosure
Apply	this	attribute	to	delay	the	evaluation	of	an	expression	by	automatically
wrapping	that	expression	in	a	closure	with	no	arguments.	You	apply	it	to	a
parameter’s	type	in	a	method	or	function	declaration,	for	a	parameter	whose	type
is	a	function	type	that	takes	no	arguments	and	that	returns	a	value	of	the	type	of
the	expression.	For	an	example	of	how	to	use	the	autoclosure	attribute,	see
Autoclosures	and	Function	Type.

convention
Apply	this	attribute	to	the	type	of	a	function	to	indicate	its	calling	conventions.

The	convention	attribute	always	appears	with	one	of	the	following	arguments:

The	swift	argument	indicates	a	Swift	function	reference.	This	is	the
standard	calling	convention	for	function	values	in	Swift.

The	block	argument	indicates	an	Objective-C	compatible	block	reference.
The	function	value	is	represented	as	a	reference	to	the	block	object,	which
is	an	id-compatible	Objective-C	object	that	embeds	its	invocation	function
within	the	object.	The	invocation	function	uses	the	C	calling	convention.

The	c	argument	indicates	a	C	function	reference.	The	function	value	carries
no	context	and	uses	the	C	calling	convention.

With	a	few	exceptions,	a	function	of	any	calling	convention	can	be	used	when	a
function	any	other	calling	convention	is	needed.	A	nongeneric	global	function,	a

local	function	that	doesn’t	capture	any	local	variables	or	a	closure	that	doesn’t
capture	any	local	variables	can	be	converted	to	the	C	calling	convention.	Other
Swift	functions	can’t	be	converted	to	the	C	calling	convention.	A	function	with
the	Objective-C	block	calling	convention	can’t	be	converted	to	the	C	calling
convention.

escaping
Apply	this	attribute	to	a	parameter’s	type	in	a	method	or	function	declaration	to
indicate	that	the	parameter’s	value	can	be	stored	for	later	execution.	This	means
that	the	value	is	allowed	to	outlive	the	lifetime	of	the	call.	Function	type
parameters	with	the	escaping	type	attribute	require	explicit	use	of	self.	for
properties	or	methods.	For	an	example	of	how	to	use	the	escaping	attribute,	see
Escaping	Closures.

Switch	Case	Attributes

You	can	apply	switch	case	attributes	to	switch	cases	only.

unknown
Apply	this	attribute	to	a	switch	case	to	indicate	that	it	isn’t	expected	to	be
matched	by	any	case	of	the	enumeration	that’s	known	at	the	time	the	code	is
compiled.	For	an	example	of	how	to	use	the	unknown	attribute,	see	Switching
Over	Future	Enumeration	Cases.

GRAMMAR 	OF 	AN 	ATTR IBUTE

attribute 	→	 @ 	 attribute-name 	 attribute-argument-clause 	opt
attribute-name 	→	 identifier
attribute-argument-clause 	→	 (balanced-tokens 	opt)
attributes 	→	 attribute 	 attributes 	opt
balanced-tokens 	→	 balanced-token 	 balanced-tokens 	opt
balanced-token 	→	 (balanced-tokens 	opt)
balanced-token 	→	 [balanced-tokens 	opt]

balanced-token 	→	 { 	 balanced-tokens 	opt 	 }
balanced-token 	→	 Any	identifier,	keyword,	literal,	or	operator
balanced-token 	→	 Any	punctuation	except	 (,) ,	 [,] ,	 { ,	or	 }

Patterns

A	pattern	represents	the	structure	of	a	single	value	or	a	composite	value.	For
example,	the	structure	of	a	tuple	(1,	2)	is	a	comma-separated	list	of	two
elements.	Because	patterns	represent	the	structure	of	a	value	rather	than	any	one
particular	value,	you	can	match	them	with	a	variety	of	values.	For	instance,	the
pattern	(x,	y)	matches	the	tuple	(1,	2)	and	any	other	two-element	tuple.	In
addition	to	matching	a	pattern	with	a	value,	you	can	extract	part	or	all	of	a
composite	value	and	bind	each	part	to	a	constant	or	variable	name.

In	Swift,	there	are	two	basic	kinds	of	patterns:	those	that	successfully	match	any
kind	of	value,	and	those	that	may	fail	to	match	a	specified	value	at	runtime.

The	first	kind	of	pattern	is	used	for	destructuring	values	in	simple	variable,
constant,	and	optional	bindings.	These	include	wildcard	patterns,	identifier
patterns,	and	any	value	binding	or	tuple	patterns	containing	them.	You	can
specify	a	type	annotation	for	these	patterns	to	constrain	them	to	match	only
values	of	a	certain	type.

The	second	kind	of	pattern	is	used	for	full	pattern	matching,	where	the	values
you’re	trying	to	match	against	may	not	be	there	at	runtime.	These	include
enumeration	case	patterns,	optional	patterns,	expression	patterns,	and	type-
casting	patterns.	You	use	these	patterns	in	a	case	label	of	a	switch	statement,	a
catch	clause	of	a	do	statement,	or	in	the	case	condition	of	an	if,	while,	guard,	or
for-in	statement.

GRAMMAR 	OF 	A	 PATTERN

pattern 	→	 wildcard-pattern 	 type-annotation 	opt
pattern 	→	 identifier-pattern 	 type-annotation 	opt
pattern 	→	 value-binding-pattern
pattern 	→	 tuple-pattern 	 type-annotation 	opt
pattern 	→	 enum-case-pattern
pattern 	→	 optional-pattern
pattern 	→	 type-casting-pattern
pattern 	→	 expression-pattern

Wildcard	Pattern

A	wildcard	pattern	matches	and	ignores	any	value	and	consists	of	an	underscore
(_).	Use	a	wildcard	pattern	when	you	don’t	care	about	the	values	being	matched
against.	For	example,	the	following	code	iterates	through	the	closed	range	1...3,
ignoring	the	current	value	of	the	range	on	each	iteration	of	the	loop:

1 for	_	in	1...3	{

2 				//	Do	something	three	times.

3 }

GRAMMAR 	OF 	A	W I LDCARD 	PATTERN

wildcard-pattern 	→	 _

Identifier	Pattern

An	identifier	pattern	matches	any	value	and	binds	the	matched	value	to	a
variable	or	constant	name.	For	example,	in	the	following	constant	declaration,
someValue	is	an	identifier	pattern	that	matches	the	value	42	of	type	Int:

	 let	someValue	=	42

When	the	match	succeeds,	the	value	42	is	bound	(assigned)	to	the	constant	name
someValue.

When	the	pattern	on	the	left-hand	side	of	a	variable	or	constant	declaration	is	an
identifier	pattern,	the	identifier	pattern	is	implicitly	a	subpattern	of	a	value-
binding	pattern.

GRAMMAR 	OF 	AN 	 I DENT I F I ER 	PATTERN

identifier-pattern 	→	 identifier

Value-Binding	Pattern

A	value-binding	pattern	binds	matched	values	to	variable	or	constant	names.
Value-binding	patterns	that	bind	a	matched	value	to	the	name	of	a	constant	begin
with	the	let	keyword;	those	that	bind	to	the	name	of	variable	begin	with	the	var
keyword.

Identifiers	patterns	within	a	value-binding	pattern	bind	new	named	variables	or
constants	to	their	matching	values.	For	example,	you	can	decompose	the
elements	of	a	tuple	and	bind	the	value	of	each	element	to	a	corresponding
identifier	pattern.

1 let	point	=	(3,	2)

2 switch	point	{

3 				//	Bind	x	and	y	to	the	elements	of	point.

4 case	let	(x,	y):

5 				print("The	point	is	at	(\(x),	\(y)).")

6 }

7 //	Prints	"The	point	is	at	(3,	2)."

In	the	example	above,	let	distributes	to	each	identifier	pattern	in	the	tuple
pattern	(x,	y).	Because	of	this	behavior,	the	switch	cases	case	let	(x,	y):	and
case	(let	x,	let	y):	match	the	same	values.

GRAMMAR 	OF 	A	 VALUE -B IND ING 	PATTERN

value-binding-pattern 	→	 var 	 pattern 	|	 let 	 pattern

Tuple	Pattern

A	tuple	pattern	is	a	comma-separated	list	of	zero	or	more	patterns,	enclosed	in
parentheses.	Tuple	patterns	match	values	of	corresponding	tuple	types.

You	can	constrain	a	tuple	pattern	to	match	certain	kinds	of	tuple	types	by	using

type	annotations.	For	example,	the	tuple	pattern	(x,	y):	(Int,	Int)	in	the
constant	declaration	let	(x,	y):	(Int,	Int)	=	(1,	2)	matches	only	tuple	types
in	which	both	elements	are	of	type	Int.

When	a	tuple	pattern	is	used	as	the	pattern	in	a	for-in	statement	or	in	a	variable
or	constant	declaration,	it	can	contain	only	wildcard	patterns,	identifier	patterns,
optional	patterns,	or	other	tuple	patterns	that	contain	those.	For	example,	the
following	code	isn’t	valid	because	the	element	0	in	the	tuple	pattern	(x,	0)	is	an
expression	pattern:

1 let	points	=	[(0,	0),	(1,	0),	(1,	1),	(2,	0),	(2,	1)]

2 //	This	code	isn't	valid.

3 for	(x,	0)	in	points	{

4 				/*	...	*/

5 }

The	parentheses	around	a	tuple	pattern	that	contains	a	single	element	have	no
effect.	The	pattern	matches	values	of	that	single	element’s	type.	For	example,	the
following	are	equivalent:

1 let	a	=	2								//	a:	Int	=	2

2 let	(a)	=	2						//	a:	Int	=	2

3 let	(a):	Int	=	2	//	a:	Int	=	2

GRAMMAR 	OF 	A	TUPLE 	PATTERN

tuple-pattern 	→	 (tuple-pattern-element-list 	opt)
tuple-pattern-element-list 	→	 tuple-pattern-element 	|	 tuple-pattern-element 	 , 	 tuple-

pattern-element-list
tuple-pattern-element 	→	 pattern 	|	 identifier 	 : 	 pattern

Enumeration	Case	Pattern

An	enumeration	case	pattern	matches	a	case	of	an	existing	enumeration	type.

Enumeration	case	patterns	appear	in	switch	statement	case	labels	and	in	the	case
conditions	of	if,	while,	guard,	and	for-in	statements.

If	the	enumeration	case	you’re	trying	to	match	has	any	associated	values,	the
corresponding	enumeration	case	pattern	must	specify	a	tuple	pattern	that
contains	one	element	for	each	associated	value.	For	an	example	that	uses	a
switch	statement	to	match	enumeration	cases	containing	associated	values,	see
Associated	Values.

An	enumeration	case	pattern	also	matches	values	of	that	case	wrapped	in	an
optional.	This	simplified	syntax	lets	you	omit	an	optional	pattern.	Note	that,
because	Optional	is	implemented	as	an	enumeration,	.none	and	.some	can	appear
in	the	same	switch	as	the	cases	of	the	enumeration	type.

1 enum	SomeEnum	{	case	left,	right	}

2 let	x:	SomeEnum?	=	.left

3 switch	x	{

4 case	.left:

5 				print("Turn	left")

6 case	.right:

7 				print("Turn	right")

8 case	nil:

9 				print("Keep	going	straight")

10 }

11 //	Prints	"Turn	left"

GRAMMAR 	OF 	AN 	ENUMERAT ION 	CASE 	PATTERN

enum-case-pattern 	→	 type-identifier 	opt 	 . 	 enum-case-name 	 tuple-pattern 	opt

Optional	Pattern

An	optional	pattern	matches	values	wrapped	in	a	some(Wrapped)	case	of	an

Optional<Wrapped>	enumeration.	Optional	patterns	consist	of	an	identifier
pattern	followed	immediately	by	a	question	mark	and	appear	in	the	same	places
as	enumeration	case	patterns.

Because	optional	patterns	are	syntactic	sugar	for	Optional	enumeration	case
patterns,	the	following	are	equivalent:

1 let	someOptional:	Int?	=	42

2 //	Match	using	an	enumeration	case	pattern.

3 if	case	.some(let	x)	=	someOptional	{

4 				print(x)

5 }

6

7 //	Match	using	an	optional	pattern.

8 if	case	let	x?	=	someOptional	{

9 				print(x)

10 }

The	optional	pattern	provides	a	convenient	way	to	iterate	over	an	array	of
optional	values	in	a	for-in	statement,	executing	the	body	of	the	loop	only	for
non-nil	elements.

1 let	arrayOfOptionalInts:	[Int?]	=	[nil,	2,	3,	nil,	5]

2 //	Match	only	non-nil	values.

3 for	case	let	number?	in	arrayOfOptionalInts	{

4 				print("Found	a	\(number)")

5 }

6 //	Found	a	2

7 //	Found	a	3

8 //	Found	a	5

GRAMMAR 	OF 	AN 	OPT IONAL	PATTERN

optional-pattern 	→	 identifier-pattern 	 ?

Type-Casting	Patterns

There	are	two	type-casting	patterns,	the	is	pattern	and	the	as	pattern.	The	is
pattern	appears	only	in	switch	statement	case	labels.	The	is	and	as	patterns	have
the	following	form:

	 is	 type

	 pattern 	as	 type

The	is	pattern	matches	a	value	if	the	type	of	that	value	at	runtime	is	the	same	as
the	type	specified	in	the	right-hand	side	of	the	is	pattern—or	a	subclass	of	that
type.	The	is	pattern	behaves	like	the	is	operator	in	that	they	both	perform	a	type
cast	but	discard	the	returned	type.

The	as	pattern	matches	a	value	if	the	type	of	that	value	at	runtime	is	the	same	as
the	type	specified	in	the	right-hand	side	of	the	as	pattern—or	a	subclass	of	that
type.	If	the	match	succeeds,	the	type	of	the	matched	value	is	cast	to	the	pattern
specified	in	the	right-hand	side	of	the	as	pattern.

For	an	example	that	uses	a	switch	statement	to	match	values	with	is	and	as
patterns,	see	Type	Casting	for	Any	and	AnyObject.

GRAMMAR 	OF 	A	TYPE 	CAST ING 	PATTERN

type-casting-pattern 	→	 is-pattern 	|	 as-pattern
is-pattern 	→	 is 	 type
as-pattern 	→	 pattern 	 as 	 type

Expression	Pattern

An	expression	pattern	represents	the	value	of	an	expression.	Expression	patterns
appear	only	in	switch	statement	case	labels.

The	expression	represented	by	the	expression	pattern	is	compared	with	the	value
of	an	input	expression	using	the	Swift	standard	library	~=	operator.	The	matches
succeeds	if	the	~=	operator	returns	true.	By	default,	the	~=	operator	compares
two	values	of	the	same	type	using	the	==	operator.	It	can	also	match	a	value	with
a	range	of	values,	by	checking	whether	the	value	is	contained	within	the	range,
as	the	following	example	shows.

1 let	point	=	(1,	2)

2 switch	point	{

3 case	(0,	0):

4 				print("(0,	0)	is	at	the	origin.")

5 case	(-2...2,	-2...2):

6 				print("(\(point.0),	\(point.1))	is	near	the	origin.")

7 default:

8 				print("The	point	is	at	(\(point.0),	\(point.1)).")

9 }

10 //	Prints	"(1,	2)	is	near	the	origin."

You	can	overload	the	~=	operator	to	provide	custom	expression	matching
behavior.	For	example,	you	can	rewrite	the	above	example	to	compare	the	point
expression	with	a	string	representations	of	points.

1 //	Overload	the	~=	operator	to	match	a	string	with	an	integer.

2 func	~=	(pattern:	String,	value:	Int)	->	Bool	{

3 				return	pattern	==	"\(value)"

4 }

5 switch	point	{

6 case	("0",	"0"):

7 				print("(0,	0)	is	at	the	origin.")

8 default:

9 				print("The	point	is	at	(\(point.0),	\(point.1)).")

10 }

11 //	Prints	"The	point	is	at	(1,	2)."

GRAMMAR 	OF 	AN 	EXPRESS ION 	PATTERN

expression-pattern 	→	 expression

Generic	Parameters	and	Arguments

This	chapter	describes	parameters	and	arguments	for	generic	types,	functions,
and	initializers.	When	you	declare	a	generic	type,	function,	subscript,	or
initializer,	you	specify	the	type	parameters	that	the	generic	type,	function,	or
initializer	can	work	with.	These	type	parameters	act	as	placeholders	that	are
replaced	by	actual	concrete	type	arguments	when	an	instance	of	a	generic	type	is
created	or	a	generic	function	or	initializer	is	called.

For	an	overview	of	generics	in	Swift,	see	Generics.

Generic	Parameter	Clause

A	generic	parameter	clause	specifies	the	type	parameters	of	a	generic	type	or
function,	along	with	any	associated	constraints	and	requirements	on	those
parameters.	A	generic	parameter	clause	is	enclosed	in	angle	brackets	(<>)	and
has	the	following	form:

	 < generic	parameter	list >

The	generic	parameter	list	is	a	comma-separated	list	of	generic	parameters,	each
of	which	has	the	following	form:

	 type	parameter :	 constraint

A	generic	parameter	consists	of	a	type	parameter	followed	by	an	optional
constraint.	A	type	parameter	is	simply	the	name	of	a	placeholder	type	(for
example,	T,	U,	V,	Key,	Value,	and	so	on).	You	have	access	to	the	type	parameters
(and	any	of	their	associated	types)	in	the	rest	of	the	type,	function,	or	initializer
declaration,	including	in	the	signature	of	the	function	or	initializer.

The	constraint	specifies	that	a	type	parameter	inherits	from	a	specific	class	or
conforms	to	a	protocol	or	protocol	composition.	For	example,	in	the	generic

function	below,	the	generic	parameter	T:	Comparable	indicates	that	any	type
argument	substituted	for	the	type	parameter	T	must	conform	to	the	Comparable
protocol.

1 func	simpleMax<T:	Comparable>(_	x:	T,	_	y:	T)	->	T	{

2 				if	x	<	y	{

3 								return	y

4 				}

5 				return	x

6 }

Because	Int	and	Double,	for	example,	both	conform	to	the	Comparable	protocol,
this	function	accepts	arguments	of	either	type.	In	contrast	with	generic	types,
you	don’t	specify	a	generic	argument	clause	when	you	use	a	generic	function	or
initializer.	The	type	arguments	are	instead	inferred	from	the	type	of	the
arguments	passed	to	the	function	or	initializer.

1 simpleMax(17,	42)	//	T	is	inferred	to	be	Int

2 simpleMax(3.14159,	2.71828)	//	T	is	inferred	to	be	Double

Generic	Where	Clauses
You	can	specify	additional	requirements	on	type	parameters	and	their	associated
types	by	including	a	generic	where	clause	right	before	the	opening	curly	brace	of
a	type	or	function’s	body.	A	generic	where	clause	consists	of	the	where	keyword,
followed	by	a	comma-separated	list	of	one	or	more	requirements.

	 where	 requirements

The	requirements	in	a	generic	where	clause	specify	that	a	type	parameter	inherits
from	a	class	or	conforms	to	a	protocol	or	protocol	composition.	Although	the
generic	where	clause	provides	syntactic	sugar	for	expressing	simple	constraints
on	type	parameters	(for	example,	<T:	Comparable>	is	equivalent	to	<T>	where	T:
Comparable	and	so	on),	you	can	use	it	to	provide	more	complex	constraints	on

type	parameters	and	their	associated	types.	For	example,	you	can	constrain	the
associated	types	of	type	parameters	to	conform	to	protocols.	For	example,	<S:
Sequence>	where	S.Iterator.Element:	Equatable	specifies	that	S	conforms	to
the	Sequence	protocol	and	that	the	associated	type	S.Iterator.Element	conforms
to	the	Equatable	protocol.	This	constraint	ensures	that	each	element	of	the
sequence	is	equatable.

You	can	also	specify	the	requirement	that	two	types	be	identical,	using	the	==
operator.	For	example,	<S1:	Sequence,	S2:	Sequence>	where
S1.Iterator.Element	==	S2.Iterator.Element	expresses	the	constraints	that	S1
and	S2	conform	to	the	Sequence	protocol	and	that	the	elements	of	both	sequences
must	be	of	the	same	type.

Any	type	argument	substituted	for	a	type	parameter	must	meet	all	the	constraints
and	requirements	placed	on	the	type	parameter.

You	can	overload	a	generic	function	or	initializer	by	providing	different
constraints,	requirements,	or	both	on	the	type	parameters.	When	you	call	an
overloaded	generic	function	or	initializer,	the	compiler	uses	these	constraints	to
resolve	which	overloaded	function	or	initializer	to	invoke.

For	more	information	about	generic	where	clauses	and	to	see	an	example	of	one
in	a	generic	function	declaration,	see	Generic	Where	Clauses.

GRAMMAR 	OF 	A	GENER IC 	PARAMETER 	CLAUSE

generic-parameter-clause 	→	 < 	 generic-parameter-list 	 >
generic-parameter-list 	→	 generic-parameter 	|	 generic-parameter 	 , 	 generic-parameter-

list
generic-parameter 	→	 type-name
generic-parameter 	→	 type-name 	 : 	 type-identifier
generic-parameter 	→	 type-name 	 : 	 protocol-composition-type
generic-where-clause 	→	 where 	 requirement-list
requirement-list 	→	 requirement 	|	 requirement 	 , 	 requirement-list
requirement 	→	 conformance-requirement 	|	 same-type-requirement
conformance-requirement 	→	 type-identifier 	 : 	 type-identifier
conformance-requirement 	→	 type-identifier 	 : 	 protocol-composition-type
same-type-requirement 	→	 type-identifier 	 == 	 type

Generic	Argument	Clause

A	generic	argument	clause	specifies	the	type	arguments	of	a	generic	type.	A
generic	argument	clause	is	enclosed	in	angle	brackets	(<>)	and	has	the	following
form:

	 < generic	argument	list >

The	generic	argument	list	is	a	comma-separated	list	of	type	arguments.	A	type
argument	is	the	name	of	an	actual	concrete	type	that	replaces	a	corresponding
type	parameter	in	the	generic	parameter	clause	of	a	generic	type.	The	result	is	a
specialized	version	of	that	generic	type.	The	example	below	shows	a	simplified
version	of	the	Swift	standard	library’s	generic	dictionary	type.

1 struct	Dictionary<Key:	Hashable,	Value>:	Collection,	

ExpressibleByDictionaryLiteral	{

2 				/*	...	*/

3 }

The	specialized	version	of	the	generic	Dictionary	type,	Dictionary<String,
Int>	is	formed	by	replacing	the	generic	parameters	Key:	Hashable	and	Value
with	the	concrete	type	arguments	String	and	Int.	Each	type	argument	must
satisfy	all	the	constraints	of	the	generic	parameter	it	replaces,	including	any
additional	requirements	specified	in	a	generic	where	clause.	In	the	example
above,	the	Key	type	parameter	is	constrained	to	conform	to	the	Hashable	protocol
and	therefore	String	must	also	conform	to	the	Hashable	protocol.

You	can	also	replace	a	type	parameter	with	a	type	argument	that	is	itself	a
specialized	version	of	a	generic	type	(provided	it	satisfies	the	appropriate
constraints	and	requirements).	For	example,	you	can	replace	the	type	parameter
Element	in	Array<Element>	with	a	specialized	version	of	an	array,	Array<Int>,	to
form	an	array	whose	elements	are	themselves	arrays	of	integers.

	 let	arrayOfArrays:	Array<Array<Int>>	=	[[1,	2,	3],	[4,	5,	6],	

[7,	8,	9]]

As	mentioned	in	Generic	Parameter	Clause,	you	don’t	use	a	generic	argument
clause	to	specify	the	type	arguments	of	a	generic	function	or	initializer.

GRAMMAR 	OF 	A	GENER IC 	ARGUMENT 	CLAUSE

generic-argument-clause 	→	 < 	 generic-argument-list 	 >
generic-argument-list 	→	 generic-argument 	|	 generic-argument 	 , 	 generic-argument-list
generic-argument 	→	 type

Summary	of	the	Grammar

Lexical	Structure

GRAMMAR 	OF 	WH I TESPACE

whitespace 	→	 whitespace-item 	whitespace 	opt
whitespace-item 	→	 line-break
whitespace-item 	→	 comment
whitespace-item 	→	 multiline-comment
whitespace-item 	→	 U+0000,	U+0009,	U+000B,	U+000C,	or	U+0020
line-break 	→	 U+000A
line-break 	→	 U+000D
line-break 	→	 U+000D	followed	by	U+000A
comment 	→	 // 	 comment-text 	 line-break
multiline-comment 	→	 /* 	multiline-comment-text 	 */
comment-text 	→	 comment-text-item 	 comment-text 	opt
comment-text-item 	→	 Any	Unicode	scalar	value	except	U+000A	or	U+000D
multiline-comment-text 	→	 multiline-comment-text-item 	multiline-comment-text 	opt
multiline-comment-text-item 	→	 multiline-comment
multiline-comment-text-item 	→	 comment-text-item
multiline-comment-text-item 	→	 Any	Unicode	scalar	value	except	 /* 	or	 */

GRAMMAR 	OF 	AN 	 I DENT I F I ER

identifier 	→	 identifier-head 	 identifier-characters 	opt
identifier 	→	 ` 	 identifier-head 	 identifier-characters 	opt 	 `
identifier 	→	 implicit-parameter-name
identifier 	→	 property-wrapper-projection
identifier-list 	→	 identifier 	|	 identifier 	 , 	 identifier-list
identifier-head 	→	 Upper-	or	lowercase	letter	A	through	Z
identifier-head 	→	 _
identifier-head 	→	 U+00A8,	U+00AA,	U+00AD,	U+00AF,	U+00B2–U+00B5,	or	U+00B7–

U+00BA
identifier-head 	→	 U+00BC–U+00BE,	U+00C0–U+00D6,	U+00D8–U+00F6,	or	U+00F8–

U+00FF
identifier-head 	→	 U+0100–U+02FF,	U+0370–U+167F,	U+1681–U+180D,	or	U+180F–

U+1DBF
identifier-head 	→	 U+1E00–U+1FFF
identifier-head 	→	 U+200B–U+200D,	U+202A–U+202E,	U+203F–U+2040,	U+2054,	or

U+2060–U+206F
identifier-head 	→	 U+2070–U+20CF,	U+2100–U+218F,	U+2460–U+24FF,	or	U+2776–

U+2793
identifier-head 	→	 U+2C00–U+2DFF	or	U+2E80–U+2FFF
identifier-head 	→	 U+3004–U+3007,	U+3021–U+302F,	U+3031–U+303F,	or	U+3040–

U+D7FF
identifier-head 	→	 U+F900–U+FD3D,	U+FD40–U+FDCF,	U+FDF0–U+FE1F,	or	U+FE30–

U+FE44
identifier-head 	→	 U+FE47–U+FFFD
identifier-head 	→	 U+10000–U+1FFFD,	U+20000–U+2FFFD,	U+30000–U+3FFFD,	or

U+40000–U+4FFFD
identifier-head 	→	 U+50000–U+5FFFD,	U+60000–U+6FFFD,	U+70000–U+7FFFD,	or

U+80000–U+8FFFD
identifier-head 	→	 U+90000–U+9FFFD,	U+A0000–U+AFFFD,	U+B0000–U+BFFFD,	or

U+C0000–U+CFFFD
identifier-head 	→	 U+D0000–U+DFFFD	or	U+E0000–U+EFFFD
identifier-character 	→	 Digit	0	through	9
identifier-character 	→	 U+0300–U+036F,	U+1DC0–U+1DFF,	U+20D0–U+20FF,	or

U+FE20–U+FE2F
identifier-character 	→	 identifier-head
identifier-characters 	→	 identifier-character 	 identifier-characters 	opt
implicit-parameter-name 	→	 $ 	 decimal-digits
property-wrapper-projection 	→	 $ 	 identifier-characters

GRAMMAR 	OF 	A	 L I TERAL

literal 	→	 numeric-literal 	|	 string-literal 	|	 boolean-literal 	|	 nil-literal
numeric-literal 	→	 -opt 	 integer-literal 	|	 -opt 	 floating-point-literal
boolean-literal 	→	 true 	|	 false
nil-literal 	→	 nil

GRAMMAR 	OF 	AN 	 I NTEGER 	 L I TERAL

integer-literal 	→	 binary-literal
integer-literal 	→	 octal-literal
integer-literal 	→	 decimal-literal
integer-literal 	→	 hexadecimal-literal
binary-literal 	→	 0b 	 binary-digit 	 binary-literal-characters 	opt
binary-digit 	→	 Digit	0	or	1
binary-literal-character 	→	 binary-digit 	|	 _
binary-literal-characters 	→	 binary-literal-character 	 binary-literal-characters 	opt
octal-literal 	→	 0o 	 octal-digit 	 octal-literal-characters 	opt
octal-digit 	→	 Digit	0	through	7
octal-literal-character 	→	 octal-digit 	|	 _
octal-literal-characters 	→	 octal-literal-character 	 octal-literal-characters 	opt
decimal-literal 	→	 decimal-digit 	 decimal-literal-characters 	opt
decimal-digit 	→	 Digit	0	through	9
decimal-digits 	→	 decimal-digit 	 decimal-digits 	opt
decimal-literal-character 	→	 decimal-digit 	|	 _

decimal-literal-characters 	→	 decimal-literal-character 	 decimal-literal-characters 	opt
hexadecimal-literal 	→	 0x 	 hexadecimal-digit 	 hexadecimal-literal-characters 	opt
hexadecimal-digit 	→	 Digit	0	through	9,	a	through	f,	or	A	through	F
hexadecimal-literal-character 	→	 hexadecimal-digit 	|	 _
hexadecimal-literal-characters 	→	 hexadecimal-literal-character 	 hexadecimal-literal-

characters 	opt

GRAMMAR 	OF 	A	 F LOAT ING -PO INT 	 L I TERAL

floating-point-literal 	→	 decimal-literal 	 decimal-fraction 	opt 	 decimal-exponent 	opt
floating-point-literal 	→	 hexadecimal-literal 	 hexadecimal-fraction 	opt 	 hexadecimal-

exponent
decimal-fraction 	→	 . 	 decimal-literal
decimal-exponent 	→	 floating-point-e 	 sign 	opt 	 decimal-literal
hexadecimal-fraction 	→	 . 	 hexadecimal-digit 	 hexadecimal-literal-characters 	opt
hexadecimal-exponent 	→	 floating-point-p 	 sign 	opt 	 decimal-literal
floating-point-e 	→	 e 	|	 E
floating-point-p 	→	 p 	|	 P
sign 	→	 + 	|	 -

GRAMMAR 	OF 	A	 STR ING 	 L I TERAL

string-literal 	→	 static-string-literal 	|	 interpolated-string-literal
string-literal-opening-delimiter 	→	 extended-string-literal-delimiter 	opt 	 "
string-literal-closing-delimiter 	→	 " 	 extended-string-literal-delimiter 	opt
static-string-literal 	→	 string-literal-opening-delimiter 	 quoted-text 	opt 	 string-literal-closing-

delimiter
static-string-literal 	→	 multiline-string-literal-opening-delimiter 	multiline-quoted-text 	opt

multiline-string-literal-closing-delimiter
multiline-string-literal-opening-delimiter 	→	 extended-string-literal-delimiter 	 """
multiline-string-literal-closing-delimiter 	→	 """ 	 extended-string-literal-delimiter
extended-string-literal-delimiter 	→	 # 	 extended-string-literal-delimiter 	opt
quoted-text 	→	 quoted-text-item 	 quoted-text 	opt
quoted-text-item 	→	 escaped-character
quoted-text-item 	→	 Any	Unicode	scalar	value	except	 " ,	 \ ,	U+000A,	or	U+000D
multiline-quoted-text 	→	 multiline-quoted-text-item 	multiline-quoted-text 	opt
multiline-quoted-text-item 	→	 escaped-character
multiline-quoted-text-item 	→	 Any	Unicode	scalar	value	except	 \
multiline-quoted-text-item 	→	 escaped-newline
interpolated-string-literal 	→	 string-literal-opening-delimiter 	 interpolated-text 	opt 	 string-

literal-closing-delimiter
interpolated-string-literal 	→	 multiline-string-literal-opening-delimiter 	 interpolated-text 	opt

multiline-string-literal-closing-delimiter
interpolated-text 	→	 interpolated-text-item 	 interpolated-text 	opt
interpolated-text-item 	→	 \(expression) 	|	 quoted-text-item

multiline-interpolated-text 	→	 multiline-interpolated-text-item 	multiline-interpolated-text 	opt
multiline-interpolated-text-item 	→	 \(expression) 	|	multiline-quoted-text-item
escape-sequence 	→	 \ 	 extended-string-literal-delimiter
escaped-character 	→	 escape-sequence 	 0 	|	 escape-sequence 	 \ 	|	 escape-sequence 	 t 	|

escape-sequence 	 n 	|	 escape-sequence 	 r 	|	 escape-sequence 	 " 	|	 escape-sequence
'

escaped-character 	→	 escape-sequence 	 u 	 { 	 unicode-scalar-digits 	 }
unicode-scalar-digits 	→	 Between	one	and	eight	hexadecimal	digits
escaped-newline 	→	 escape-sequence 	whitespace 	opt 	 line-break

GRAMMAR 	OF 	OPERATORS

operator 	→	 operator-head 	 operator-characters 	opt
operator 	→	 dot-operator-head 	 dot-operator-characters
operator-head 	→	 / 	|	 = 	|	 - 	|	 + 	|	 ! 	|	 * 	|	 % 	|	 < 	|	 > 	|	 & 	|	 | 	|	 ^ 	|	 ~ 	|	 ?
operator-head 	→	 U+00A1–U+00A7
operator-head 	→	 U+00A9	or	U+00AB
operator-head 	→	 U+00AC	or	U+00AE
operator-head 	→	 U+00B0–U+00B1
operator-head 	→	 U+00B6,	U+00BB,	U+00BF,	U+00D7,	or	U+00F7
operator-head 	→	 U+2016–U+2017
operator-head 	→	 U+2020–U+2027
operator-head 	→	 U+2030–U+203E
operator-head 	→	 U+2041–U+2053
operator-head 	→	 U+2055–U+205E
operator-head 	→	 U+2190–U+23FF
operator-head 	→	 U+2500–U+2775
operator-head 	→	 U+2794–U+2BFF
operator-head 	→	 U+2E00–U+2E7F
operator-head 	→	 U+3001–U+3003
operator-head 	→	 U+3008–U+3020
operator-head 	→	 U+3030
operator-character 	→	 operator-head
operator-character 	→	 U+0300–U+036F
operator-character 	→	 U+1DC0–U+1DFF
operator-character 	→	 U+20D0–U+20FF
operator-character 	→	 U+FE00–U+FE0F
operator-character 	→	 U+FE20–U+FE2F
operator-character 	→	 U+E0100–U+E01EF
operator-characters 	→	 operator-character 	 operator-characters 	opt
dot-operator-head 	→	 .
dot-operator-character 	→	 . 	|	 operator-character
dot-operator-characters 	→	 dot-operator-character 	 dot-operator-characters 	opt
binary-operator 	→	 operator
prefix-operator 	→	 operator
postfix-operator 	→	 operator

Types

GRAMMAR 	OF 	A	TYPE

type 	→	 function-type
type 	→	 array-type
type 	→	 dictionary-type
type 	→	 type-identifier
type 	→	 tuple-type
type 	→	 optional-type
type 	→	 implicitly-unwrapped-optional-type
type 	→	 protocol-composition-type
type 	→	 opaque-type
type 	→	 metatype-type
type 	→	 self-type
type 	→	 Any
type 	→	 (type)

GRAMMAR 	OF 	A	TYPE 	ANNOTAT ION

type-annotation 	→	 : 	 attributes 	opt 	 inoutopt 	 type

GRAMMAR 	OF 	A	TYPE 	 I DENT I F I ER

type-identifier 	→	 type-name 	 generic-argument-clause 	opt 	|	 type-name 	 generic-argument-
clause 	opt 	 . 	 type-identifier

type-name 	→	 identifier

GRAMMAR 	OF 	A	TUPLE 	TYPE

tuple-type 	→	 () 	|	 (tuple-type-element 	 , 	 tuple-type-element-list)
tuple-type-element-list 	→	 tuple-type-element 	|	 tuple-type-element 	 , 	 tuple-type-element-

list
tuple-type-element 	→	 element-name 	 type-annotation 	|	 type
element-name 	→	 identifier

GRAMMAR 	OF 	A	 FUNCT ION 	TYPE

function-type 	→	 attributes 	opt 	 function-type-argument-clause 	 throwsopt 	 -> 	 type
function-type-argument-clause 	→	 ()
function-type-argument-clause 	→	 (function-type-argument-list 	 ...opt)
function-type-argument-list 	→	 function-type-argument 	|	 function-type-argument 	 ,

function-type-argument-list
function-type-argument 	→	 attributes 	opt 	 inoutopt 	 type 	|	 argument-label 	 type-

annotation
argument-label 	→	 identifier

GRAMMAR 	OF 	AN 	ARRAY 	TYPE

array-type 	→	 [type]

GRAMMAR 	OF 	A	D ICT IONARY 	TYPE

dictionary-type 	→	 [type 	 : 	 type]

GRAMMAR 	OF 	AN 	OPT IONAL	TYPE

optional-type 	→	 type 	 ?

GRAMMAR 	OF 	AN 	 IMPL IC I T LY 	UNWRAPPED 	OPT IONAL	TYPE

implicitly-unwrapped-optional-type 	→	 type 	 !

GRAMMAR 	OF 	A	 PROTOCOL	COMPOS I T ION 	TYPE

protocol-composition-type 	→	 type-identifier 	 & 	 protocol-composition-continuation
protocol-composition-continuation 	→	 type-identifier 	|	 protocol-composition-type

GRAMMAR 	OF 	AN 	OPAQUE 	TYPE

opaque-type 	→	 some 	 type

GRAMMAR 	OF 	A	METATYPE 	TYPE

metatype-type 	→	 type 	 . 	 Type 	|	 type 	 . 	 Protocol

GRAMMAR 	OF 	A	 SELF 	TYPE

self-type 	→	 Self

GRAMMAR 	OF 	A	TYPE 	 I NHER I TANCE 	CLAUSE

type-inheritance-clause 	→	 : 	 type-inheritance-list
type-inheritance-list 	→	 type-identifier 	|	 type-identifier 	 , 	 type-inheritance-list

Expressions

GRAMMAR 	OF 	AN 	EXPRESS ION

expression 	→	 try-operator 	opt 	 prefix-expression 	 binary-expressions 	opt
expression-list 	→	 expression 	|	 expression 	 , 	 expression-list

GRAMMAR 	OF 	A	 PREF IX 	 EXPRESS ION

prefix-expression 	→	 prefix-operator 	opt 	 postfix-expression
prefix-expression 	→	 in-out-expression
in-out-expression 	→	 & 	 identifier

GRAMMAR 	OF 	A	TRY 	EXPRESS ION

try-operator 	→	 try 	|	 try 	 ? 	|	 try 	 !

GRAMMAR 	OF 	A	 B INARY 	EXPRESS ION

binary-expression 	→	 binary-operator 	 prefix-expression
binary-expression 	→	 assignment-operator 	 try-operator 	opt 	 prefix-expression
binary-expression 	→	 conditional-operator 	 try-operator 	opt 	 prefix-expression
binary-expression 	→	 type-casting-operator
binary-expressions 	→	 binary-expression 	 binary-expressions 	opt

GRAMMAR 	OF 	AN 	ASS IGNMENT 	OPERATOR

assignment-operator 	→	 =

GRAMMAR 	OF 	A	COND I T IONAL	OPERATOR

conditional-operator 	→	 ? 	 expression 	 :

GRAMMAR 	OF 	A	TYPE -CAST ING 	OPERATOR

type-casting-operator 	→	 is 	 type
type-casting-operator 	→	 as 	 type
type-casting-operator 	→	 as 	 ? 	 type
type-casting-operator 	→	 as 	 ! 	 type

GRAMMAR 	OF 	A	 PR IMARY 	EXPRESS ION

primary-expression 	→	 identifier 	 generic-argument-clause 	opt
primary-expression 	→	 literal-expression
primary-expression 	→	 self-expression
primary-expression 	→	 superclass-expression
primary-expression 	→	 closure-expression
primary-expression 	→	 parenthesized-expression
primary-expression 	→	 tuple-expression
primary-expression 	→	 implicit-member-expression
primary-expression 	→	 wildcard-expression
primary-expression 	→	 key-path-expression
primary-expression 	→	 selector-expression
primary-expression 	→	 key-path-string-expression

GRAMMAR 	OF 	A	 L I TERAL	EXPRESS ION

literal-expression 	→	 literal
literal-expression 	→	 array-literal 	|	 dictionary-literal 	|	 playground-literal
literal-expression 	→	 #file 	|	 #line 	|	 #column 	|	 #function 	|	 #dsohandle
array-literal 	→	 [array-literal-items 	opt]
array-literal-items 	→	 array-literal-item 	 ,opt 	|	 array-literal-item 	 , 	 array-literal-items
array-literal-item 	→	 expression
dictionary-literal 	→	 [dictionary-literal-items] 	|	 [:]
dictionary-literal-items 	→	 dictionary-literal-item 	 ,opt 	|	 dictionary-literal-item 	 , 	 dictionary-

literal-items
dictionary-literal-item 	→	 expression 	 : 	 expression
playground-literal 	→	 #colorLiteral 	 (red 	 : 	 expression 	 , 	 green 	 : 	 expression

, 	 blue 	 : 	 expression 	 , 	 alpha 	 : 	 expression)
playground-literal 	→	 #fileLiteral 	 (resourceName 	 : 	 expression)
playground-literal 	→	 #imageLiteral 	 (resourceName 	 : 	 expression)

GRAMMAR 	OF 	A	 SELF 	 EXPRESS ION

self-expression 	→	 self 	|	 self-method-expression 	|	 self-subscript-expression 	|	 self-
initializer-expression

self-method-expression 	→	 self 	 . 	 identifier
self-subscript-expression 	→	 self 	 [function-call-argument-list]
self-initializer-expression 	→	 self 	 . 	 init

GRAMMAR 	OF 	A	 SUPERCLASS 	EXPRESS ION

superclass-expression 	→	 superclass-method-expression 	|	 superclass-subscript-
expression 	|	 superclass-initializer-expression

superclass-method-expression 	→	 super 	 . 	 identifier
superclass-subscript-expression 	→	 super 	 [function-call-argument-list]
superclass-initializer-expression 	→	 super 	 . 	 init

GRAMMAR 	OF 	A	CLOSURE 	EXPRESS ION

closure-expression 	→	 { 	 closure-signature 	opt 	 statements 	opt 	 }
closure-signature 	→	 capture-list 	opt 	 closure-parameter-clause 	 throwsopt 	 function-

result 	opt 	 in
closure-signature 	→	 capture-list 	 in
closure-parameter-clause 	→	 () 	|	 (closure-parameter-list) 	|	 identifier-list
closure-parameter-list 	→	 closure-parameter 	|	 closure-parameter 	 , 	 closure-parameter-

list
closure-parameter 	→	 closure-parameter-name 	 type-annotation 	opt
closure-parameter 	→	 closure-parameter-name 	 type-annotation 	 ...
closure-parameter-name 	→	 identifier
capture-list 	→	 [capture-list-items]
capture-list-items 	→	 capture-list-item 	|	 capture-list-item 	 , 	 capture-list-items

capture-list-item 	→	 capture-specifier 	opt 	 expression
capture-specifier 	→	 weak 	|	 unowned 	|	 unowned(safe) 	|	 unowned(unsafe)

GRAMMAR 	OF 	A	 IMPL IC I T 	MEMBER 	EXPRESS ION

implicit-member-expression 	→	 . 	 identifier

GRAMMAR 	OF 	A	 PARENTHES I ZED 	EXPRESS ION

parenthesized-expression 	→	 (expression)

GRAMMAR 	OF 	A	TUPLE 	EXPRESS ION

tuple-expression 	→	 () 	|	 (tuple-element 	 , 	 tuple-element-list)
tuple-element-list 	→	 tuple-element 	|	 tuple-element 	 , 	 tuple-element-list
tuple-element 	→	 expression 	|	 identifier 	 : 	 expression

GRAMMAR 	OF 	A	W I LDCARD 	EXPRESS ION

wildcard-expression 	→	 _

GRAMMAR 	OF 	A	 KEY-PATH 	EXPRESS ION

key-path-expression 	→	 \ 	 type 	opt 	 . 	 key-path-components
key-path-components 	→	 key-path-component 	|	 key-path-component 	 . 	 key-path-

components
key-path-component 	→	 identifier 	 key-path-postfixes 	opt 	|	 key-path-postfixes
key-path-postfixes 	→	 key-path-postfix 	 key-path-postfixes 	opt
key-path-postfix 	→	 ? 	|	 ! 	|	 self 	|	 [function-call-argument-list]

GRAMMAR 	OF 	A	 SELECTOR 	EXPRESS ION

selector-expression 	→	 #selector 	 (expression)
selector-expression 	→	 #selector 	 (getter: 	 expression)
selector-expression 	→	 #selector 	 (setter: 	 expression)

GRAMMAR 	OF 	A	 KEY-PATH 	STR ING 	EXPRESS ION

key-path-string-expression 	→	 #keyPath 	 (expression)

GRAMMAR 	OF 	A	 POSTF IX 	 EXPRESS ION

postfix-expression 	→	 primary-expression
postfix-expression 	→	 postfix-expression 	 postfix-operator
postfix-expression 	→	 function-call-expression
postfix-expression 	→	 initializer-expression
postfix-expression 	→	 explicit-member-expression

postfix-expression 	→	 postfix-self-expression
postfix-expression 	→	 subscript-expression
postfix-expression 	→	 forced-value-expression
postfix-expression 	→	 optional-chaining-expression

GRAMMAR 	OF 	A	 FUNCT ION 	CALL 	 EXPRESS ION

function-call-expression 	→	 postfix-expression 	 function-call-argument-clause
function-call-expression 	→	 postfix-expression 	 function-call-argument-clause 	opt 	 trailing-

closure
function-call-argument-clause 	→	 () 	|	 (function-call-argument-list)
function-call-argument-list 	→	 function-call-argument 	|	 function-call-argument 	 , 	 function-

call-argument-list
function-call-argument 	→	 expression 	|	 identifier 	 : 	 expression
function-call-argument 	→	 operator 	|	 identifier 	 : 	 operator
trailing-closure 	→	 closure-expression

GRAMMAR 	OF 	AN 	 I N I T I A L I ZER 	EXPRESS ION

initializer-expression 	→	 postfix-expression 	 . 	 init
initializer-expression 	→	 postfix-expression 	 . 	 init 	 (argument-names)

GRAMMAR 	OF 	AN 	EXPL IC I T 	MEMBER 	EXPRESS ION

explicit-member-expression 	→	 postfix-expression 	 . 	 decimal-digits
explicit-member-expression 	→	 postfix-expression 	 . 	 identifier 	 generic-argument-clause

opt
explicit-member-expression 	→	 postfix-expression 	 . 	 identifier 	 (argument-names)
argument-names 	→	 argument-name 	 argument-names 	opt
argument-name 	→	 identifier 	 :

GRAMMAR 	OF 	A	 POSTF IX 	 SELF 	 EXPRESS ION

postfix-self-expression 	→	 postfix-expression 	 . 	 self

GRAMMAR 	OF 	A	 SUBSCR IPT 	 EXPRESS ION

subscript-expression 	→	 postfix-expression 	 [function-call-argument-list]

GRAMMAR 	OF 	A	 FORCED -VALUE 	EXPRESS ION

forced-value-expression 	→	 postfix-expression 	 !

GRAMMAR 	OF 	AN 	OPT IONAL -CHA IN ING 	EXPRESS ION

optional-chaining-expression 	→	 postfix-expression 	 ?

Statements

GRAMMAR 	OF 	A	 STATEMENT

statement 	→	 expression 	 ;opt
statement 	→	 declaration 	 ;opt
statement 	→	 loop-statement 	 ;opt
statement 	→	 branch-statement 	 ;opt
statement 	→	 labeled-statement 	 ;opt
statement 	→	 control-transfer-statement 	 ;opt
statement 	→	 defer-statement 	 ;opt
statement 	→	 do-statement 	 ;opt
statement 	→	 compiler-control-statement
statements 	→	 statement 	 statements 	opt

GRAMMAR 	OF 	A	 LOOP 	STATEMENT

loop-statement 	→	 for-in-statement
loop-statement 	→	 while-statement
loop-statement 	→	 repeat-while-statement

GRAMMAR 	OF 	A	 FOR - IN 	 STATEMENT

for-in-statement 	→	 for 	 caseopt 	 pattern 	 in 	 expression 	where-clause 	opt 	 code-block

GRAMMAR 	OF 	A	WH I LE 	 STATEMENT

while-statement 	→	 while 	 condition-list 	 code-block
condition-list 	→	 condition 	|	 condition 	 , 	 condition-list
condition 	→	 expression 	|	 availability-condition 	|	 case-condition 	|	 optional-binding-

condition
case-condition 	→	 case 	 pattern 	 initializer
optional-binding-condition 	→	 let 	 pattern 	 initializer 	|	 var 	 pattern 	 initializer

GRAMMAR 	OF 	A	REPEAT-WH I LE 	 STATEMENT

repeat-while-statement 	→	 repeat 	 code-block 	 while 	 expression

GRAMMAR 	OF 	A	 BRANCH 	STATEMENT

branch-statement 	→	 if-statement
branch-statement 	→	 guard-statement
branch-statement 	→	 switch-statement

GRAMMAR 	OF 	AN 	 I F 	 STATEMENT

if-statement 	→	 if 	 condition-list 	 code-block 	 else-clause 	opt
else-clause 	→	 else 	 code-block 	|	 else 	 if-statement

GRAMMAR 	OF 	A	GUARD 	STATEMENT

guard-statement 	→	 guard 	 condition-list 	 else 	 code-block

GRAMMAR 	OF 	A	 SW ITCH 	STATEMENT

switch-statement 	→	 switch 	 expression 	 { 	 switch-cases 	opt 	 }
switch-cases 	→	 switch-case 	 switch-cases 	opt
switch-case 	→	 case-label 	 statements
switch-case 	→	 default-label 	 statements
switch-case 	→	 conditional-switch-case
case-label 	→	 attributes 	opt 	 case 	 case-item-list 	 :
case-item-list 	→	 pattern 	where-clause 	opt 	|	 pattern 	where-clause 	opt 	 , 	 case-item-list
default-label 	→	 attributes 	opt 	 default 	 :
where-clause 	→	 where 	where-expression
where-expression 	→	 expression
conditional-switch-case 	→	 switch-if-directive-clause 	 switch-elseif-directive-clauses 	opt

switch-else-directive-clause 	opt 	 endif-directive
switch-if-directive-clause 	→	 if-directive 	 compilation-condition 	 switch-cases 	opt
switch-elseif-directive-clauses 	→	 elseif-directive-clause 	 switch-elseif-directive-clauses 	opt
switch-elseif-directive-clause 	→	 elseif-directive 	 compilation-condition 	 switch-cases 	opt
switch-else-directive-clause 	→	 else-directive 	 switch-cases 	opt

GRAMMAR 	OF 	A	 LABELED 	STATEMENT

labeled-statement 	→	 statement-label 	 loop-statement
labeled-statement 	→	 statement-label 	 if-statement
labeled-statement 	→	 statement-label 	 switch-statement
labeled-statement 	→	 statement-label 	 do-statement
statement-label 	→	 label-name 	 :
label-name 	→	 identifier

GRAMMAR 	OF 	A	CONTROL	TRANSFER 	STATEMENT

control-transfer-statement 	→	 break-statement
control-transfer-statement 	→	 continue-statement
control-transfer-statement 	→	 fallthrough-statement
control-transfer-statement 	→	 return-statement
control-transfer-statement 	→	 throw-statement

GRAMMAR 	OF 	A	 BREAK 	STATEMENT

break-statement 	→	 break 	 label-name 	opt

GRAMMAR 	OF 	A	CONT INUE 	STATEMENT

continue-statement 	→	 continue 	 label-name 	opt

GRAMMAR 	OF 	A	 FALLTHROUGH 	STATEMENT

fallthrough-statement 	→	 fallthrough

GRAMMAR 	OF 	A	RETURN 	STATEMENT

return-statement 	→	 return 	 expression 	opt

GRAMMAR 	OF 	A	THROW	STATEMENT

throw-statement 	→	 throw 	 expression

GRAMMAR 	OF 	A	DEFER 	STATEMENT

defer-statement 	→	 defer 	 code-block

GRAMMAR 	OF 	A	DO 	STATEMENT

do-statement 	→	 do 	 code-block 	 catch-clauses 	opt
catch-clauses 	→	 catch-clause 	 catch-clauses 	opt
catch-clause 	→	 catch 	 pattern 	opt 	where-clause 	opt 	 code-block

GRAMMAR 	OF 	A	COMP I LER 	CONTROL	STATEMENT

compiler-control-statement 	→	 conditional-compilation-block
compiler-control-statement 	→	 line-control-statement
compiler-control-statement 	→	 diagnostic-statement

GRAMMAR 	OF 	A	COND I T IONAL	COMP I LAT ION 	BLOCK

conditional-compilation-block 	→	 if-directive-clause 	 elseif-directive-clauses 	opt 	 else-
directive-clause 	opt 	 endif-directive

if-directive-clause 	→	 if-directive 	 compilation-condition 	 statements 	opt
elseif-directive-clauses 	→	 elseif-directive-clause 	 elseif-directive-clauses 	opt
elseif-directive-clause 	→	 elseif-directive 	 compilation-condition 	 statements 	opt
else-directive-clause 	→	 else-directive 	 statements 	opt
if-directive 	→	 #if
elseif-directive 	→	 #elseif
else-directive 	→	 #else
endif-directive 	→	 #endif
compilation-condition 	→	 platform-condition

compilation-condition 	→	 identifier
compilation-condition 	→	 boolean-literal
compilation-condition 	→	 (compilation-condition)
compilation-condition 	→	 ! 	 compilation-condition
compilation-condition 	→	 compilation-condition 	 && 	 compilation-condition
compilation-condition 	→	 compilation-condition 	 || 	 compilation-condition
platform-condition 	→	 os 	 (operating-system)
platform-condition 	→	 arch 	 (architecture)
platform-condition 	→	 swift 	 (>= 	 swift-version) 	|	 swift 	 (< 	 swift-version)
platform-condition 	→	 compiler 	 (>= 	 swift-version) 	|	 compiler 	 (< 	 swift-version

)

platform-condition 	→	 canImport 	 (module-name)
platform-condition 	→	 targetEnvironment 	 (environment)
operating-system 	→	 macOS 	|	 iOS 	|	 watchOS 	|	 tvOS
architecture 	→	 i386 	|	 x86_64 	|	 arm 	|	 arm64
swift-version 	→	 decimal-digits 	 swift-version-continuation 	opt
swift-version-continuation 	→	 . 	 decimal-digits 	 swift-version-continuation 	opt
module-name 	→	 identifier
environment 	→	 simulator

GRAMMAR 	OF 	A	 L I NE 	CONTROL	STATEMENT

line-control-statement 	→	 #sourceLocation 	 (file: 	 file-name 	 , 	 line: 	 line-
number)

line-control-statement 	→	 #sourceLocation 	 ()
line-number 	→	 A	decimal	integer	greater	than	zero
file-name 	→	 static-string-literal

GRAMMAR 	OF 	A	COMP I LE - T IME 	D I AGNOST IC 	 STATEMENT

diagnostic-statement 	→	 #error 	 (diagnostic-message)
diagnostic-statement 	→	 #warning 	 (diagnostic-message)
diagnostic-message 	→	 static-string-literal

GRAMMAR 	OF 	AN 	AVA I LAB I L I TY 	COND I T ION

availability-condition 	→	 #available 	 (availability-arguments)
availability-arguments 	→	 availability-argument 	|	 availability-argument 	 , 	 availability-

arguments
availability-argument 	→	 platform-name 	 platform-version
availability-argument 	→	 *
platform-name 	→	 iOS 	|	 iOSApplicationExtension
platform-name 	→	 macOS 	|	 macOSApplicationExtension
platform-name 	→	 watchOS
platform-name 	→	 tvOS
platform-version 	→	 decimal-digits
platform-version 	→	 decimal-digits 	 . 	 decimal-digits

platform-version 	→	 decimal-digits 	 . 	 decimal-digits 	 . 	 decimal-digits

Declarations

GRAMMAR 	OF 	A	DECLARAT ION

declaration 	→	 import-declaration
declaration 	→	 constant-declaration
declaration 	→	 variable-declaration
declaration 	→	 typealias-declaration
declaration 	→	 function-declaration
declaration 	→	 enum-declaration
declaration 	→	 struct-declaration
declaration 	→	 class-declaration
declaration 	→	 protocol-declaration
declaration 	→	 initializer-declaration
declaration 	→	 deinitializer-declaration
declaration 	→	 extension-declaration
declaration 	→	 subscript-declaration
declaration 	→	 operator-declaration
declaration 	→	 precedence-group-declaration
declarations 	→	 declaration 	 declarations 	opt

GRAMMAR 	OF 	A	TOP - LEVEL	DECLARAT ION

top-level-declaration 	→	 statements 	opt

GRAMMAR 	OF 	A	CODE 	BLOCK

code-block 	→	 { 	 statements 	opt 	 }

GRAMMAR 	OF 	AN 	 IMPORT 	DECLARAT ION

import-declaration 	→	 attributes 	opt 	 import 	 import-kind 	opt 	 import-path
import-kind 	→	 typealias 	|	 struct 	|	 class 	|	 enum 	|	 protocol 	|	 let 	|	 var 	|

func

import-path 	→	 import-path-identifier 	|	 import-path-identifier 	 . 	 import-path
import-path-identifier 	→	 identifier 	|	 operator

GRAMMAR 	OF 	A	CONSTANT 	DECLARAT ION

constant-declaration 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 let 	 pattern-initializer-
list

pattern-initializer-list 	→	 pattern-initializer 	|	 pattern-initializer 	 , 	 pattern-initializer-list

pattern-initializer 	→	 pattern 	 initializer 	opt
initializer 	→	 = 	 expression

GRAMMAR 	OF 	A	 VAR IABLE 	DECLARAT ION

variable-declaration 	→	 variable-declaration-head 	 pattern-initializer-list
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation 	 code-

block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation 	 getter-

setter-block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation 	 getter-

setter-keyword-block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 initializer 	willSet-didSet-

block
variable-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation

initializer 	opt 	willSet-didSet-block
variable-declaration-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 var
variable-name 	→	 identifier
getter-setter-block 	→	 code-block
getter-setter-block 	→	 { 	 getter-clause 	 setter-clause 	opt 	 }
getter-setter-block 	→	 { 	 setter-clause 	 getter-clause 	 }
getter-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 get 	 code-block
setter-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 set 	 setter-name 	opt 	 code-block
setter-name 	→	 (identifier)
getter-setter-keyword-block 	→	 { 	 getter-keyword-clause 	 setter-keyword-clause 	opt 	 }
getter-setter-keyword-block 	→	 { 	 setter-keyword-clause 	 getter-keyword-clause 	 }
getter-keyword-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 get
setter-keyword-clause 	→	 attributes 	opt 	mutation-modifier 	opt 	 set
willSet-didSet-block 	→	 { 	willSet-clause 	 didSet-clause 	opt 	 }
willSet-didSet-block 	→	 { 	 didSet-clause 	willSet-clause 	opt 	 }
willSet-clause 	→	 attributes 	opt 	 willSet 	 setter-name 	opt 	 code-block
didSet-clause 	→	 attributes 	opt 	 didSet 	 setter-name 	opt 	 code-block

GRAMMAR 	OF 	A	TYPE 	AL I AS 	DECLARAT ION

typealias-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 typealias 	 typealias-
name 	 generic-parameter-clause 	opt 	 typealias-assignment

typealias-name 	→	 identifier
typealias-assignment 	→	 = 	 type

GRAMMAR 	OF 	A	 FUNCT ION 	DECLARAT ION

function-declaration 	→	 function-head 	 function-name 	 generic-parameter-clause 	opt
function-signature 	 generic-where-clause 	opt 	 function-body 	opt

function-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 func

function-name 	→	 identifier 	|	 operator
function-signature 	→	 parameter-clause 	 throwsopt 	 function-result 	opt
function-signature 	→	 parameter-clause 	 rethrows 	 function-result 	opt
function-result 	→	 -> 	 attributes 	opt 	 type
function-body 	→	 code-block
parameter-clause 	→	 () 	|	 (parameter-list)
parameter-list 	→	 parameter 	|	 parameter 	 , 	 parameter-list
parameter 	→	 external-parameter-name 	opt 	 local-parameter-name 	 type-annotation

default-argument-clause 	opt
parameter 	→	 external-parameter-name 	opt 	 local-parameter-name 	 type-annotation
parameter 	→	 external-parameter-name 	opt 	 local-parameter-name 	 type-annotation 	 ...
external-parameter-name 	→	 identifier
local-parameter-name 	→	 identifier
default-argument-clause 	→	 = 	 expression

GRAMMAR 	OF 	AN 	ENUMERAT ION 	DECLARAT ION

enum-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 union-style-enum
enum-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 raw-value-style-enum
union-style-enum 	→	 indirectopt 	 enum 	 enum-name 	 generic-parameter-clause 	opt

type-inheritance-clause 	opt 	 generic-where-clause 	opt 	 { 	 union-style-enum-members

opt 	 }
union-style-enum-members 	→	 union-style-enum-member 	 union-style-enum-members 	opt
union-style-enum-member 	→	 declaration 	|	 union-style-enum-case-clause 	|	 compiler-

control-statement
union-style-enum-case-clause 	→	 attributes 	opt 	 indirectopt 	 case 	 union-style-enum-

case-list
union-style-enum-case-list 	→	 union-style-enum-case 	|	 union-style-enum-case 	 , 	 union-

style-enum-case-list
union-style-enum-case 	→	 enum-case-name 	 tuple-type 	opt
enum-name 	→	 identifier
enum-case-name 	→	 identifier
raw-value-style-enum 	→	 enum 	 enum-name 	 generic-parameter-clause 	opt 	 type-

inheritance-clause 	 generic-where-clause 	opt 	 { 	 raw-value-style-enum-members 	 }
raw-value-style-enum-members 	→	 raw-value-style-enum-member 	 raw-value-style-enum-

members 	opt
raw-value-style-enum-member 	→	 declaration 	|	 raw-value-style-enum-case-clause 	|

compiler-control-statement
raw-value-style-enum-case-clause 	→	 attributes 	opt 	 case 	 raw-value-style-enum-case-

list
raw-value-style-enum-case-list 	→	 raw-value-style-enum-case 	|	 raw-value-style-enum-

case 	 , 	 raw-value-style-enum-case-list
raw-value-style-enum-case 	→	 enum-case-name 	 raw-value-assignment 	opt
raw-value-assignment 	→	 = 	 raw-value-literal
raw-value-literal 	→	 numeric-literal 	|	 static-string-literal 	|	 boolean-literal

GRAMMAR 	OF 	A	 STRUCTURE 	DECLARAT ION

struct-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 struct 	 struct-name
generic-parameter-clause 	opt 	 type-inheritance-clause 	opt 	 generic-where-clause 	opt
struct-body

struct-name 	→	 identifier
struct-body 	→	 { 	 struct-members 	opt 	 }
struct-members 	→	 struct-member 	 struct-members 	opt
struct-member 	→	 declaration 	|	 compiler-control-statement

GRAMMAR 	OF 	A	CLASS 	DECLARAT ION

class-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 finalopt 	 class 	 class-
name 	 generic-parameter-clause 	opt 	 type-inheritance-clause 	opt 	 generic-where-clause

opt 	 class-body
class-declaration 	→	 attributes 	opt 	 final 	 access-level-modifier 	opt 	 class 	 class-

name 	 generic-parameter-clause 	opt 	 type-inheritance-clause 	opt 	 generic-where-clause

opt 	 class-body
class-name 	→	 identifier
class-body 	→	 { 	 class-members 	opt 	 }
class-members 	→	 class-member 	 class-members 	opt
class-member 	→	 declaration 	|	 compiler-control-statement

GRAMMAR 	OF 	A	 PROTOCOL	DECLARAT ION

protocol-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 protocol 	 protocol-
name 	 type-inheritance-clause 	opt 	 generic-where-clause 	opt 	 protocol-body

protocol-name 	→	 identifier
protocol-body 	→	 { 	 protocol-members 	opt 	 }
protocol-members 	→	 protocol-member 	 protocol-members 	opt
protocol-member 	→	 protocol-member-declaration 	|	 compiler-control-statement
protocol-member-declaration 	→	 protocol-property-declaration
protocol-member-declaration 	→	 protocol-method-declaration
protocol-member-declaration 	→	 protocol-initializer-declaration
protocol-member-declaration 	→	 protocol-subscript-declaration
protocol-member-declaration 	→	 protocol-associated-type-declaration
protocol-member-declaration 	→	 typealias-declaration

GRAMMAR 	OF 	A	 PROTOCOL	PROPERTY 	DECLARAT ION

protocol-property-declaration 	→	 variable-declaration-head 	 variable-name 	 type-annotation
getter-setter-keyword-block

GRAMMAR 	OF 	A	 PROTOCOL	METHOD 	DECLARAT ION

protocol-method-declaration 	→	 function-head 	 function-name 	 generic-parameter-clause
opt 	 function-signature 	 generic-where-clause 	opt

GRAMMAR 	OF 	A	 PROTOCOL	 I N I T I A L I ZER 	DECLARAT ION

protocol-initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt
parameter-clause 	 throwsopt 	 generic-where-clause 	opt

protocol-initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt
parameter-clause 	 rethrows 	 generic-where-clause 	opt

GRAMMAR 	OF 	A	 PROTOCOL	SUBSCR IPT 	DECLARAT ION

protocol-subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause
opt 	 getter-setter-keyword-block

GRAMMAR 	OF 	A	 PROTOCOL	ASSOC IATED 	TYPE 	DECLARAT ION

protocol-associated-type-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt
associatedtype 	 typealias-name 	 type-inheritance-clause 	opt 	 typealias-assignment

opt 	 generic-where-clause 	opt

GRAMMAR 	OF 	AN 	 I N I T I A L I ZER 	DECLARAT ION

initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt 	 parameter-clause
throwsopt 	 generic-where-clause 	opt 	 initializer-body

initializer-declaration 	→	 initializer-head 	 generic-parameter-clause 	opt 	 parameter-clause
rethrows 	 generic-where-clause 	opt 	 initializer-body

initializer-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 init
initializer-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 init 	 ?
initializer-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 init 	 !
initializer-body 	→	 code-block

GRAMMAR 	OF 	A	DE IN I T I A L I ZER 	DECLARAT ION

deinitializer-declaration 	→	 attributes 	opt 	 deinit 	 code-block

GRAMMAR 	OF 	AN 	EXTENS ION 	DECLARAT ION

extension-declaration 	→	 attributes 	opt 	 access-level-modifier 	opt 	 extension 	 type-
identifier 	 type-inheritance-clause 	opt 	 generic-where-clause 	opt 	 extension-body

extension-body 	→	 { 	 extension-members 	opt 	 }
extension-members 	→	 extension-member 	 extension-members 	opt
extension-member 	→	 declaration 	|	 compiler-control-statement

GRAMMAR 	OF 	A	 SUBSCR IPT 	DECLARAT ION

subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause 	opt 	 code-
block

subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause 	opt 	 getter-
setter-block

subscript-declaration 	→	 subscript-head 	 subscript-result 	 generic-where-clause 	opt 	 getter-
setter-keyword-block

subscript-head 	→	 attributes 	opt 	 declaration-modifiers 	opt 	 subscript 	 generic-
parameter-clause 	opt 	 parameter-clause

subscript-result 	→	 -> 	 attributes 	opt 	 type

GRAMMAR 	OF 	AN 	OPERATOR 	DECLARAT ION

operator-declaration 	→	 prefix-operator-declaration 	|	 postfix-operator-declaration 	|	 infix-
operator-declaration

prefix-operator-declaration 	→	 prefix 	 operator 	 operator
postfix-operator-declaration 	→	 postfix 	 operator 	 operator
infix-operator-declaration 	→	 infix 	 operator 	 operator 	 infix-operator-group 	opt
infix-operator-group 	→	 : 	 precedence-group-name

GRAMMAR 	OF 	A	 PRECEDENCE 	GROUP 	DECLARAT ION

precedence-group-declaration 	→	 precedencegroup 	 precedence-group-name 	 {
precedence-group-attributes 	opt 	 }

precedence-group-attributes 	→	 precedence-group-attribute 	 precedence-group-attributes
opt

precedence-group-attribute 	→	 precedence-group-relation
precedence-group-attribute 	→	 precedence-group-assignment
precedence-group-attribute 	→	 precedence-group-associativity
precedence-group-relation 	→	 higherThan 	 : 	 precedence-group-names
precedence-group-relation 	→	 lowerThan 	 : 	 precedence-group-names
precedence-group-assignment 	→	 assignment 	 : 	 boolean-literal
precedence-group-associativity 	→	 associativity 	 : 	 left
precedence-group-associativity 	→	 associativity 	 : 	 right
precedence-group-associativity 	→	 associativity 	 : 	 none
precedence-group-names 	→	 precedence-group-name 	|	 precedence-group-name 	 ,

precedence-group-names
precedence-group-name 	→	 identifier

GRAMMAR 	OF 	A	DECLARAT ION 	MOD IF I ER

declaration-modifier 	→	 class 	|	 convenience 	|	 dynamic 	|	 final 	|	 infix 	|	 lazy 	|
optional 	|	 override 	|	 postfix 	|	 prefix 	|	 required 	|	 static 	|	 unowned 	|
unowned 	 (safe) 	|	 unowned 	 (unsafe) 	|	 weak

declaration-modifier 	→	 access-level-modifier
declaration-modifier 	→	 mutation-modifier

declaration-modifiers 	→	 declaration-modifier 	 declaration-modifiers 	opt
access-level-modifier 	→	 private 	|	 private 	 (set)
access-level-modifier 	→	 fileprivate 	|	 fileprivate 	 (set)
access-level-modifier 	→	 internal 	|	 internal 	 (set)
access-level-modifier 	→	 public 	|	 public 	 (set)
access-level-modifier 	→	 open 	|	 open 	 (set)
mutation-modifier 	→	 mutating 	|	 nonmutating

Attributes

GRAMMAR 	OF 	AN 	ATTR IBUTE

attribute 	→	 @ 	 attribute-name 	 attribute-argument-clause 	opt
attribute-name 	→	 identifier
attribute-argument-clause 	→	 (balanced-tokens 	opt)
attributes 	→	 attribute 	 attributes 	opt
balanced-tokens 	→	 balanced-token 	 balanced-tokens 	opt
balanced-token 	→	 (balanced-tokens 	opt)
balanced-token 	→	 [balanced-tokens 	opt]
balanced-token 	→	 { 	 balanced-tokens 	opt 	 }
balanced-token 	→	 Any	identifier,	keyword,	literal,	or	operator
balanced-token 	→	 Any	punctuation	except	 (,) ,	 [,] ,	 { ,	or	 }

Patterns

GRAMMAR 	OF 	A	 PATTERN

pattern 	→	 wildcard-pattern 	 type-annotation 	opt
pattern 	→	 identifier-pattern 	 type-annotation 	opt
pattern 	→	 value-binding-pattern
pattern 	→	 tuple-pattern 	 type-annotation 	opt
pattern 	→	 enum-case-pattern
pattern 	→	 optional-pattern
pattern 	→	 type-casting-pattern
pattern 	→	 expression-pattern

GRAMMAR 	OF 	A	W I LDCARD 	PATTERN

wildcard-pattern 	→	 _

GRAMMAR 	OF 	AN 	 I DENT I F I ER 	PATTERN

identifier-pattern 	→	 identifier

GRAMMAR 	OF 	A	 VALUE -B IND ING 	PATTERN

value-binding-pattern 	→	 var 	 pattern 	|	 let 	 pattern

GRAMMAR 	OF 	A	TUPLE 	PATTERN

tuple-pattern 	→	 (tuple-pattern-element-list 	opt)
tuple-pattern-element-list 	→	 tuple-pattern-element 	|	 tuple-pattern-element 	 , 	 tuple-

pattern-element-list
tuple-pattern-element 	→	 pattern 	|	 identifier 	 : 	 pattern

GRAMMAR 	OF 	AN 	ENUMERAT ION 	CASE 	PATTERN

enum-case-pattern 	→	 type-identifier 	opt 	 . 	 enum-case-name 	 tuple-pattern 	opt

GRAMMAR 	OF 	AN 	OPT IONAL	PATTERN

optional-pattern 	→	 identifier-pattern 	 ?

GRAMMAR 	OF 	A	TYPE 	CAST ING 	PATTERN

type-casting-pattern 	→	 is-pattern 	|	 as-pattern
is-pattern 	→	 is 	 type
as-pattern 	→	 pattern 	 as 	 type

GRAMMAR 	OF 	AN 	EXPRESS ION 	PATTERN

expression-pattern 	→	 expression

Generic	Parameters	and	Arguments

GRAMMAR 	OF 	A	GENER IC 	PARAMETER 	CLAUSE

generic-parameter-clause 	→	 < 	 generic-parameter-list 	 >
generic-parameter-list 	→	 generic-parameter 	|	 generic-parameter 	 , 	 generic-parameter-

list
generic-parameter 	→	 type-name
generic-parameter 	→	 type-name 	 : 	 type-identifier
generic-parameter 	→	 type-name 	 : 	 protocol-composition-type

generic-where-clause 	→	 where 	 requirement-list
requirement-list 	→	 requirement 	|	 requirement 	 , 	 requirement-list
requirement 	→	 conformance-requirement 	|	 same-type-requirement
conformance-requirement 	→	 type-identifier 	 : 	 type-identifier
conformance-requirement 	→	 type-identifier 	 : 	 protocol-composition-type
same-type-requirement 	→	 type-identifier 	 == 	 type

GRAMMAR 	OF 	A	GENER IC 	ARGUMENT 	CLAUSE

generic-argument-clause 	→	 < 	 generic-argument-list 	 >
generic-argument-list 	→	 generic-argument 	|	 generic-argument 	 , 	 generic-argument-list
generic-argument 	→	 type

Revision	History

Document	Revision	History

2019-09-10

Updated	for	Swift	5.1.

Added	information	about	functions	that	specify	a	protocol	that	their	return
value	conforms	to,	instead	of	providing	a	specific	named	return	type,	to	the
Opaque	Types	chapter.

Added	information	about	property	wrappers	to	the	Property	Wrappers
section.

Added	information	enumerations	and	structures	that	are	frozen	for	library
evolution	to	the	frozen	section.

Added	the	Functions	With	an	Implicit	Return	and	Shorthand	Getter
Declaration	sections	with	information	about	functions	that	omit	return.

Added	information	about	using	subscripts	on	types	to	the	Type	Subscripts
section.

Updated	the	Enumeration	Case	Pattern	section,	now	that	an	enumeration
case	pattern	can	match	an	optional	value.

Updated	the	Memberwise	Initializers	for	Structure	Types	section,	now	that
memberwise	initializers	support	omitting	parameters	for	properties	that
have	a	default	value.

Added	information	about	dynamic	members	that	are	looked	up	by	key	path
at	run	time	to	the	dynamicMemberLookup	section.

Added	macCatalyst	to	the	list	of	target	environments	in	Conditional
Compilation	Block.

Updated	the	Self	Type	section,	now	that	Self	can	be	used	to	refer	to	the
type	introduced	by	the	current	class,	structure,	or	enumeration	declaration.

2019-03-25

Updated	for	Swift	5.0.

Added	the	Extended	String	Delimiters	section	and	updated	the	String
Literals	section	with	information	about	extended	string	delimiters.

Added	the	dynamicCallable	section	with	information	about	dynamically
calling	instances	as	functions	using	the	dynamicCallable	attribute.

Added	the	unknown	and	Switching	Over	Future	Enumeration	Cases
sections	with	information	about	handling	future	enumeration	cases	in
switch	statements	using	the	unknown	switch	case	attribute.

Added	information	about	the	identity	key	path	(\.self)	to	the	Key-Path
Expression	section.

Added	information	about	using	the	less	than	(<)	operator	in	platform
conditions	to	the	Conditional	Compilation	Block	section.

2018-09-17

Updated	for	Swift	4.2.

Added	information	about	accessing	all	of	an	enumeration’s	cases	to	the
Iterating	over	Enumeration	Cases	section.

Added	information	about	#error	and	#warning	to	the	Compile-Time
Diagnostic	Statement	section.

Added	information	about	inlining	to	the	Declaration	Attributes	section
under	the	inlinable	and	usableFromInline	attributes.

Added	information	about	members	that	are	looked	up	by	name	at	runtime	to
the	Declaration	Attributes	section	under	the	dynamicMemberLookup	attribute.

Added	information	about	the	requires_stored_property_inits	and
warn_unqualified_access	attributes	to	the	Declaration	Attributes	section.

Added	information	about	how	to	conditionally	compile	code	depending	on
the	Swift	compiler	version	being	used	to	the	Conditional	Compilation
Block	section.

Added	information	about	#dsohandle	to	the	Literal	Expression	section.

2018-03-29

Updated	for	Swift	4.1.

Added	information	about	synthesized	implementations	of	equivalence
operators	to	the	Equivalence	Operators	section.

Added	information	about	conditional	protocol	conformance	to	the
Extension	Declaration	section	of	the	Declarations	chapter,	and	to	the
Conditionally	Conforming	to	a	Protocol	section	of	the	Protocols	chapter.

Added	information	about	recursive	protocol	constraints	to	the	Using	a
Protocol	in	Its	Associated	Type’s	Constraints	section.

Added	information	about	the	canImport()	and	targetEnvironment()
platform	conditions	to	Conditional	Compilation	Block.

2017-12-04

Updated	for	Swift	4.0.3.

Updated	the	Key-Path	Expression	section,	now	that	key	paths	support
subscript	components.

2017-09-19

Updated	for	Swift	4.0.

Added	information	about	exclusive	access	to	memory	to	the	Memory
Safety	chapter.

Added	the	Associated	Types	with	a	Generic	Where	Clause	section,	now	that
you	can	use	generic	where	clauses	to	constrain	associated	types.

Added	information	about	multiline	string	literals	to	the	String	Literals
section	of	the	Strings	and	Characters	chapter,	and	to	the	String	Literals
section	of	the	Lexical	Structure	chapter.

Updated	the	discussion	of	the	objc	attribute	in	Declaration	Attributes,	now
that	this	attribute	is	inferred	in	fewer	places.

Added	the	Generic	Subscripts	section,	now	that	subscripts	can	be	generic.

Updated	the	discussion	in	the	Protocol	Composition	section	of	the	Protocols
chapter,	and	in	the	Protocol	Composition	Type	section	of	the	Types	chapter,
now	that	protocol	composition	types	can	contain	a	superclass	requirement.

Updated	the	discussion	of	protocol	extensions	in	Extension	Declaration
now	that	final	isn’t	allowed	in	them.

Added	information	about	preconditions	and	fatal	errors	to	the	Assertions
and	Preconditions	section.

2017-03-27

Updated	for	Swift	3.1.

Added	the	Extensions	with	a	Generic	Where	Clause	section	with
information	about	extensions	that	include	requirements.

Added	examples	of	iterating	over	a	range	to	the	For-In	Loops	section.

Added	an	example	of	failable	numeric	conversions	to	the	Failable
Initializers	section.

Added	information	to	the	Declaration	Attributes	section	about	using	the
available	attribute	with	a	Swift	language	version.

Updated	the	discussion	in	the	Function	Type	section	to	note	that	argument
labels	are	not	allowed	when	writing	a	function	type.

Updated	the	discussion	of	Swift	language	version	numbers	in	the
Conditional	Compilation	Block	section,	now	that	an	optional	patch	number

is	allowed.

Updated	the	discussion	in	the	Function	Type	section,	now	that	Swift
distinguishes	between	functions	that	take	multiple	parameters	and	functions
that	take	a	single	parameter	of	a	tuple	type.

Removed	the	Dynamic	Type	Expression	section	from	the	Expressions
chapter,	now	that	type(of:)	is	a	Swift	standard	library	function.

2016-10-27

Updated	for	Swift	3.0.1.

Updated	the	discussion	of	weak	and	unowned	references	in	the	Automatic
Reference	Counting	chapter.

Added	information	about	the	unowned,	unowned(safe),	and	unowned(unsafe)
declaration	modifiers	in	the	Declaration	Modifiers	section.

Added	a	note	to	the	Type	Casting	for	Any	and	AnyObject	section	about
using	an	optional	value	when	a	value	of	type	Any	is	expected.

Updated	the	Expressions	chapter	to	separate	the	discussion	of	parenthesized
expressions	and	tuple	expressions.

2016-09-13

Updated	for	Swift	3.0.

Updated	the	discussion	of	functions	in	the	Functions	chapter	and	the
Function	Declaration	section	to	note	that	all	parameters	get	an	argument
label	by	default.

Updated	the	discussion	of	operators	in	the	Advanced	Operators	chapter,
now	that	you	implement	them	as	type	methods	instead	of	as	global
functions.

Added	information	about	the	open	and	fileprivate	access-level	modifiers
to	the	Access	Control	chapter.

Updated	the	discussion	of	inout	in	the	Function	Declaration	section	to	note
that	it	appears	in	front	of	a	parameter’s	type	instead	of	in	front	of	a
parameter’s	name.

Updated	the	discussion	of	the	@noescape	and	@autoclosure	attributes	in	the
Escaping	Closures	and	Autoclosures	sections	and	the	Attributes	chapter
now	that	they	are	type	attributes,	rather	than	declaration	attributes.

Added	information	about	operator	precedence	groups	to	the	Precedence	for
Custom	Infix	Operators	section	of	the	Advanced	Operators	chapter,	and	to
the	Precedence	Group	Declaration	section	of	the	Declarations	chapter.

Updated	discussion	throughout	to	use	macOS	instead	of	OS	X,	Error
instead	of	ErrorProtocol,	and	protocol	names	such	as
ExpressibleByStringLiteral	instead	of	StringLiteralConvertible.

Updated	the	discussion	in	the	Generic	Where	Clauses	section	of	the
Generics	chapter	and	in	the	Generic	Parameters	and	Arguments	chapter,
now	that	generic	where	clauses	are	written	at	the	end	of	a	declaration.

Updated	the	discussion	in	the	Escaping	Closures	section,	now	that	closures
are	nonescaping	by	default.

Updated	the	discussion	in	the	Optional	Binding	section	of	the	The	Basics
chapter	and	the	While	Statement	section	of	the	Statements	chapter,	now	that
if,	while,	and	guard	statements	use	a	comma-separated	list	of	conditions
without	where	clauses.

Added	information	about	switch	cases	that	have	multiple	patterns	to	the
Switch	section	of	the	Control	Flow	chapter	and	the	Switch	Statement
section	of	the	Statements	chapter.

Updated	the	discussion	of	function	types	in	the	Function	Type	section	now
that	function	argument	labels	are	no	longer	part	of	a	function’s	type.

Updated	the	discussion	of	protocol	composition	types	in	the	Protocol
Composition	section	of	the	Protocols	chapter	and	in	the	Protocol
Composition	Type	section	of	the	Types	chapter	to	use	the	new	Protocol1	&
Protocol2	syntax.

Updated	the	discussion	in	the	Dynamic	Type	Expression	section	to	use	the
new	type(of:)	syntax	for	dynamic	type	expressions.

Updated	the	discussion	of	line	control	statements	to	use	the
#sourceLocation(file:line:)	syntax	in	the	Line	Control	Statement	section.

Updated	the	discussion	in	Functions	that	Never	Return	to	use	the	new	Never
type.

Added	information	about	playground	literals	to	the	Literal	Expression
section.

Updated	the	discussion	in	the	In-Out	Parameters	section	to	note	that	only
nonescaping	closures	can	capture	in-out	parameters.

Updated	the	discussion	about	default	parameters	in	the	Default	Parameter
Values	section,	now	that	they	can’t	be	reordered	in	function	calls.

Updated	attribute	arguments	to	use	a	colon	in	the	Attributes	chapter.

Added	information	about	throwing	an	error	inside	the	catch	block	of	a
rethrowing	function	to	the	Rethrowing	Functions	and	Methods	section.

Added	information	about	accessing	the	selector	of	an	Objective-C
property’s	getter	or	setter	to	the	Selector	Expression	section.

Added	information	to	the	Type	Alias	Declaration	section	about	generic	type
aliases	and	using	type	aliases	inside	of	protocols.

Updated	the	discussion	of	function	types	in	the	Function	Type	section	to
note	that	parentheses	around	the	parameter	types	are	required.

Updated	the	Attributes	chapter	to	note	that	the	@IBAction,	@IBOutlet,	and
@NSManaged	attributes	imply	the	@objc	attribute.

Added	information	about	the	@GKInspectable	attribute	to	the	Declaration
Attributes	section.

Updated	the	discussion	of	optional	protocol	requirements	in	the	Optional
Protocol	Requirements	section	to	clarify	that	they	are	used	only	in	code	that
interoperates	with	Objective-C.

Removed	the	discussion	of	explicitly	using	let	in	function	parameters	from
the	Function	Declaration	section.

Removed	the	discussion	of	the	Boolean	protocol	from	the	Statements
chapter,	now	that	the	protocol	has	been	removed	from	the	Swift	standard
library.

Corrected	the	discussion	of	the	@NSApplicationMain	attribute	in	the
Declaration	Attributes	section.

2016-03-21

Updated	for	Swift	2.2.

Added	information	about	how	to	conditionally	compile	code	depending	on
the	version	of	Swift	being	used	to	the	Conditional	Compilation	Block
section.

Added	information	about	how	to	distinguish	between	methods	or
initializers	whose	names	differ	only	by	the	names	of	their	arguments	to	the
Explicit	Member	Expression	section.

Added	information	about	the	#selector	syntax	for	Objective-C	selectors	to
the	Selector	Expression	section.

Updated	the	discussion	of	associated	types	to	use	the	associatedtype
keyword	in	the	Associated	Types	and	Protocol	Associated	Type	Declaration
sections.

Updated	information	about	initializers	that	return	nil	before	the	instance	is
fully	initialized	in	the	Failable	Initializers	section.

Added	information	about	comparing	tuples	to	the	Comparison	Operators
section.

Added	information	about	using	keywords	as	external	parameter	names	to
the	Keywords	and	Punctuation	section.

Updated	the	discussion	of	the	@objc	attribute	in	the	Declaration	Attributes
section	to	note	that	enumerations	and	enumeration	cases	can	use	this
attribute.

Updated	the	Operators	section	with	discussion	of	custom	operators	that
contain	a	dot.

Added	a	note	to	the	Rethrowing	Functions	and	Methods	section	that
rethrowing	functions	can’t	directly	throw	errors.

Added	a	note	to	the	Property	Observers	section	about	property	observers
being	called	when	you	pass	a	property	as	an	in-out	parameter.

Added	a	section	about	error	handling	to	the	A	Swift	Tour	chapter.

Updated	figures	in	the	Weak	References	section	to	show	the	deallocation
process	more	clearly.

Removed	discussion	of	C-style	for	loops,	the	++	prefix	and	postfix
operators,	and	the	--	prefix	and	postfix	operators.

Removed	discussion	of	variable	function	arguments	and	the	special	syntax
for	curried	functions.

2015-10-20

Updated	for	Swift	2.1.

Updated	the	String	Interpolation	and	String	Literals	sections	now	that	string
interpolations	can	contain	string	literals.

Added	the	Escaping	Closures	section	with	information	about	the	@noescape
attribute.

Updated	the	Declaration	Attributes	and	Conditional	Compilation	Block
sections	with	information	about	tvOS.

Added	information	about	the	behavior	of	in-out	parameters	to	the	In-Out
Parameters	section.

Added	information	to	the	Capture	Lists	section	about	how	values	specified
in	closure	capture	lists	are	captured.

Updated	the	Accessing	Properties	Through	Optional	Chaining	section	to
clarify	how	assignment	through	optional	chaining	behaves.

Improved	the	discussion	of	autoclosures	in	the	Autoclosures	section.

Added	an	example	that	uses	the	??	operator	to	the	A	Swift	Tour	chapter.

2015-09-16

Updated	for	Swift	2.0.

Added	information	about	error	handling	to	the	Error	Handling	chapter,	the
Do	Statement	section,	the	Throw	Statement	section,	the	Defer	Statement
section,	and	the	Try	Operator	section.

Updated	the	Representing	and	Throwing	Errors	section,	now	that	all	types
can	conform	to	the	ErrorType	protocol.

Added	information	about	the	new	try?	keyword	to	the	Converting	Errors	to
Optional	Values	section.

Added	information	about	recursive	enumerations	to	the	Recursive
Enumerations	section	of	the	Enumerations	chapter	and	the	Enumerations
with	Cases	of	Any	Type	section	of	the	Declarations	chapter.

Added	information	about	API	availability	checking	to	the	Checking	API
Availability	section	of	the	Control	Flow	chapter	and	the	Availability
Condition	section	of	the	Statements	chapter.

Added	information	about	the	new	guard	statement	to	the	Early	Exit	section
of	the	Control	Flow	chapter	and	the	Guard	Statement	section	of	the
Statements	chapter.

Added	information	about	protocol	extensions	to	the	Protocol	Extensions
section	of	the	Protocols	chapter.

Added	information	about	access	control	for	unit	testing	to	the	Access
Levels	for	Unit	Test	Targets	section	of	the	Access	Control	chapter.

Added	information	about	the	new	optional	pattern	to	the	Optional	Pattern
section	of	the	Patterns	chapter.

Updated	the	Repeat-While	section	with	information	about	the	repeat-while
loop.

Updated	the	Strings	and	Characters	chapter,	now	that	String	no	longer
conforms	to	the	CollectionType	protocol	from	the	Swift	standard	library.

Added	information	about	the	new	Swift	standard	library
print(_:separator:terminator)	function	to	the	Printing	Constants	and
Variables	section.

Added	information	about	the	behavior	of	enumeration	cases	with	String
raw	values	to	the	Implicitly	Assigned	Raw	Values	section	of	the
Enumerations	chapter	and	the	Enumerations	with	Cases	of	a	Raw-Value
Type	section	of	the	Declarations	chapter.

Added	information	about	the	@autoclosure	attribute—including	its
@autoclosure(escaping)	form—to	the	Autoclosures	section.

Updated	the	Declaration	Attributes	section	with	information	about	the
@available	and	@warn_unused_result	attributes.

Updated	the	Type	Attributes	section	with	information	about	the
@convention	attribute.

Added	an	example	of	using	multiple	optional	bindings	with	a	where	clause
to	the	Optional	Binding	section.

Added	information	to	the	String	Literals	section	about	how	concatenating
string	literals	using	the	+	operator	happens	at	compile	time.

Added	information	to	the	Metatype	Type	section	about	comparing	metatype
values	and	using	them	to	construct	instances	with	initializer	expressions.

Added	a	note	to	the	Debugging	with	Assertions	section	about	when	user-
defined	assertions	are	disabled.

Updated	the	discussion	of	the	@NSManaged	attribute	in	the	Declaration
Attributes	section,	now	that	the	attribute	can	be	applied	to	certain	instance
methods.

Updated	the	Variadic	Parameters	section,	now	that	variadic	parameters	can
be	declared	in	any	position	in	a	function’s	parameter	list.

Added	information	to	the	Overriding	a	Failable	Initializer	section	about
how	a	nonfailable	initializer	can	delegate	up	to	a	failable	initializer	by
force-unwrapping	the	result	of	the	superclass’s	initializer.

Added	information	about	using	enumeration	cases	as	functions	to	the
Enumerations	with	Cases	of	Any	Type	section.

Added	information	about	explicitly	referencing	an	initializer	to	the
Initializer	Expression	section.

Added	information	about	build	configuration	and	line	control	statements	to
the	Compiler	Control	Statements	section.

Added	a	note	to	the	Metatype	Type	section	about	constructing	class
instances	from	metatype	values.

Added	a	note	to	the	Weak	References	section	about	weak	references	being
unsuitable	for	caching.

Updated	a	note	in	the	Type	Properties	section	to	mention	that	stored	type
properties	are	lazily	initialized.

Updated	the	Capturing	Values	section	to	clarify	how	variables	and	constants
are	captured	in	closures.

Updated	the	Declaration	Attributes	section	to	describe	when	you	can	apply

the	@objc	attribute	to	classes.

Added	a	note	to	the	Handling	Errors	section	about	the	performance	of
executing	a	throw	statement.	Added	similar	information	about	the	do
statement	in	the	Do	Statement	section.

Updated	the	Type	Properties	section	with	information	about	stored	and
computed	type	properties	for	classes,	structures,	and	enumerations.

Updated	the	Break	Statement	section	with	information	about	labeled	break
statements.

Updated	a	note	in	the	Property	Observers	section	to	clarify	the	behavior	of
willSet	and	didSet	observers.

Added	a	note	to	the	Access	Levels	section	with	information	about	the	scope
of	private	access.

Added	a	note	to	the	Weak	References	section	about	the	differences	in	weak
references	between	garbage	collected	systems	and	ARC.

Updated	the	Special	Characters	in	String	Literals	section	with	a	more
precise	definition	of	Unicode	scalars.

2015-04-08

Updated	for	Swift	1.2.

Swift	now	has	a	native	Set	collection	type.	For	more	information,	see	Sets.

@autoclosure	is	now	an	attribute	of	the	parameter	declaration,	not	its	type.
There	is	also	a	new	@noescape	parameter	declaration	attribute.	For	more
information,	see	Declaration	Attributes.

Type	methods	and	properties	now	use	the	static	keyword	as	a	declaration
modifier.	For	more	information	see	Type	Variable	Properties.

Swift	now	includes	the	as?	and	as!	failable	downcast	operators.	For	more
information,	see	Checking	for	Protocol	Conformance.

Added	a	new	guide	section	about	String	Indices.

Removed	the	overflow	division	(&/)	and	overflow	remainder	(&%)	operators
from	Overflow	Operators.

Updated	the	rules	for	constant	and	constant	property	declaration	and
initialization.	For	more	information,	see	Constant	Declaration.

Updated	the	definition	of	Unicode	scalars	in	string	literals.	See	Special
Characters	in	String	Literals.

Updated	Range	Operators	to	note	that	a	half-open	range	with	the	same	start
and	end	index	will	be	empty.

Updated	Closures	Are	Reference	Types	to	clarify	the	capturing	rules	for
variables.

Updated	Value	Overflow	to	clarify	the	overflow	behavior	of	signed	and
unsigned	integers

Updated	Protocol	Declaration	to	clarify	protocol	declaration	scope	and
members.

Updated	Defining	a	Capture	List	to	clarify	the	syntax	for	weak	and
unowned	references	in	closure	capture	lists.

Updated	Operators	to	explicitly	mention	examples	of	supported	characters
for	custom	operators,	such	as	those	in	the	Mathematical	Operators,
Miscellaneous	Symbols,	and	Dingbats	Unicode	blocks.

Constants	can	now	be	declared	without	being	initialized	in	local	function
scope.	They	must	have	a	set	value	before	first	use.	For	more	information,
see	Constant	Declaration.

In	an	initializer,	constant	properties	can	now	only	assign	a	value	once.	For
more	information,	see	Assigning	Constant	Properties	During	Initialization.

Multiple	optional	bindings	can	now	appear	in	a	single	if	statement	as	a
comma-separated	list	of	assignment	expressions.	For	more	information,	see

Optional	Binding.

An	Optional-Chaining	Expression	must	appear	within	a	postfix	expression.

Protocol	casts	are	no	longer	limited	to	@objc	protocols.

Type	casts	that	can	fail	at	runtime	now	use	the	as?	or	as!	operator,	and	type
casts	that	are	guaranteed	not	to	fail	use	the	as	operator.	For	more
information,	see	Type-Casting	Operators.

2014-10-16

Updated	for	Swift	1.1.

Added	a	full	guide	to	Failable	Initializers.

Added	a	description	of	Failable	Initializer	Requirements	for	protocols.

Constants	and	variables	of	type	Any	can	now	contain	function	instances.
Updated	the	example	in	Type	Casting	for	Any	and	AnyObject	to	show	how
to	check	for	and	cast	to	a	function	type	within	a	switch	statement.

Enumerations	with	raw	values	now	have	a	rawValue	property	rather	than	a
toRaw()	method	and	a	failable	initializer	with	a	rawValue	parameter	rather
than	a	fromRaw()	method.	For	more	information,	see	Raw	Values	and
Enumerations	with	Cases	of	a	Raw-Value	Type.

Added	a	new	reference	section	about	Failable	Initializers,	which	can	trigger
initialization	failure.

Custom	operators	can	now	contain	the	?	character.	Updated	the	Operators
reference	to	describe	the	revised	rules.	Removed	a	duplicate	description	of
the	valid	set	of	operator	characters	from	Custom	Operators.

2014-08-18

New	document	that	describes	Swift	1.0,	Apple’s	new	programming
language	for	building	iOS	and	OS	X	apps.

Added	a	new	section	about	Initializer	Requirements	in	protocols.

Added	a	new	section	about	Class-Only	Protocols.

Assertions	and	Preconditions	can	now	use	string	interpolation.	Removed	a
note	to	the	contrary.

Updated	the	Concatenating	Strings	and	Characters	section	to	reflect	the	fact
that	String	and	Character	values	can	no	longer	be	combined	with	the
addition	operator	(+)	or	addition	assignment	operator	(+=).	These	operators
are	now	used	only	with	String	values.	Use	the	String	type’s	append(_:)
method	to	append	a	single	Character	value	onto	the	end	of	a	string.

Added	information	about	the	availability	attribute	to	the	Declaration
Attributes	section.

Optionals	no	longer	implicitly	evaluate	to	true	when	they	have	a	value	and
false	when	they	do	not,	to	avoid	confusion	when	working	with	optional
Bool	values.	Instead,	make	an	explicit	check	against	nil	with	the	==	or	!=
operators	to	find	out	if	an	optional	contains	a	value.

Swift	now	has	a	Nil-Coalescing	Operator	(a	??	b),	which	unwraps	an
optional’s	value	if	it	exists,	or	returns	a	default	value	if	the	optional	is	nil.

Updated	and	expanded	the	Comparing	Strings	section	to	reflect	and
demonstrate	that	string	and	character	comparison	and	prefix	/	suffix
comparison	are	now	based	on	Unicode	canonical	equivalence	of	extended
grapheme	clusters.

You	can	now	try	to	set	a	property’s	value,	assign	to	a	subscript,	or	call	a
mutating	method	or	operator	through	Optional	Chaining.	The	information
about	Accessing	Properties	Through	Optional	Chaining	has	been	updated
accordingly,	and	the	examples	of	checking	for	method	call	success	in
Calling	Methods	Through	Optional	Chaining	have	been	expanded	to	show
how	to	check	for	property	setting	success.

Added	a	new	section	about	Accessing	Subscripts	of	Optional	Type	through
optional	chaining.

Updated	the	Accessing	and	Modifying	an	Array	section	to	note	that	you	can
no	longer	append	a	single	item	to	an	array	with	the	+=	operator.	Instead,	use
the	append(_:)	method,	or	append	a	single-item	array	with	the	+=	operator.

Added	a	note	that	the	start	value	a	for	the	Range	Operators	a...b	and	a..<b
must	not	be	greater	than	the	end	value	b.

Rewrote	the	Inheritance	chapter	to	remove	its	introductory	coverage	of
initializer	overrides.	This	chapter	now	focuses	more	on	the	addition	of	new
functionality	in	a	subclass,	and	the	modification	of	existing	functionality
with	overrides.	The	chapter’s	example	of	Overriding	Property	Getters	and
Setters	has	been	rewritten	to	show	how	to	override	a	description	property.
(The	examples	of	modifying	an	inherited	property’s	default	value	in	a
subclass	initializer	have	been	moved	to	the	Initialization	chapter.)

Updated	the	Initializer	Inheritance	and	Overriding	section	to	note	that
overrides	of	a	designated	initializer	must	now	be	marked	with	the	override
modifier.

Updated	the	Required	Initializers	section	to	note	that	the	required	modifier
is	now	written	before	every	subclass	implementation	of	a	required
initializer,	and	that	the	requirements	for	required	initializers	can	now	be
satisfied	by	automatically	inherited	initializers.

Infix	Operator	Methods	no	longer	require	the	@infix	attribute.

The	@prefix	and	@postfix	attributes	for	Prefix	and	Postfix	Operators	have
been	replaced	by	prefix	and	postfix	declaration	modifiers.

Added	a	note	about	the	order	in	which	Prefix	and	Postfix	Operators	are
applied	when	both	a	prefix	and	a	postfix	operator	are	applied	to	the	same
operand.

Operator	functions	for	Compound	Assignment	Operators	no	longer	use	the
@assignment	attribute	when	defining	the	function.

The	order	in	which	modifiers	are	specified	when	defining	Custom
Operators	has	changed.	You	now	write	prefix	operator	rather	than
operator	prefix,	for	example.

Added	information	about	the	dynamic	declaration	modifier	in	Declaration
Modifiers.

Added	information	about	how	type	inference	works	with	Literals.

Added	more	information	about	curried	functions.

Added	a	new	chapter	about	Access	Control.

Updated	the	Strings	and	Characters	chapter	to	reflect	the	fact	that	Swift’s
Character	type	now	represents	a	single	Unicode	extended	grapheme	cluster.
Includes	a	new	section	on	Extended	Grapheme	Clusters	and	more
information	about	Unicode	Scalar	Values	and	Comparing	Strings.

Updated	the	String	Literals	section	to	note	that	Unicode	scalars	inside	string
literals	are	now	written	as	\u{n},	where	n	is	a	hexadecimal	number	between
0	and	10FFFF,	the	range	of	Unicode’s	codespace.

The	NSString	length	property	is	now	mapped	onto	Swift’s	native	String
type	as	utf16Count,	not	utf16count.

Swift’s	native	String	type	no	longer	has	an	uppercaseString	or
lowercaseString	property.	The	corresponding	section	in	Strings	and
Characters	has	been	removed,	and	various	code	examples	have	been
updated.

Added	a	new	section	about	Initializer	Parameters	Without	Argument
Labels.

Added	a	new	section	about	Required	Initializers.

Added	a	new	section	about	Optional	Tuple	Return	Types.

Updated	the	Type	Annotations	section	to	note	that	multiple	related	variables
can	be	defined	on	a	single	line	with	one	type	annotation.

The	@optional,	@lazy,	@final,	and	@required	attributes	are	now	the
optional,	lazy,	final,	and	required	Declaration	Modifiers.

Updated	the	entire	book	to	refer	to	..<	as	the	Half-Open	Range	Operator
(rather	than	the	“half-closed	range	operator”).

Updated	the	Accessing	and	Modifying	a	Dictionary	section	to	note	that
Dictionary	now	has	a	Boolean	isEmpty	property.

Clarified	the	full	list	of	characters	that	can	be	used	when	defining	Custom
Operators.

nil	and	the	Booleans	true	and	false	are	now	Literals.

Swift’s	Array	type	now	has	full	value	semantics.	Updated	the	information
about	Mutability	of	Collections	and	Arrays	to	reflect	the	new	approach.
Also	clarified	the	assignment	and	copy	behavior	for	strings	arrays	and
dictionaries.

Array	Type	Shorthand	Syntax	is	now	written	as	[SomeType]	rather	than
SomeType[].

Added	a	new	section	about	Dictionary	Type	Shorthand	Syntax,	which	is
written	as	[KeyType:	ValueType].

Added	a	new	section	about	Hash	Values	for	Set	Types.

Examples	of	Closure	Expressions	now	use	the	global	sorted(_:_:)	function
rather	than	the	global	sort(_:_:)	function,	to	reflect	the	new	array	value
semantics.

Updated	the	information	about	Memberwise	Initializers	for	Structure	Types
to	clarify	that	the	memberwise	structure	initializer	is	made	available	even	if
a	structure’s	stored	properties	do	not	have	default	values.

Updated	to	..<	rather	than	..	for	the	Half-Open	Range	Operator.

Added	an	example	of	Extending	a	Generic	Type.

Copyright	and	Notices

Apple	Inc.
Copyright	©	2019	Apple	Inc.

This	document	is	made	available	under	a	Creative	Commons	Attribution	4.0
International	(CC	BY	4.0)	License:	https://creativecommons.org/licenses/by/4.0/

No	licenses,	express	or	implied,	are	granted	with	respect	to	any	of	the
technology	described	in	this	document.	Apple	retains	all	intellectual	property
rights	associated	with	the	technology	described	in	this	document.

Apple	Inc.
One	Apple	Park	Way
Cupertino,	CA	95014
408-996-1010

Apple,	the	Apple	logo,	Bonjour,	Cocoa,	Logic,	Mac,	Numbers,	Objective-C,	OS
X,	Retina,	Sand,	Shake,	and	Xcode	are	trademarks	of	Apple	Inc.,	registered	in
the	U.S.	and	other	countries.

Swift	and	tvOS	are	trademarks	of	Apple	Inc.

IOS	is	a	trademark	or	registered	trademark	of	Cisco	in	the	U.S.	and	other
countries	and	is	used	under	license.

Times	is	a	registered	trademark	of	Heidelberger	Druckmaschinen	AG,	available
from	Linotype	Library	GmbH.

https://creativecommons.org/licenses/by/4.0/

	Welcome to Swift
	About Swift
	Version Compatibility
	A Swift Tour

	Language Guide
	The Basics
	Basic Operators
	Strings and Characters
	Collection Types
	Control Flow
	Functions
	Closures
	Enumerations
	Structures and Classes
	Properties
	Methods
	Subscripts
	Inheritance
	Initialization
	Deinitialization
	Optional Chaining
	Error Handling
	Type Casting
	Nested Types
	Extensions
	Protocols
	Generics
	Opaque Types
	Automatic Reference Counting
	Memory Safety
	Access Control
	Advanced Operators

	Language Reference
	About the Language Reference
	Lexical Structure
	Types
	Expressions
	Statements
	Declarations
	Attributes
	Patterns
	Generic Parameters and Arguments
	Summary of the Grammar

	Revision History
	Document Revision History

	Trademarks

